• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于宏觀金屬輔助化學刻蝕制備硅納米線的研究

    2016-09-05 13:04:14李志勝胡慧東宋維力華北電力大學可再生能源學院新能源電力系統(tǒng)國家重點實驗室北京006北京師范大學能量轉換與存儲材料北京市重點實驗室北京00875北京科技大學新材料技術研究院北京0008
    物理化學學報 2016年4期
    關鍵詞:北京科技大學原電池納米線

    劉 琳 李志勝 胡慧東 宋維力(華北電力大學可再生能源學院,新能源電力系統(tǒng)國家重點實驗室,北京006;北京師范大學,能量轉換與存儲材料北京市重點實驗室,北京00875;北京科技大學新材料技術研究院,北京0008)

    基于宏觀金屬輔助化學刻蝕制備硅納米線的研究

    劉琳1,2,*李志勝1胡慧東1宋維力3
    (1華北電力大學可再生能源學院,新能源電力系統(tǒng)國家重點實驗室,北京102206;2北京師范大學,能量轉換與存儲材料北京市重點實驗室,北京100875;3北京科技大學新材料技術研究院,北京100083)

    分別利用鍍銀的硅襯底和鉑絲電極作為原電池反應中的陰極和陽極,基于金屬輔助化學刻蝕采用宏觀原電池的方法制備硅納米線,深入研究了該法制備硅納米線陣列的機理。通過改變電連接、鍍銀、刻蝕參數(shù)、硅襯底和光照等實驗條件,系統(tǒng)地研究了所得硅納米線形貌與其對應短路電流的關系,實驗發(fā)現(xiàn)短路電流與硅納米線長度有一定的對應關系。文章中所提出的模型旨在從根本上解決金屬輔助化學刻蝕制備硅納米線的機理。最后對這種方法所具有的潛在應用價值進行了展望和討論。

    半導體;微結構;電化學;硅納米線;金屬刻蝕

    [Article]

    www.whxb.pku.edu.cn

    In principle,the fabrication of Si via MACE process is intrinsically microscopic galvanic corrosion,electrons flow from the Si anodes to the noble metal cathodes with the presence of an aqueous solution containing oxidant.In the recent work,many factors and improvements have been considered in this process18-21,but unfortunately,real-time corrosion current that is significant to understand the fundamental of the process which was absent in the strategies above.

    On the other hand,the macro-galvanic cells,which could be formed when a noble metal is short-circuited to Si in the presence of an oxidant in the hydrofluoric acid(HF)solution,were firstly demonstrated by Kelly and co-workers22-26.Currently,Liu et al.14have fabricated SiNWs by combining the macro-galvanic cell with micro-galvanic cell via the MACE process,and investigated the relationship between the circuit current and SiNW length by changing the size of the cathode area.It is noteworthy that fabrication of SiNWs could be realized by the MACE using dissolved oxygen as the oxidizing agent with the presence of HF solution.

    The follow-up work based on the combination of traditional MACE and anodic etching has been explored for achieving modified SiNWs27-31,and it is noted that an external electrical bias (current or voltage source)is needed in such process.Compared to the traditional MACE,the holes for accelerating etching in such combined method are provided by the external bias,which is greater than the contribution from reduction of the added oxidants. Usually,this combined method has been widely used for studying MACE mechanism or producing porous SiNWs.Hence,it should be emphasized that the combined method is different from the MACE aforementioned,where external electrical bias is not needed and the holes are solely provided by the reduction of the oxidants.The use of cathode materials in the MACE is known to fully utilize the oxygen in the etchant.

    Up to date,there are still many phenomena and mechanisms that have not been well understood in the nanowire fabrication. For such purpose,here we utilize the MACE to fabricate SiNWs in the HF solution and take insight into the formation of SiNW arrays.In the setup of MACE,the catalytic Ag coating and Pt electrode are specifically employed as the cathode.Effects of electrical connection,Ag coatings,etching conditions,Si substrates,and light irradiations on the SiNWs are intensively studied based on the SiNW morphologies and related current densities recorded in the preparation.The results indicate that the control of the holes in the Si substrates via changing the conditions is the critical key in the kinetics of forming SiNWs.The corresponding mode for understanding the mechanism in the MACE has been proposed and discussed.

    2 Experimental

    2.1Materials

    As listed in Table 1,four types of Si wafers,Si(100)wafers(ptype,boron-doped,2.0-8.0 Ω?cm),Si(100)wafers(p-type,borondoped,0.5-0.8 Ω?cm),Si(100)wafers(p-type,boron-doped, 0.003-0.009 Ω?cm),Si(100)wafers(n-type,phosphor-doped, 0.002-0.006 Ω?cm),were commercially available and used as the starting materials.HF(49%),H2O2(30%),H2SO4(98%),AgNO3(>99.9%),CH3COCH3(AR)and EtOH(AR)were purchased from Sigma-Aldrich.

    2.2Nanowire synthesis

    In a typical synthesis,Si substrates of 4 cm2area were firstly cleaned with acetone,ethanol and deionized water via ultrasonic condition,followed by being immersed into a boiling solution of H2SO4-H2O2(volume ratio 3:1)for 15 min.The Si sheets were rinsed with deionized(DI)water.The substrates were then dipped into an aqueous solution of 5%HF for a few tens of seconds before use.The as-cleaned Si pieces were coated with Ag nanoparticle films by immersing into the mixing solution of HF and AgNO3.The back side of the prepared Si substrates with the Ag nanoparticle films that were connected with copper plates was scratched with a eutectic InGa alloy to establish good electrical contact.The silicon wafer was attached to the cell with an O-ring for a window,and a part of(1 cm2)the test specimen was exposed to the solution.The Pt electrode was electrically connected to the Si substrate directly.Prior to each experiment,the cell body and the Pt electrode were carefully cleaned.After etching,the surface of Si was rinsed with deionized water for several times to remove the residual fluoride ions,followed by drying in the dark.All experiments were carried out at room temperature.

    2.3Characterization

    Surface morphology and microstructure of the as-prepared SiNWs were examined on a field emission scanning electron microscopy(SEM,HITACHI S-4800).Electrochemical data in the galvanic corrosion studies were obtained on the Zennium IM6 (Zahner)electrochemical workstation.In the three-electrode system,silicon,Pt,and silver chloride electrode(RHE)were used as the working electrode,counter electrode,and reference electrode,respectively.

    Table 1 Silicon wafers used in this work

    3 Results and discussion

    3.1Mechanisms of the etching

    The experimental setup is illustrated in Fig.1.Upon immersing into HF and AgNO3for Ag coating,the as-prepared Ag-coated Si substrate was exposed to the aqueous HF solution and meanwhile the other side was connected to the Pt electrode,as shown in Fig.1 (a).It is noted that the area of the Pt electrode immersed in the etchant remained exactly the same throughout all the experimentsin this work.In the reference setup,no electrical connection was applied between the Pt electrode and Si substrate,as shown in Fig.1(b).SEM images of the as-prepared SiNWs under different conditions were given in Fig.1(c,d),exhibiting that the electrical connection between the Pt electrode and Si substrate essentially promoted the growth of SiNWs.According to the well-recognized mechanism,it is suggested that redox reactions of the etching should follow Eqs.(1),(2)14

    Fig.1 (a,b)Schemes of the galvanic cell for preparing SiNWs and(c,d)SEM images of the as-prepared SiNWs

    Cathode reactions:

    According to Eq.(1),electrical connection between the Pt electrode and Si substrate in term of increasing reaction area would substantially enhance electron consumption on the cathode (Fig.1(a)),which in turn promotes the kinetics for Si etching.As a consequence,generation of macroscopic galvanic cell could vastly facilitate the growth of SiNWs via MACE.On the basis of the etching mechanisms and characteristics,the effects of preparation conditions on the MACE would be systematically investigated.

    3.2Effects of Ag coating on growing SiNWs

    In order to investigate the effects of Ag coating,a reference sample was prepared under the same conditions(Table 2)except for using bare Si substrate in the MACE.Typical SEM images in Fig.2 demonstrate the top-down sectional and cross-sectional views of the porous Si from bare Si(Fig.2(a,c))and SiNW arrays from Ag-coated Si(Fig.2(b,d)).Apparently,the presence of Ag leads to rapid Si etching to form the SiNW arrays(with length up to 6.2 μm),which indicates that Ag plays a strong catalytic role in term of electron acceptor upon MACE(Fig.1),consistent with previous observation12,15.

    Table 2 Silicon wafers with differentAg coating treatments

    The electrochemical measurements of these two samples were plotted in Fig.2(e,f),exhibiting the current density-time and the potential-time curves,respectively.According to the curve in Fig.2(f),it is clearly seen that a macroscopic galvanic cell is constructed between the Si substrate and Pt electrode when both are electrically connected.Two pronounced effects were found via such connection.(1)Potential is sharply increased,and(2) electrons start to transfer between the Si substrate and Pt electrode (Fig.2(f)).As exhibited in Fig.2(e),a very small current density appeared between the Si substrate and Pt electrode in the setup with bare Si,indicating formation of porous Si(Fig.1(d)).In the setup with Ag-coated Si,on the contrary,a dramatically enhanced initial current density and a stable current density were observed after hundreds of minute(Fig.2(e)),which corresponds to the moment when electrical connection is established and potential is stabilized in the polarization process,respectively.Such polarization process is associated with the production of SiNW arrays (Fig.1(c)).The comparison also confirms that the presence of Ag tremendously boosts the Si etching rate in the HF solution,consistent with the results found in the SEM images.Additionally,it is note that the shift observed in the potential is in good agreementwith the galvanic cell theory21-25.In principle,a potential difference between Si and metals is assumed in the rest potential of the system when the metal electrode is connected to the Si electrode. Prior to electrical connection,the potential of the Ag-coated Si is higher than that of the bare Si,because the potential of the Agcoated Si refers to the rest potential of the bare Si and Ag.Upon electrical connection,the potential shift ofAg-coated Si was found to be much larger than that of the bare Si as expectation.

    Fig.2 (a-d)SEM images of the as-prepared SiNWs and(e-f)results of the electrochemical testing

    Further investigation was carried out via changing the immersing time(1,2,and 4 min)in the HF and AgNO3solution, followed by the same preparation conditions(listed in Table 2). Fig.3(a,c,e)exhibits the top-down sectional views of the SiNW arrays with various immersing time of 1,2,and 4 min in the HF and AgNO3solution,respectively.When the Ag coating time is shorter,it is observed that the length of the SiNW arrays is much shorter,but larger in the average diameter(Fig.3(b,d,f)).The results imply that the increasing Ag coatings are expected to essentially enhance the Si etching rate.In contrast to the current densities for Pt/Si galvanic couples with different Ag coating time (Fig.3(g)),the current densities are considerably higher for the Pt/ Si galvanic couples with longer Ag-coating time,also indicating that the highest Ag amount has the strongest catalytic activity for the formation of SiNWs.

    For understanding the effects of the etching parameters on the SiNWs,the Ag-coated Si substrates(Si-1,2 min coating)were immersed into the 9 mol?L-1HF solution for different time,as listed in Table 3.Fig.4 shows the representative SEM images of the top-down sectional and cross-sectional views of the SiNW arrays.Compared to the sample without etching(Fig.4(a,b)),the Ag coating gradually sunk into the Si substrate once electrical connection was generated between the Ag-coated Si and Pt electrode in the HF solution.As the etching time stayed longer,the as-formed SiNWs were found to grow longer as anticipated(Fig.4 (c-h(huán))).In the early etching stage,Ag coatings could be maintained at the bottom of the SiNW arrays,as shown in Fig.4(d).With increasing etching time,the Ag coatings were found to break intoAg nanoparticles and SiNW arrays could be clearly observed (Fig.4(f,h)).Moreover,it is emphasized that the evolution of the Ag coating in the MACE here is almost the same as that of the traditional MACE12,15.The SiNWdiameter could be affected by the Ag shape,but it is difficult to control and evaluate the SiNW diameter in this paper32,33.

    Fig.3 (a-f)Top-down sectional and cross-sectional SEM images of the SiNW arrays with various immersing time in the HF andAgNO3solution and(g)current density-time curves for the coupled Si and Pt electrodes in HF solution with differentAg-coating time

    Table 3 Growth of SiNWs with different etching time

    The concentration of the HF solution was also varied to study the concentration-dependent etching in the formation of the SiNWs.As listed in Table 4,the concentrations of the HF etchant were changed into 4,9,and 15 mol?L-1,and the other conditions remained the same.Fig.5(a-c)presents the cross-sectional SEM images of the prepared SiNW arrays,which indicates that the HF concentration possess the fastest etching rate,leading to the longest SiNWs(Table 4).As plotted in Fig.5(d),the current density-time curves also exhibit that the coupled Si and Pt electrodes in 15 mol?L-1HF solution deliver the largest current density among the three samples.Implication of the results suggests that the length of the as-formed SiNWs is due to the effect of fluorine anions within a certain concentration range.According to Eq.(2),the mechanism is associated with the fact that increasingfluorine anions participate in the oxidation reaction.As a consequence,the generated electrons are transferred onto the Pt surface and participate in the reduction reaction as given by Eq.(1).

    Fig.4 Top-down sectional and cross-sectional SEM images of the SiNW arrays with different immersing time in 9 mol?L-1HF solution

    Table 4 Growth of SiNWs with different concentrations in the HF etchant

    The doping levels of the Si wafers used for achieving SiNWs also have great impacts on the morphology of the prepared SiNWs.According to Table 5,the Si substrates of different electrical resistivity were applied in the preparation and the other procedures stayed the same.SEM images shown in Fig.6(a-c)are the cross-sectional views of the SiNW arrays using various Si substrates,suggesting that the SiNW length ranges from 6.2 to 8.5 μmas the decrease in the electrical resistivity.As exhibited in Fig.6 (d),current densities were observed to enhance with the increase of the doping level,which is identical to the anodic etching for fabricating porous Si in the previous report34,35.This observation could be linked to the point that the consumption of holes during the Si etching plays an important role in the electrochemical reaction.Consequently,current density was found to be enlarged with increasing number of holes in the p-type Si substrates,which indicates the promotion of dissolving Si in the HF solution.

    Fig.5 (a-c)Cross-sectional SEM images of the SiNW arrays with different HF concentrations in the etching and(d)current density-time curves for coupled Si and Pt electrodes in the HF solutions with different concentrations

    In order to explore the doping influences of Si substrates on the prepared SiNWs,three different types of Si substrates were utilized and the conditions were listed in Table 6.Representative SEM images of the SiNWs are given in Fig.7(a-c),showing that the SiNWs grown on the heavily boron-doped Si possess larger length(Fig.7).Additionally,the current density-time curves in Fig.7(d)demonstrate that the setup based on heavily phosphor-doped Si delivers a larger current density than those based on ptype Si.The result here is completely different from the observation on the modestly doped n-type substrates in the previous work7.In general,a much larger cathode area or light irradiation is required to draw the equivalent current density on the modestly doped n-type Si.However,the current density-time characteristics are similar in both p-type and heavily doped n-type Si samples in this work,where the area of the Pt electrode was exactly the same.In the previous studies,on the other hand,surface breakdown effect was found to result in a larger current36.

    Table 5 Silicon wafers for growing SiNWs

    Fig.6 (a-c)Cross-sectional SEM images of the SiNW arrays prepared and(d)current density-time curves for coupled Si and Pt electrodes assembled with the Si substrates of various doping levels

    Silicon wafer Si-1(boron doped,p-type,2.0-8.0 Ω?cm) Si-3(boron doped,p-type,0.003-0.009 Ω?cm) Si-4(phosphor doped,n-type,0.002-0.006 Ω?cm) Growth ofAg coating/min 2 2 2 9 9 9 HF etchant/(mol?L-1) Etching time/h 2 2 2 SiNW length/μm 6.2 8.5 0.2

    3.3Effects of light irradiation on the growing SiNWs In the previous work for etching SiNWs,utilization of lightirradiation has been proved to be an effective approach for enlarging the kinetics in growing SiNW7.In the MACE setup here, light-irradiation was introduced as an assistant condition in the preparation of SiNWs.For understanding the impact of light-irradiation on the SiNWs,n-type Si substrates(0.002-0.006 Ω?cm) were used with different irradiation conditions in the process (Table 7).According to the SEM images shown in Fig.8,the light from the front side has a strong effect on dissolving Si,with no pronounced SiNWs formed(Fig.8(c,d)).In the contrary,the light irradiation from the back side presents a more favorable condition for growing SiNWs,as exhibited in Fig.8(e,f).The current density-time curves are not provided here,because the large current density in the sample without light irradiation was very strong.Therefore,the changes in the current density under the light irradiation were insufficient to be monitored.

    3.4More discussion

    For overall understanding the electrochemical mechanisms of preparing the SiNW arrays in this work,a model of the macroscopic galvanic cell driven MACE process is shown in Fig.9.As illustrated in Fig.9(a),only one galvanic cell exists in the system before electrical connection and it is formed by the microscopic short-circuit galvanic cells between Si and Ag nanoparticles, which deliver weak corrosion in the Si.Upon electrical connection (Fig.9(b)),another galvanic cell based on the connected macroscopic short-circuit galvanic cell between Si and Pt is introduced into the system.In this work,the recorded current densities in the electrical connection systems refer to the electron flows from Si to Pt,which greatly contributes to the formation of SiNWs.Because of diffusion effect and electric field37-39,the left holes transfer to theAg-coated Si surface,which could be described as Eq.(3):

    Fig.7 (a-c)Cross-sectional SEM images of the SiNW arrays and(d)current density-time curves for coupled Si and Pt electrodes prepared with the Si substrates of different types

    Table 7 Conditions of light irradiation for growing SiNWs

    Fig.8 Top-down sectional and cross-sectional SEM images of the SiNW arrays using n-type Si substrates with different irradiation conditions

    Moreover,the light-irradiation effects from the front side and the back side are illustrated in Fig.9(c,d),respectively.The number of holes can be massively enlarged in the n-type Si under light irradiations.In the case of the light irradiations from the front side(Fig.9(c)),the generated holes are easy to transfer to the surface by the surface breakdown effect,leading to formation of SiNWs in term of dissolving Si.On the other hand,the generated holes are prone to transfer to theAg-coated valleys if the holes are generated from the back side(Fig.9(d)).In addition,the generatedholes that are close to the sidewalls or far from the metal areas may enhance the porosity of the SiNWs under the light irradiations either from the front side or back side.

    Fig.9 (a,b)Schemes of the macroscopic galvanic cell driven MACE process for the SiNW preparation in HF aqueous solution and(c,d)light-irradiation effect on the heavily doped n-type Si

    According to the above results,the overall MACE process mainly involves four steps.(1)Due to the catalytic activity of Ag, the oxidant is reduced at its surface;once the Si is electrically connected with Pt electrode,the oxidant is reduced at both the Pt and Ag surfaces.(2)The corrosion rate of the SiNWs depends on the hole concentration and its transfer direction,which is controlled by the rate of cathodic reactions and the types of Si substrates.(3)Due to the reduction of the oxidant,the generated holes are injected into the Si,and Si is subsequently oxidized and dissolved into HF.(4)The holes that diffuse to the off-metal areas or to the NW sidewall may shorten the SiNW length and enlarge porosity.

    4 Conclusions

    In summary,various SiNW arrays were produced by MACE in the HF solution via varying the process parameters.Significant factors including electrical connection,Ag coatings,etching conditions,Si substrates and light irradiations have been considered to investigate the corresponding impacts on the formation of the SiNWs.The generation of holes in silicon plays a vital role on the formation of SiNWs and the associated mechanism has been discussed.The results suggest that MACE holds various advantages of facile,effective and scalable features,promising a unique stage for large-scale synthesizing SiNWs in many fields.

    References

    (1)Brodoceanu,D.;Alhmoud,H.Z.;Elnathan,R.;Delalat,B.; Voelcker,N.H.;Kraus,T.Nanotechnology 2016,27,075301. doi:10.1088/0957-4484/27/7/075301

    (2)Cao,M.S.;Yang,J.;Song,W.L.;Zhang,D.Q.;Wen,B.;Jin, H.B.;Hou,Z.L.;Yuan,J.ACS Appl.Mater.Interfaces 2012, 4,6948.doi:10.1021/am3021069

    (3)Cao,M.S.;Song,W.L.;Hou,Z.L.;Yang,J.Carbon 2010,48, 788.doi:10.1016/j.carbon.2009.10.028

    (4)Cao,M.S.;Shi,X.L.;Fang,X.Y.;Jin,H.B.;Hou,Z.L.; Zhou,W.;Chen,Y.J.Appl.Phys.Lett.2007,91,203110.doi: 10.1063/1.2803764

    (5)Zhou,X.;Sun,M.Q.;Wang,G.C.Acta Phys.-Chim.Sin. 2016,32,975.[周曉,孫敏強,王庚超.物理化學學報,2016, 32,975.]doi:10.3866/PKU.WHXB201601281

    (6)Wang,J.D.;Peng,T.J.;Xian,H.Y.;Sun,H.J.Acta Phys.-Chim.Sin.2015,31,90.

    [汪建德,彭同江,鮮海洋,孫紅娟.物理化學學報,2015,31,90.]doi:10.3866/PKU. WHXB201411202

    (7)Hu,R.J.;Wang,J.;Zhu,H.C.Acta Phys.-Chim.Sin.2015, 31,1997.

    [胡瑞金,王兢,朱慧超.物理化學學報,2015,31, 1997.]doi:10.3866/PKU.WHXB201508241

    (8)Wagner,R.S.;Ellis,W.C.Appl.Phys.Lett.1964,4,89.doi: 10.1063/1.1753975

    (9)Lee,G.;Woo,Y.S.;Yang,J.E.;Lee,D.H.;Kim,C.J.;Jo,M. H.Angew.Chem.Int.Edit.2009,48,7366.doi:10.1002/anie. v48:40

    (10)Kolasinski,K.W.Curr.Opin.Solid State Mater.Sci.2005,9, 73.doi:10.1016/j.cossms.2006.03.004

    (11)Lehmann,V.;Stengl,R.;Luigart,A.Mater.Sci.Eng.B 2000, 69,11.doi:10.1016/S0921-5107(99)00286-X

    (12)Peng,K.Q.;Wu,Y.;Fang,H.;Zhong,X.Y.;Xu,Y.;Zhu,J. Angew.Chem.Int.Edit.2005,44,2737.doi:10.1002/ anie.200462995

    (13)Peng,K.Q.;Zhu,J.Electrochim.Acta 2004,49,2563.doi: 10.1016/j.electacta.2004.02.009

    (14)Liu,L.;Peng,K.Q.;Hu,Y.;Wu,X.L.;Lee,S.T.Adv.Mater. 2014,26,1410.doi:10.1002/adma.201304327

    (15)Huang,Z.P.;Geyer,N.;Werner,P.;Boor,J.D.;G?sele,U. Adv.Mater.2011,23,285.doi:10.1002/adma.v23.2

    (16)Hochbaum,A.I.;Chen,R.;Delgado,R.D.;Liang,W.J.; Garnett,E.C.;Najarian,M.;Majumdar,A.;Yang,P.D.Nature 2008,451,163.doi:10.1038/nature06381

    (17)Brammer,K.S.;Choi,C.;Oh,S.;Cobb,C.J.;Connelly,L.S.; Loya,M.;Kong,S.D.;Jin,S.Nano Lett.2009,9,3570. doi:10.1021/nl901769m

    (18)Liu,L.;Wang,Y.T.Acta Phys.Sin.2015,64,148201. doi:10.7498/aps.64.148201

    (19)Liu,L.Sci.China Tech.Sci.2015,58,362.doi:10.1007/ s11431-014-5740-9

    (20)Tsujino,K.;Matsumura,M.Adv.Mater.2005,17,1045. doi:10.1002/adma.200401681

    (21)Liu,L.J.Mater.Chem.C 2014,2,9631.doi:10.1039/C4TC01431F

    (22)Ashruf,C.M.A.;French,P.J.;Bressers,P.M.M.C.;Kelly,J. J.Sens.Actuators 1999,74,118.doi:10.1016/S0924-4247(98) 00340-9

    (23)Ashruf,C.M.A.;French,P.J.;Sarro,P.M.;Kazinczi,R.;Xia, X.H.;Kelly,J.J.J.Micromech.Microeng.2000,10,505.doi: 10.1088/0960-1317/10/4/304

    (24)Xia,X.H.;Ashruf,C.M.A.;French,P.J.;Kelly,J.J.Chem. Mater.2000,12,1671.doi:10.1021/cm9912066

    (25)Kelly,J.J.;Xia,X.H.;Ashruf,C.M.A.;French,P.J.IEEE Sens.J.2001,1,127.doi:10.1109/JSEN.2001.936930

    (26)Song,Y.Y.;Gao,Z.D.;Kelly,J.J.;Xia,X.H.Electrochem. Solid-State Lett.2005,8,C148.doi:10.1149/1.2033616

    (27)Huang,Z.P.;Geyer,N.;Liu,L.F.;Li,M.Y.;Zhong,P. Nanotechnology 2010,21,465301.doi:10.1088/0957-4484/ 21/46/465301

    (28)Chourou,M.L.;Fukami,K.;Sakka,T.;Virtanen,S.;Ogata,Y. H.Electrochim.Acta 2010,55,903.doi:10.1016/j. electacta.2009.09.048

    (29)Kim,J.;Rhu,H.;Lee,W.J.Mater.Chem.2011,15889. doi:10.1039/C1JM13831F

    (30)Weisse,J.M.;Lee,C.H.;Kim,D.R.;Cai,L.;Rao,P.M.; Zheng,X.Nano Lett.2013,13,4362.doi:10.1021/nl4021705

    (31)Lai,C.Q.;Zheng,W.;Choi,W.K.;Thompson,C.V. Nanoscale 2015,7,11123.doi:10.1039/C5NR01916H

    (32)Huang,Z.P.;Zhang,X.X.;Reiche,M.;Liu,L.F.;Lee,W.; Shimizu,T.;Senz,S.;G?sele,U.Nano Lett.2008,8,3046. doi:10.1021/nl802324y

    (33)Huang,Z.P.;Shimizu,T.;Senz,S.;Zhang,Z.;Zhang,X.X.; Lee,W.;Geyer,N.;G?sele,U.Nano Lett.2009,9,2519. doi:10.1021/nl803558n

    (34)VanDjlk,H.J.A.;de Jonge,J.J.Electrochem.Soc.1970,177, 553.doi:10.1149/1.2407568

    (35)Theunissen,M.J.J.;Appels,J.A.;Verkuylen,W.H.C.G. J.Electrochem.Soc.1970,117,959.doi:10.1149/1.2407698

    (36)Meek,R.L.J.Electrochem.Soc.1971,118,437.doi:10.1149/ 1.2408076 doi:10.1149/1.2408076

    (37)F?ll,H.Appl.Phys.A 1991,53,8.doi:10.1007/BF00323428

    (38)Lehmann,V.J.Electrochem.Soc.1993,140,2836.doi: 10.1149/1.2220919

    (39)Bertagna,V.;Plougonven,C.;Rouelle,F.;Chemla,M. J.Electrochem.Soc.1996,143,3532.doi:10.1149/1.1837249

    Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires

    LIU Lin1,2,*LI Zhi-Sheng1HU Hui-Dong1SONG Wei-Li3
    (1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,School of Renewable Energy, North China Electric Power University,Beijing 102206,P.R.China;2Beijing Key Laboratory of Energy Conversion and Storage Materials,Beijing Normal University,Beijing 100875,P.R.China;3Institute of Advanced Materials and Technology,University of Science and Technology Beijing,Beijing 100083,P.R.China)

    To understand the principles of the fabrication of nanowire arrays using macroscopic metal-assisted chemical etching(MACE),Si nanowires(SiNWs)are synthesized using Ag-coated Si substrates and Pt electrodes by the macroscopic MACE.Analysis of the SiNW morphology coupled with the corresponding current density in the MACE process is applied to systematically investigate the effects of the electrical connection,Ag coating,etching conditions,Si substrates,and light irradiation on the formation of SiNWs.It is found that there is a certain relationship between the current density and the SiNW length.Amode is proposed to fundamentally understand the mechanisms of the preparation of SiNWs using MACE.Associated opportunities are also discussed.

    Semiconductor;Microstructure;Electrochemistry;Silicon nanowire;Metal etching

    1 Introduction

    Over the past decades,nanomaterials have been tremendously considered as one of the most important materials in the electronics industry1-7.Recently,various efforts have been largely paid to fabricate Si nanostructures with applicable performance in the device applications,such as vapor-liquid-solid growth8,9,electrochemical etching10,11.Very recently,the metal-assisted chemical etching(MACE)technique has been well developed by Peng and coworkers12-14and is now widely utilized to fabricate Si nanowires (SiNWs)with exceptional morphologies and structures.Thus far,MACE is believed to be a low-cost,simple,reliable top-down fabrication technique for producing a variety of Si nanostructures15,and the nanostructures fabricated by MACE have demonstrated great potential application in various fields16,17.

    December 30,2015;Revised:February 15,2016;Published on Web:February 18,2016.*Corresponding author.Email:liulin2014@ncepu.edu.cn;Tel:+86-10-61773932. The project was supported by the China Postdoctoral Science Foundation(2014M560934)and Fundamental Research Funds for the Central Universities,China(2015QN16).

    O649

    10.3866/PKU.WHXB201602183

    中國博士后科學基金面上項目(2014M560934)和中央高校基本科研業(yè)務費項目(2015QN16)資助

    猜你喜歡
    北京科技大學原電池納米線
    《北京科技大學學報(社會科學版)》
    理論縱橫(2024年1期)2024-01-11 07:56:12
    《北京科技大學學報(社會科學版)》
    理論縱橫(2022年6期)2022-12-06 04:27:50
    《北京科技大學學報》(社會科學版)
    理論縱橫(2022年1期)2022-02-16 07:26:06
    3d過渡金屬摻雜對Cd12O12納米線電子和磁性能的影響
    例析原電池解題策略
    2017年7月原電池及原電池組產(chǎn)量同比增長2.53%
    消費導刊(2017年19期)2017-12-13 08:30:52
    溫度對NiAl合金納米線應力誘發(fā)相變的影響
    磁性金屬Fe納米線的制備及其性能
    原電池知識點面面觀
    田永訴北京科技大學拒絕頒發(fā)畢業(yè)證、學位證案
    法學與實踐(2015年1期)2015-12-01 03:41:13
    丰满迷人的少妇在线观看| 国产又爽黄色视频| 99久久人妻综合| 久久毛片免费看一区二区三区| 国产一区二区三区在线臀色熟女 | 日韩欧美一区二区三区在线观看 | 丝袜人妻中文字幕| 亚洲avbb在线观看| www日本在线高清视频| 亚洲 国产 在线| 深夜精品福利| 满18在线观看网站| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 亚洲伊人色综图| 黄色视频不卡| 热99re8久久精品国产| 精品国内亚洲2022精品成人 | 国产欧美日韩一区二区三区在线| 深夜精品福利| 免费在线观看黄色视频的| 最近最新中文字幕大全电影3 | 超碰97精品在线观看| 久久精品国产亚洲av香蕉五月 | 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 日韩欧美免费精品| 成人三级做爰电影| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲一码二码三码区别大吗| 国产激情久久老熟女| 热99国产精品久久久久久7| 涩涩av久久男人的天堂| 成在线人永久免费视频| 中文字幕色久视频| www日本在线高清视频| 亚洲欧美色中文字幕在线| 久久中文字幕人妻熟女| 成人国语在线视频| 超碰成人久久| 欧美黑人精品巨大| 大香蕉久久成人网| 丁香六月欧美| 999久久久国产精品视频| 捣出白浆h1v1| 国产麻豆69| 在线观看免费高清a一片| 悠悠久久av| 国产欧美日韩精品亚洲av| 国产成人影院久久av| 黑人猛操日本美女一级片| 欧美日韩av久久| av欧美777| 亚洲av欧美aⅴ国产| 多毛熟女@视频| 亚洲一区中文字幕在线| 国产一卡二卡三卡精品| 超色免费av| 制服人妻中文乱码| 亚洲精品国产区一区二| 日韩视频一区二区在线观看| 亚洲综合色网址| 欧美国产精品va在线观看不卡| 色在线成人网| 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 精品国产乱码久久久久久男人| 操美女的视频在线观看| 免费日韩欧美在线观看| 国产免费av片在线观看野外av| 久久精品成人免费网站| av天堂久久9| 日韩中文字幕欧美一区二区| 亚洲av美国av| 无人区码免费观看不卡 | 夜夜爽天天搞| 国产精品欧美亚洲77777| 亚洲精品一卡2卡三卡4卡5卡| 考比视频在线观看| 国产亚洲午夜精品一区二区久久| 欧美成人午夜精品| 国产一区二区激情短视频| 一区二区av电影网| 色婷婷久久久亚洲欧美| 美女高潮喷水抽搐中文字幕| 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 色视频在线一区二区三区| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 日本一区二区免费在线视频| 不卡av一区二区三区| 午夜福利欧美成人| 中文欧美无线码| 高潮久久久久久久久久久不卡| 悠悠久久av| 久久久国产精品麻豆| aaaaa片日本免费| 日韩免费高清中文字幕av| 亚洲第一av免费看| 男女边摸边吃奶| 国产一区二区 视频在线| 欧美 日韩 精品 国产| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 午夜激情av网站| 亚洲精品一二三| 成年人黄色毛片网站| 久久青草综合色| av天堂在线播放| 91av网站免费观看| 青青草视频在线视频观看| 亚洲专区中文字幕在线| 欧美精品一区二区大全| 制服人妻中文乱码| 丝瓜视频免费看黄片| 免费观看人在逋| 欧美中文综合在线视频| 好男人电影高清在线观看| 叶爱在线成人免费视频播放| 国产男女内射视频| 国产视频一区二区在线看| 国产一区二区三区综合在线观看| 国产单亲对白刺激| 国产亚洲一区二区精品| 俄罗斯特黄特色一大片| 亚洲国产中文字幕在线视频| 亚洲三区欧美一区| 黄色视频,在线免费观看| 高清av免费在线| 少妇 在线观看| 91精品三级在线观看| 午夜老司机福利片| 一级黄色大片毛片| 日韩视频一区二区在线观看| 91大片在线观看| 悠悠久久av| 丝袜美腿诱惑在线| 午夜成年电影在线免费观看| 欧美日韩亚洲高清精品| 久久久久久久精品吃奶| 久久国产亚洲av麻豆专区| 精品亚洲成a人片在线观看| 99国产精品一区二区蜜桃av | 国产精品久久久久久精品古装| 国产精品.久久久| 国产单亲对白刺激| 美女视频免费永久观看网站| 成在线人永久免费视频| 人人澡人人妻人| 国产深夜福利视频在线观看| 天天操日日干夜夜撸| 久久国产精品人妻蜜桃| tube8黄色片| 最近最新免费中文字幕在线| 午夜免费鲁丝| 天天影视国产精品| 精品国产乱码久久久久久小说| 又黄又粗又硬又大视频| 1024香蕉在线观看| 在线av久久热| 黑人巨大精品欧美一区二区mp4| 亚洲精品国产精品久久久不卡| 久久精品国产99精品国产亚洲性色 | 啦啦啦 在线观看视频| 两人在一起打扑克的视频| 黄色视频在线播放观看不卡| 老司机影院毛片| www.精华液| 老汉色∧v一级毛片| 国产男女超爽视频在线观看| 久久午夜综合久久蜜桃| 亚洲国产毛片av蜜桃av| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 肉色欧美久久久久久久蜜桃| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 午夜精品久久久久久毛片777| 一区二区三区乱码不卡18| 久久亚洲精品不卡| 国产一区二区在线观看av| 手机成人av网站| 99国产精品免费福利视频| 在线av久久热| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 精品人妻在线不人妻| 无人区码免费观看不卡 | 最黄视频免费看| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 最黄视频免费看| 激情在线观看视频在线高清 | 久久久精品国产亚洲av高清涩受| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 伦理电影免费视频| 久热爱精品视频在线9| 男女无遮挡免费网站观看| 少妇裸体淫交视频免费看高清 | 日本a在线网址| 久久热在线av| 精品一区二区三卡| 99久久精品国产亚洲精品| 亚洲欧美一区二区三区久久| 激情在线观看视频在线高清 | 中国美女看黄片| 久久久久久亚洲精品国产蜜桃av| 女性被躁到高潮视频| 国产精品香港三级国产av潘金莲| 国产精品 国内视频| 男女午夜视频在线观看| 精品久久久久久久毛片微露脸| 欧美成人免费av一区二区三区 | 精品少妇一区二区三区视频日本电影| 国产主播在线观看一区二区| 中文字幕人妻熟女乱码| 一级黄色大片毛片| 精品免费久久久久久久清纯 | 啦啦啦中文免费视频观看日本| 久久久久久免费高清国产稀缺| 人妻一区二区av| tocl精华| 国产精品一区二区在线不卡| 色老头精品视频在线观看| 伊人久久大香线蕉亚洲五| 日韩三级视频一区二区三区| 久久精品成人免费网站| 国产精品欧美亚洲77777| 亚洲专区国产一区二区| 蜜桃在线观看..| 国产精品偷伦视频观看了| 人人澡人人妻人| 老司机靠b影院| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美精品济南到| 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 99国产精品免费福利视频| 狂野欧美激情性xxxx| 999精品在线视频| 欧美在线一区亚洲| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看| 欧美精品av麻豆av| 成年动漫av网址| 一区二区av电影网| 老熟妇仑乱视频hdxx| 国产精品久久久久久人妻精品电影 | 久久精品国产a三级三级三级| 一边摸一边抽搐一进一小说 | 免费少妇av软件| 亚洲人成电影免费在线| 999精品在线视频| 母亲3免费完整高清在线观看| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 亚洲综合色网址| 国产精品影院久久| 午夜精品久久久久久毛片777| 侵犯人妻中文字幕一二三四区| 俄罗斯特黄特色一大片| xxxhd国产人妻xxx| 亚洲av美国av| 久久热在线av| 宅男免费午夜| 男女高潮啪啪啪动态图| 国产淫语在线视频| 亚洲精品乱久久久久久| 日本五十路高清| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 亚洲av国产av综合av卡| 不卡av一区二区三区| 国产精品一区二区在线观看99| 黄片播放在线免费| 蜜桃在线观看..| av网站在线播放免费| 日本五十路高清| 欧美日韩一级在线毛片| 丝袜在线中文字幕| 国产欧美日韩一区二区精品| 精品国产亚洲在线| 国产成人影院久久av| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 女人爽到高潮嗷嗷叫在线视频| 日本黄色日本黄色录像| 青青草视频在线视频观看| 久久精品国产亚洲av香蕉五月 | 曰老女人黄片| 狠狠狠狠99中文字幕| 咕卡用的链子| 大陆偷拍与自拍| 精品国内亚洲2022精品成人 | 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 国产av精品麻豆| 久久国产亚洲av麻豆专区| 91精品三级在线观看| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| 久久人妻av系列| 日韩欧美一区二区三区在线观看 | 亚洲欧美日韩高清在线视频 | 午夜福利视频精品| videosex国产| 亚洲 欧美一区二区三区| 日韩欧美三级三区| 最近最新中文字幕大全电影3 | 啦啦啦 在线观看视频| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 宅男免费午夜| 两个人看的免费小视频| 久久av网站| 国产高清国产精品国产三级| 黄片小视频在线播放| 久久久精品94久久精品| 80岁老熟妇乱子伦牲交| svipshipincom国产片| 99re在线观看精品视频| 精品久久蜜臀av无| 国产xxxxx性猛交| 日韩中文字幕视频在线看片| 丁香欧美五月| 国产亚洲欧美精品永久| 国产淫语在线视频| 成人三级做爰电影| 国产主播在线观看一区二区| 黄色丝袜av网址大全| 国产淫语在线视频| 亚洲综合色网址| 国产在线观看jvid| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| 久久精品熟女亚洲av麻豆精品| 国产单亲对白刺激| 国产不卡一卡二| 午夜激情久久久久久久| 精品人妻在线不人妻| 国产成人啪精品午夜网站| 久久狼人影院| 午夜久久久在线观看| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| videos熟女内射| 99热网站在线观看| 色在线成人网| 久久久国产一区二区| 国产野战对白在线观看| 国产精品成人在线| 欧美 亚洲 国产 日韩一| 宅男免费午夜| e午夜精品久久久久久久| av天堂在线播放| aaaaa片日本免费| av天堂在线播放| 亚洲国产av新网站| 丁香六月天网| 欧美日韩亚洲国产一区二区在线观看 | netflix在线观看网站| 国产三级黄色录像| 真人做人爱边吃奶动态| 国产一区二区三区在线臀色熟女 | 啪啪无遮挡十八禁网站| 免费在线观看视频国产中文字幕亚洲| 人成视频在线观看免费观看| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一小说 | 久久精品国产亚洲av香蕉五月 | 丰满饥渴人妻一区二区三| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 亚洲伊人久久精品综合| 国产精品久久久av美女十八| 老司机福利观看| 欧美精品高潮呻吟av久久| 91麻豆av在线| 久热这里只有精品99| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 国产aⅴ精品一区二区三区波| 免费在线观看完整版高清| 9色porny在线观看| 亚洲中文av在线| 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区久久| 满18在线观看网站| 国产精品亚洲一级av第二区| 日本av免费视频播放| 女人被躁到高潮嗷嗷叫费观| 99久久精品国产亚洲精品| 日韩成人在线观看一区二区三区| 法律面前人人平等表现在哪些方面| 在线永久观看黄色视频| 国产在线精品亚洲第一网站| 国产午夜精品久久久久久| 午夜福利视频精品| 黄频高清免费视频| 欧美日韩av久久| 十八禁人妻一区二区| 动漫黄色视频在线观看| 无人区码免费观看不卡 | 国产高清国产精品国产三级| 欧美日本中文国产一区发布| 91九色精品人成在线观看| 日本a在线网址| 国产精品一区二区精品视频观看| 欧美成狂野欧美在线观看| 飞空精品影院首页| 国产97色在线日韩免费| 国产高清激情床上av| 久久人妻av系列| 啦啦啦 在线观看视频| 亚洲午夜理论影院| 人成视频在线观看免费观看| 在线观看www视频免费| 久久久国产成人免费| 乱人伦中国视频| 国产成人欧美在线观看 | 免费看十八禁软件| 午夜视频精品福利| 女人精品久久久久毛片| 一区二区日韩欧美中文字幕| 我的亚洲天堂| 国产av精品麻豆| 亚洲一区中文字幕在线| 中文欧美无线码| 伊人久久大香线蕉亚洲五| 亚洲精品乱久久久久久| 亚洲视频免费观看视频| av网站在线播放免费| 欧美av亚洲av综合av国产av| 在线观看免费日韩欧美大片| 亚洲av电影在线进入| 在线观看免费高清a一片| 捣出白浆h1v1| 亚洲情色 制服丝袜| 久久久精品免费免费高清| av网站在线播放免费| 99re在线观看精品视频| 熟女少妇亚洲综合色aaa.| 一区二区日韩欧美中文字幕| 国产成人啪精品午夜网站| 精品午夜福利视频在线观看一区 | 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 后天国语完整版免费观看| 十八禁高潮呻吟视频| 自拍欧美九色日韩亚洲蝌蚪91| 考比视频在线观看| 丁香六月欧美| 国产成人精品久久二区二区91| 国产日韩欧美视频二区| 日本wwww免费看| 无遮挡黄片免费观看| 黄色丝袜av网址大全| 岛国毛片在线播放| 女性被躁到高潮视频| 国产精品偷伦视频观看了| www.自偷自拍.com| 一级片'在线观看视频| 1024香蕉在线观看| 亚洲午夜理论影院| a级毛片在线看网站| 婷婷成人精品国产| 两人在一起打扑克的视频| 国产av一区二区精品久久| av国产精品久久久久影院| 99国产综合亚洲精品| 黄色成人免费大全| 最黄视频免费看| 无遮挡黄片免费观看| 亚洲精品国产色婷婷电影| 成年人免费黄色播放视频| av国产精品久久久久影院| 国产一区二区三区综合在线观看| 男男h啪啪无遮挡| 狠狠狠狠99中文字幕| 老司机在亚洲福利影院| 夜夜爽天天搞| 国产视频一区二区在线看| 三级毛片av免费| 一区福利在线观看| 国产精品电影一区二区三区 | 大码成人一级视频| 欧美黑人欧美精品刺激| 国产亚洲精品一区二区www | 色视频在线一区二区三区| 叶爱在线成人免费视频播放| 亚洲熟女毛片儿| 精品国产一区二区久久| 少妇被粗大的猛进出69影院| 真人做人爱边吃奶动态| 久久久久久久久久久久大奶| 亚洲全国av大片| 国产精品久久电影中文字幕 | 在线看a的网站| 动漫黄色视频在线观看| 国产单亲对白刺激| www.999成人在线观看| 一本久久精品| 亚洲人成电影观看| 日本五十路高清| 欧美精品av麻豆av| 极品教师在线免费播放| 亚洲五月色婷婷综合| 极品人妻少妇av视频| 久久亚洲精品不卡| 中文字幕高清在线视频| 视频在线观看一区二区三区| 午夜免费成人在线视频| 91大片在线观看| 久久中文字幕人妻熟女| 在线观看www视频免费| 亚洲成国产人片在线观看| 国产精品免费一区二区三区在线 | 亚洲五月色婷婷综合| 极品人妻少妇av视频| 蜜桃在线观看..| 咕卡用的链子| 成人手机av| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 日本a在线网址| 每晚都被弄得嗷嗷叫到高潮| 免费久久久久久久精品成人欧美视频| 黄色视频不卡| av免费在线观看网站| 视频区图区小说| 日韩欧美一区二区三区在线观看 | 少妇 在线观看| 亚洲伊人久久精品综合| 黄片小视频在线播放| 中文字幕精品免费在线观看视频| 亚洲色图 男人天堂 中文字幕| 日本欧美视频一区| 一级毛片精品| 亚洲精华国产精华精| 成人国产一区最新在线观看| 伦理电影免费视频| 日韩欧美免费精品| 亚洲国产欧美日韩在线播放| 亚洲欧洲日产国产| 日韩视频一区二区在线观看| 日本黄色视频三级网站网址 | 老熟妇乱子伦视频在线观看| 亚洲熟女精品中文字幕| 久久精品熟女亚洲av麻豆精品| 在线观看免费高清a一片| 视频在线观看一区二区三区| 午夜福利视频在线观看免费| 人人澡人人妻人| 在线看a的网站| 男人舔女人的私密视频| www.熟女人妻精品国产| 国产有黄有色有爽视频| 丝袜在线中文字幕| 夫妻午夜视频| 亚洲九九香蕉| 少妇粗大呻吟视频| www.熟女人妻精品国产| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 成在线人永久免费视频| 蜜桃国产av成人99| √禁漫天堂资源中文www| 精品久久久久久久毛片微露脸| 丰满饥渴人妻一区二区三| 色94色欧美一区二区| 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费午夜福利视频| 国产av一区二区精品久久| 精品久久久精品久久久| 久久香蕉激情| 在线永久观看黄色视频| 老司机深夜福利视频在线观看| 欧美日韩成人在线一区二区| 午夜福利视频在线观看免费| 日日夜夜操网爽| 这个男人来自地球电影免费观看| 国产成人系列免费观看| 国精品久久久久久国模美| 又大又爽又粗| 啦啦啦免费观看视频1| 午夜日韩欧美国产| 久久午夜亚洲精品久久| 80岁老熟妇乱子伦牲交| 中文字幕精品免费在线观看视频| 欧美日韩一级在线毛片| kizo精华| 女性被躁到高潮视频| 极品人妻少妇av视频| 精品乱码久久久久久99久播| 在线观看免费高清a一片| 亚洲精品中文字幕一二三四区 | 欧美乱妇无乱码| 一个人免费看片子| 真人做人爱边吃奶动态|