• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚酯織物表面耐用超疏水涂層的制備及在油水分離中的應(yīng)用

    2016-09-05 13:04:12汪家道樊麗寧陳大融清華大學(xué)摩擦學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室北京100084
    物理化學(xué)學(xué)報(bào) 2016年4期
    關(guān)鍵詞:汪家摩擦學(xué)官能團(tuán)

    李 楊 汪家道* 樊麗寧 陳大融(清華大學(xué)摩擦學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100084)

    聚酯織物表面耐用超疏水涂層的制備及在油水分離中的應(yīng)用

    李楊汪家道*樊麗寧陳大融
    (清華大學(xué)摩擦學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100084)

    使用在含有甲基MQ(M:?jiǎn)喂倌軋F(tuán)Si―O單元R3SiO1/2,Q:四官能團(tuán)Si―O單元SiO2)硅樹(shù)脂與疏水SiO2的二甲苯溶液中浸漬的方法,在聚酯織物表面制備了耐用超疏水涂層。經(jīng)過(guò)處理后,微米級(jí)聚酯纖維表面被緊密的疏水納米顆粒包裹,通過(guò)這種方法降低了纖維的表面能。聚酯織物展現(xiàn)出良好的超疏水特性,與水滴的靜態(tài)接觸角為156°,滾動(dòng)角為5°。得到的超疏水聚酯織物在機(jī)械磨損、酸堿環(huán)境及紫外線照射條件下,表現(xiàn)出了良好的穩(wěn)定性。此外,用超疏水聚酯織物作為過(guò)濾材料得到的油水分離效率達(dá)99%以上。該方法為大面積工業(yè)制備超疏水織物提供了新的思路。

    超疏水;聚酯織物;納米顆粒;耐用性;油水分離

    [Article]

    www.whxb.pku.edu.cn

    It is reported that the wettability of surface is decided by the chemical composition and the morphological structure24.A quantity of researchers have studied the wettabilities of different surfaces by experiments25,calculations26,and simulations27.They conclude that superhydrophobic surfaces need creating hierarchical structures on low surface energy materials or modifying low surface energy materials on rough structures.Recently,Zhu et al.28prepared a superhydrophobic polyester fabric with mechanical stability and easy-repairability by coating with Ag nanoparticles and surface fluorination.Similarly,Zhou et al.29demonstrated a durable coating on polyester fabrics using polydimethylsiloxane (PDMS),fluorinated alkyl silane,and silica nanoparticles,which could sustain washing,boiling,and acid-alkali attack.However, the existing preparation methods to get the durable superhydrophobic fabric are some complex and time-consuming.Most strategies rely on external equipment to complete the fabrication, which sets up obstacles to easy preparation technique in largescale fabrication.In application of oil-water separation,the modified fabrics show limited efficiency and recyclability.To address the problem,an efficient and facile fabrication is very desirable.

    In this work,a superhydrophobic polyester fabric was fabricated with the assistant of methyl MQ silicon resin to bond the hydrophobic silica nanoparticles and the surfaces.The whole fabrication process was facile and efficient without special devices.Moreover,the as-prepared fabrics showed excellent water repellency with water contact angle higher than 150°and maintained the repellence of water after mechanical abrasion by sandpaper,acid-alkali attack,and UV irradiation.In addition,oilwater separation experiments have been demonstrated with the asprepared fabric which show high separation efficiency above 99% with good stability and recyclability.Moreover,the extreme environmental conditions such as mechanical abrasion,acidic and alkaline attack,and UV irradiation have little effect on the high separation efficiency.This rapid and simple method to fabricate superhydrophobic fabric provides more possibility for large-scale application in the industry.

    Fig.1 Schematic of the fabrication of superhydrophobic polyester fabrics through a simple solution-immersion method

    2 Experimental

    2.1Materials

    Polyester fabrics were purchased from Wujiang Ouyang Weaving Co.,Ltd.,China.Hydrophobic fumed silica(modified with dimethyldichlorosilane,AEROSIL R972)with surface area of 130 m2?g-1and the average particle size of 16 nm was obtained from Degussa,Germany.Methyl MQ silicone resin, whichcontainsmono-functionalsilicon-oxygenunit(CH3)3SiO1/2(M)and tetra-functional silicon-oxygen unit SiO4/2(Q)(M/Q= 0.8,Mw=8000 g?mol-1),was purchased from Shenzhen Haili Chemical Co.,Ltd.,China.Dimethylbenzene(99%),ethanol (99.7%),hydrochloric acid(36%-38%),and sodium hydroxide (96%)were obtained from Beijing Chemical Works,Co.,Ltd., China.All chemicals were used as received.

    2.2Sample preparation

    The fabrication of superhydrophobic fabric was facile and efficient.As shown in Fig.1,firstly,the hydrophobic silica nanoparticles and the methyl MQ silicone resin were dissolved in dimethylbenzene,the mass fraction of 1%(w)separately,and dispersed by magnetic stirring for 15 min.After that,the polyester fabric(10 cm×10 cm)cleaned with ethanol and deionized water was steeped into the as-prepared solution for approximately 15 min,removed,and dried at ambient temperature.The fabric was not damaged by the dimethylbenzene in fabrication process.There was no need of external devices for further treatment.The fabric was cut into pieces for different tests.As a contrast,another hydrophobic fabric was prepared only by the methyl MQ silicone resin dissolved in dimethylbenzene(1%(w)).

    2.3Characterization

    The micrographs of the polyester fabric were obtained by a field-emission scanning electron microscope(FEI Quanta 200 FEG,Netherlands).Before the observation,all the samples were coated with gold.Static contact angle measurements with deionized water was accomplished using a Dataphysics DCAT 21 (Dataphysics,Germany)apparatus at room temperature.The volume of an individual droplet was 5 μL and each result was obtained from an average of five measurements.The sliding angle of water droplet was captured by a high speed imaging system (AcutEye,RockeTech Technology Corp.,Ltd.,China).The chemical composition of surface was analyzed by an X-ray photoelectron spectroscopy(XPS,EscaLab 250XI,ThermoScientific,USA).

    3 Results and discussion

    The preparation of superhydrophobic polyester fabrics described in the experimental section was illustrated in Fig.1.The cleaned fabric was steeped in the hydrophobic SiO2/methyl MQ silicon resin and dried in room temperature.This obtained fabric was looked the same as the pristine in Fig.2(a),and the pristine hydrophilic fabric was transitioned to superhydrophobic surface after the immerse(Fig.2(b)).The water droplet spread on and permeated through the pristine fabric in a few seconds while the water droplet sat on the coated fabric as a marked contrast.It indicated that the coated fabric exhibited excellent superhydrophobic property.When the coated fabric was immersed into water by an external force,it shows a mirror-like appearance which could be attributed to the existence of trapped air between water and superhydrophobic fabric corresponding to the Cassie-Baxter model(Fig.2(c))30.Moreover,the water contact angle of pristine fabric was 0°(Fig.2(d)).After coating,the water contact angle and sliding angle of fabric were 156°and 5°(Fig.2(e)and 2(f)).

    The surface wettability depends on both the chemical composition and the surface morphological structure.As shown in Fig.3(a),SEM images of pristine polyester fabrics presented regular three-dimensional microfibers.In addition,the surface of fiber was smooth with an average diameter of 12 μm(Fig.3(b)), which created a primary structure of superhydrophobic surface. It is difficult to realize the repellence to water of the fabric leaning on this single microstructure.Besides that,nanostructure and low surface energy material are needed to form superhydrophobic surfaces.As a contrast,another hydrophobic fabric was fabricated only using methyl MQ silicon resin with water contact angle of 135°(Fig.3(c)).It was shown in Fig.3(c)that silicon resin wrapped the fiber and there were few nanosized protuberances.Such a structure cannot fully meet the demand of micro-nano hierarchical roughness.After the immersion step in methyl MQ silicon resin/ silica nanoparticle solution,smooth surface of fiber was covered by a homogeneous nanoscale rough structure(Fig.3(d)and 3(e)). The higher magnification of surface showed the morphology of compact nanoscale granules caused by particle aggregation of hydrophobic SiO2under the influence of silicon resin.More than that,the nanostructure was made up of hydrophobic SiO2and methyl MQ silicon resin which contained methyl group(―CH3) with low surface energy.It is the other essential condition for superhydrophobic surfaces which will be discussed in the next part.The combination of micro-nano hierarchical structure and low surface energy material met the requirement for the morphology and the chemistry of the superhydrophobicity.

    Fig.2 Different wettabilities before and after immersion

    Researchers have found that simplex material with low surface energy is difficult to be bonded with the substrate,and can be easily destroyed by an external force,like finger wipe and current scour.To overcome the problem,Lu et al.31found an innovative approach to address the problem using a“paint+double-sided tape/spray adhesive+substrates”method,and the results exhibited excellent adhesive ability.It is reported that methyl MQ silicone resin has been widely used in adhesives because of its low cost and excellent properties,like radiation resistance and antifriction32.Especially,the methyl MQ silicone resin has hydrophobicity that is favorable to prepare superhydrophobic surface33,34.Moreover,methyl MQ silicone resin is able to crosslink and cure at room temperature,which is efficient in industry.In consideration of simplifying the fabrication process,methyl MQ silicon resin,which was used as adhesive to strengthen the adhesion to the substrate,was mixed with silica nanoparticles in solvent.In this study,XPS was used to analyze the chemical composition on surfaces of polyester fabrics.Only peaks corresponding to C and O are observed in Fig.4(a)for pristine fabrics,and no other impurities can be detected.After the immersion in mixed solution, a new Si peak appears in Fig.4(b).Specifically,an insert image in Fig.4(b)shows the high resolution Si 2p spectrum of the coated fabrics.There are two peaks at a binding energy of 103.9 eV for Si―O bonds and 102.0 eV for Si―CH3groups,which are corresponding to the chemical structure of methyl MQ silicon resin and hydrophobic SiO2.The methyl group reduces the surface energy and gives the hydrophobicity to the fabric.The results directly prove that the existence of methyl MQ silicon resin and SiO2on the polyester fabrics.Furthermore,there were no new chemical bonds existing between the silicon resin and fabric by FTIR analysis,so the bindings between the coating and fabric was assigned to adhesion of the silicon resin as adhesive.Therefore, the superhydrophobicity of fabric is attributed to the micro-nano roughness structure and the coverage of methyl MQ silicon resin/ silica nanoparticles.Besides the good water repellence,methyl MQ silicon resin gives the coating excellent adhesion,which is important in practical application.

    Fig.3 SEM images of the pristine fabric(a,b),the methyl MQ silicon resin coated fabric(c),and the methyl MQ silicon resin/silica nanoparticles coated fabric(d,e,f)

    Fig.4 XPS survey spectra of the pristine(a)and the coated fabrics(b)

    Oil-water separation is an important pursuit because of increasing worldwide oil pollution35.As a functional material,the superhydrophobic fabric shows ability in separating oil from water efficiently in experiments.Fig.5(a,b)shows the simple oil-absorbing process.Hexadecane dyed with oil red floated over water in a petri dish,and when the modified fabric was put into the dish, most of the hexadecane was absorbed quickly after a few seconds. Moreover,the as-prepared fabric floated on the water,and in Fig.5 (c),the water droplets sat on the hexadecane contaminated modified fabric.It indicated the fabric was superoleophilic andsuperhydrophobic at the same time.Due to the poor uptake capacity of polyester fabric,the former method to remove oil was inefficient and might be restricted.Therefore,a simple oil-water separator was designed as shown in Fig.6(a).The modified fabric was folded and placed onto funnel as a filter.When a mixture of gasoline and water was poured into the filter,only gasoline could get through the fabric and drop into the beaker due to the capillary effect36.Water was prevented to pass through the fabric because of the superhydrophobicity,and after the separating process,water was poured into another beaker(Fig.6(c)).The separation efficiency was got by calculating the ratio between the weight of water before and after the separation37.The separation efficiency of the as-prepared fabric was above 99.5%.Therefore,it is believed that the superhydrophobic fabric in our study has great potential in separation of oil-water mixtures.

    Fig.5 Images of oil-water separation using the modified fabric(a)hexadecane dyed with oil red over water;(b)absorption of hexadecane by the modified fabric; (c)water droplets sitting on the hexadecane contaminated modified fabric

    Fig.6 Separation process of gasoline-water mixture

    Table 1 Comparison of mechanical abrasion experiments in recent studies with the coating in this article

    In order to adapt to the extreme environment,the stability of superhydrophobic coating is required.Without stability,this functional surface has limited prospect in daily life or industry,so a wear-resistingtest andanenvironmental durabilitytest havebeen performed.Table 1 provides a representative summary of mechanical abrasionexperiments inpublishedworkandinthis article. It is obvious that most methods need annealing to improve the bonding of coating and remove the solvent,but not in this study. Moreover,aroughersandpaperof600meshandthehigherpressure indicate better performance of the coated fabric in this study.As shown in Fig.7(a),the insert picture illustrates the methodology of abrasion test.The as-prepared fabric was placed under different weights andwas facedtothesandpaper.Thenthefabricwas moved back and forth(20 cm for one cycle).It was found that the water contact angle of the surface was still higher than 150°after 100 abrasion cycles under a 200 g mass.With the increase of load,the water contact angle slightly deceased,but the surface still kept the water repellence.The water contact angle was 135.2°after 100 severeabrasioncycles under a 1000gmass(equal to25kPa).After 100 abrasion cycles under different masses,oil-water separation experiments were repeated.Fig.7(b)showed the high separation efficiency above 99%in all experiments,and that indicated the durability under extreme environment.For further study,the sur-face morphology of fabric rubbed at 25 kPa was observed.After such a severe abrasion,surfaces of fibers were destroyed in different degrees.Fig.8(a)showed the outermost fibers appeared cracked and broken severely,and the worse was most coating on fibers were peeled off.On the other hand,the deeper regions were protected by the 3D microstructure of fabric38,as a result,the coating was broken and planished partly as shown in Fig.8(b).The left micro and nano structure kept the water repellence property, although the water contact angle decreased slightly.The fabricated fabricsstillcouldbeusedinoil-waterseparation.

    Fig.7 WCAchanges(a)and separation efficiency(b)after abrasion under different masses(m)

    Fig.8 SEM images of outermost fiber(a)and deeper fiber(b) after abrasion under a mass of 1000 g

    Besides that,the fabricated fabric showed good stability in separation cyclic test.Gasoline-water mixture was used in oilwater separation experiment.After each separation cycle,the coated fabric was dried in an oven at 60°C for 40 min.As shown in Fig.9(a),the separation efficiency maintained above 99%after 50 separation cycles,which indicated good stability and recyclability.Moreover,considering the practical situation,the fabric should be robust when working in strong acidic or alkaline solutions and ultraviolet irradiation,so the evaluation of the stability in described environment is very significant.The coated fabric was steeped into acidic(HCl,pH=2)and alkaline(NaOH,pH= 12)solution for 7 days and was illuminated by an ultraviolet light for 7 days.Fig.9(b)showed the results of water contact angles slight variation after exposure with the separation efficiency above 99.5%all the time.It was obvious that the coated fabrics maintained the superhydrophobic property.Through these tests,it is convincing that as-prepared fabric has a stable durability even under such demanding conditions.

    Fig.9 Effect of cycle times on the separation efficiency(a)and variation of the WCAand separation efficiency of the modified fabrics exposed to acidic,alkaline solutions,and UV irradiation(b)

    4 Conclusions

    In summary,we have explored a feasible method to fabricate superhydrophobic polyester fabrics with commercially available silica nanoparticles and methyl MQ silicone resin.The modified fabric has a micro-nano hierarchical structure and shows excellent superhydrophobicity.Particularly,the obtained fabric shows good stability in extreme environment such as mechanical abrasion, acidic and alkaline attack,and UV irradiation.Moreover,the superhydrophobic fabrics can efficiently separate oil from water with high separation efficiency above 99%,which have good stability and recyclability.Importantly,it is obvious that this rapid and simple method has the strong potential for industrial production.Durable superhydrophobic fabric will provide more possibilities of applications in the future.

    References

    (1)Barthlott,W.;Neinhuis,C.Planta 1997,202,1.doi:10.1007/ s004250050096

    (2)Miwa,M.;Nakajima,A.;Fujishima,A.;Hashimoto,K.; Watanabe,T.Langmuir 2000,16,5754.doi:10.1021/ la991660o

    (3)Solga,A.;Cerman,Z.;Striffler,B.F.;Spaeth,M.;Barthlott,W. Bioinspir.Biomim.2007,2,S126.

    (4)Yao,X.;Song,Y.;Jiang,L.Adv.Mater.2011,23,719.doi: 10.1002/adma.201002689

    (5)Wang,S.;Feng,L.;Jiang,L.Adv.Mater.2006,18,767.

    (6)Zhang,Y.F.;Wu,J.;Yu,X.Q.;Liang,C.H.;Wu,J.Acta Phys.-Chim.Sin.2014,30,1970.

    [張友法,吳潔,余新泉,梁彩華,吳俊.物理化學(xué)學(xué)報(bào),2014,30,1970.]doi:10.3866/ PKU.WHXB201408045

    (7)Wang,D.;Zhang,Z.;Li,Y.;Xu,C.ACS Appl.Mater. Interfaces 2014,6,10014.doi:10.1021/am405884x

    (8)Xu,L.;Karunakaran,R.G.;Guo,J.;Yang,S.ACS Appl.Mater. Interfaces 2012,4,1118.doi:10.1021/am201750h

    (9)Du,C.;Wang,J.;Chen,Z.;Chen,D.Appl.Surf.Sci.2014, 313,304.doi:10.1016/j.apsusc.2014.05.207

    (10)Ogihara,H.;Xie,J.;Okagaki,J.;Saji,T.Langmuir 2012,28, 4605.doi:10.1021/la204492q

    (11)Li,S.;Zhang,S.;Wang,X.Langmuir 2008,24,5585.doi: 10.1021/la800157t

    (12)Khalil-Abad,M.S.;Yazdanshenas,M.E.J.Colloid Interface Sci.2010,351,293.doi:10.1016/j.jcis.2010.07.049

    (13)Zhou,X.;Zhang,Z.;Xu,X.;Guo,F.;Zhu,X.;Men,X.;Ge,B. ACS Appl.Mater.Interfaces 2013,5,7208.doi:10.1021/ am4015346

    (14)Xue,C.H.;Jia,S.T.;Zhang,J.;Tian,L.Q.Thin Solid Films 2009,517,4593.doi:10.1016/j.tsf.2009.03.185

    (15)Zhao,Y.;Xu,Z.;Wang,X.;Lin,T.Langmuir 2012,28,6328. doi:10.1021/la300281q

    (16)Hoefnagels,H.;Wu,D.;De With,G.;Ming,W.Langmuir 2007,23,13158.doi:10.1021/la702174x

    (17)Synytska,A.;Khanum,R.;Ionov,L.;Cherif,C.;Bellmann,C. ACS Appl.Mater.Interfaces 2011,3,1216.doi:10.1021/ am200033u

    (18)Wu,L.;Zhang,J.;Li,B.;Fan,L.;Li,L.;Wang,A.J.Colloid Interface Sci.2014,432,31.doi:10.1016/j.jcis.2014.06.046

    (19)Zhang,J.;Seeger,S.Adv.Funct.Mater.2011,21,4699.doi: 10.1002/adfm.v21.24

    (20)Wang,L.;Yang,S.;Wang,J.;Wang,C.;Chen,L.Mater.Lett. 2011,65,869.doi:10.1016/j.matlet.2010.12.024

    (21)Gao,X.;Yan,X.;Yao,X.;Xu,L.;Zhang,K.;Zhang,J.;Yang, B.;Jiang,L.Adv.Mater.2007,19,2213.

    (22)Darmanin,T.;Guittard,F.J.Am.Chem.Soc.2011,133,15627. doi:10.1021/ja205283b

    (23)Zhang,M.;Wang,C.;Wang,S.;Shi,Y.;Li,J.Appl.Surf.Sci. 2012,261,764.doi:10.1016/j.apsusc.2012.08.097

    (24)Dorrer,C.;Rühe,J.Soft Matter 2009,5,51.doi:10.1039/ B811945G

    (25)Xue,C.H.;Ma,J.Z.J.Mater.Chem.A 2013,1,4146. doi:10.1039/C2TA01073A

    (26)Wang,J.;Chen,D.Langmuir 2008,24,10174.doi:10.1021/ la801092y

    (27)Chen,S.;Wang,J.;Ma,T.;Chen,D.J.Chem.Phys.2014,140, 114704.doi:10.1063/1.4868641

    (28)Zhu,X.;Zhang,Z.;Yang,J.;Xu,X.;Men,X.;Zhou,X. J.Colloid Interface Sci.2012,380,182.doi:10.1016/j. jcis.2012.04.063

    (29)Zhou,H.;Wang,H.;Niu,H.;Gestos,A.;Wang,X.;Lin,T. Adv.Mater.2012,24,2409.doi:10.1002/adma.201200184

    (30)Roach,P.;Shirtcliffe,N.J.;Newton,M.I.Soft Matter 2008,4, 224.doi:10.1039/B712575P

    (31)Lu,Y.;Sathasivam,S.;Song,J.;Crick,C.R.;Carmalt,C.J.; Parkin,I.P.Science 2015,347,1132.doi:10.1126/science. aaa0946

    (32)Shi,X.;Chen,Z.;Yang,Y.Eur.Polym.J.2014,50,243.doi: 10.1016/j.eurpolymj.2013.11.005

    (33)Wang,D.;He,J.H.;Liu,H.Y.Imaging Science and Photochemistry 2011,29,372.

    [王東,賀軍輝,劉紅纓.影像科學(xué)與光化學(xué),2011,29,372.]

    (34)Li,H.;Lu,X.;Wu,S.Q.Journal of Functional Materials 2014,45(Suppl.2),97.

    [李恒,盧珣,吳叔青.功能材料, 2014,45(Suppl.2),97.]

    (35)Chu,Z.;Feng,Y.;Seeger,S.Angew.Chem.Int.Edit.2015,54, 2328.doi:10.1002/anie.201405785

    (36)Yuan,J.;Liu,X.;Akbulut,O.;Hu,J.;Suib,S.L.;Kong,J.; Stellacci,F.Nat.Nanotechnol.2008,3,332.doi:10.1038/ nnano.2008.136

    (37)Pan,Q.;Wang,M.;Wang,H.Appl.Surf.Sci.2008,254,6002. doi:10.1016/j.apsusc.2008.03.034

    (38)Zimmermann,J.;Reifler,F.A.;Fortunato,G.;Gerhardt,L.C.; Seeger,S.Adv.Funct.Mater.2008,18,3662.doi:10.1002/ adfm.v18:22

    Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation

    LI YangWANG Jia-Dao*FAN Li-NingCHEN Da-Rong
    (State Key Laboratory of Tribology,Tsinghua University,Beijing 100084,P.R.China)

    Adurable superhydrophobic coating on polyester fabrics has been fabricated by a simple solutionimmersion method in a solution consisting of a methyl MQ(M:mono-functional silicon―oxygen unit R3SiO1/2, Q:tetra-functional silicon―oxygen unit SiO2)silicone resin and hydrophobic silica nanoparticles.After coating, the microstructured fibers were wrapped by compact hydrophobic nanoparticles that could lower the surface energy of the fibers.Therefore,the obtained fabric exhibited an excellent superhydrophobic property with a water contact angle of 156°and a sliding angle of 5°.It is worth mentioning that the as-prepared fabric was proved to be able to withstand extreme environmental conditions such as mechanical abrasion,acidic and alkaline attack,and UV irradiation.The practical application of the modified fabric for oil-water separation was also demonstrated with a high separation efficiency above 99%.This feasible fabrication method paves the way for using the superhydrophobic fabric on a large scale.

    Superhydrophobicity;Polyester fabric;Nanoparticle;Durability;Oil-water separation

    1 Introduction

    Nowadays,functional materials have been popular all over the world because of their outstanding performances.As one of them, superhydrophobic materials inspired by lotus leaf have been comprehensively studied and gradually applied in many areas of daily life and industrial production in recent decades1-4.Specifically,superhydrophobic surfaces with water contact angle(WCA) higher than 150°and a sliding angle(SA)lower than 10°have many excellent properties,like self-cleaning,anti-icing,and contamination prevention.Besides creating superhydrophobic surfaces on metal5,6,glass7,8,and paper9,10,fabrics with water repellence are supposed to be fabricated for water resistant apparel, oil-water separation,and so on11-14.There are a large number of reports on fabrication methods of superhydrophobic fabrics,in-cluding layer by layer electrostatic assembly15,nanopartical deposition16,17,dip-coating18,vapor phase deposition19,electrospinning20,and so forth21-23.Nevertheless,many fabricated superhydrophobic surfaces have weak adhesion with substrates and can be easily destroyed by external force and extreme environmental conditions,which limits the further application and development. Therefore it is urgent and important to improve the robustness of superhydrophobic fabrics.

    November 13,2015;Revised:January 12,2016;Published on Web:January 13,2016.*Corresponding author.Email:jdwang@mail.tsinghua.edu.cn;Tel:+86-10-62796458. The project was supported by the National Natural Science Foundation of China(51375253,51321092).

    O647

    10.3866/PKU.WHXB201601131

    國(guó)家自然科學(xué)基金(51375253,51321092)資助項(xiàng)目

    猜你喜歡
    汪家摩擦學(xué)官能團(tuán)
    熟記官能團(tuán)妙破有機(jī)題
    書(shū)癡范用
    論喬斯特的摩擦學(xué)學(xué)術(shù)思想
    ——紀(jì)念摩擦學(xué)創(chuàng)始人喬斯特博士誕生100周年
    摩擦學(xué)分會(huì)再獲殊榮
    在對(duì)比整合中精準(zhǔn)把握有機(jī)官能團(tuán)的性質(zhì)
    老汪家的炒栗子店
    央視《大家》欄目:摩擦學(xué)家雒建斌
    感懷我的老板——汪家玉
    污泥中有機(jī)官能團(tuán)的釋放特性
    逆向合成分析法之切斷技巧
    亚洲精品一区av在线观看| 女同久久另类99精品国产91| 99精品在免费线老司机午夜| 非洲黑人性xxxx精品又粗又长| 满18在线观看网站| 哪里可以看免费的av片| 久久人人精品亚洲av| 日本黄色视频三级网站网址| 亚洲精品av麻豆狂野| 老司机福利观看| 国产欧美日韩一区二区精品| 日韩视频一区二区在线观看| 亚洲第一av免费看| 国产一级毛片七仙女欲春2 | 少妇粗大呻吟视频| 亚洲自偷自拍图片 自拍| 黄片播放在线免费| 少妇的丰满在线观看| 亚洲成av人片免费观看| 午夜亚洲福利在线播放| 亚洲成av片中文字幕在线观看| 欧美av亚洲av综合av国产av| 亚洲一区二区三区色噜噜| 国产精品综合久久久久久久免费| 美女免费视频网站| 亚洲专区中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久水蜜桃国产精品网| 成人亚洲精品一区在线观看| 变态另类丝袜制服| 在线免费观看的www视频| 午夜免费成人在线视频| 日本黄色视频三级网站网址| 青草久久国产| 免费观看人在逋| 亚洲中文av在线| 少妇被粗大的猛进出69影院| 男人舔奶头视频| 欧美不卡视频在线免费观看 | 性欧美人与动物交配| 一夜夜www| 美女免费视频网站| 欧美又色又爽又黄视频| 久久久久久九九精品二区国产 | 精品国内亚洲2022精品成人| 日本一区二区免费在线视频| 嫩草影院精品99| 精品乱码久久久久久99久播| 黄色女人牲交| 午夜福利18| 国产午夜福利久久久久久| 又黄又粗又硬又大视频| 午夜久久久在线观看| 别揉我奶头~嗯~啊~动态视频| 18美女黄网站色大片免费观看| 制服丝袜大香蕉在线| 在线天堂中文资源库| 少妇被粗大的猛进出69影院| 美女大奶头视频| 久久久久久九九精品二区国产 | 日韩中文字幕欧美一区二区| 757午夜福利合集在线观看| 热re99久久国产66热| 黑人欧美特级aaaaaa片| 久久伊人香网站| 久久草成人影院| x7x7x7水蜜桃| 亚洲色图 男人天堂 中文字幕| 1024视频免费在线观看| 成人午夜高清在线视频 | 一级毛片高清免费大全| 日韩大尺度精品在线看网址| 国产高清videossex| 色综合欧美亚洲国产小说| 97超级碰碰碰精品色视频在线观看| 好男人在线观看高清免费视频 | 麻豆成人av在线观看| 亚洲一区中文字幕在线| 国产亚洲精品一区二区www| 精品高清国产在线一区| 免费在线观看日本一区| 国产又黄又爽又无遮挡在线| 国产久久久一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 欧美丝袜亚洲另类 | 国产片内射在线| 国产精品久久电影中文字幕| 久久久久久亚洲精品国产蜜桃av| 久久久国产成人免费| 久久性视频一级片| 在线观看午夜福利视频| 99国产精品一区二区蜜桃av| 一个人免费在线观看的高清视频| 波多野结衣高清作品| 亚洲,欧美精品.| 久久精品国产亚洲av香蕉五月| 亚洲精品在线观看二区| 欧美一区二区精品小视频在线| 999精品在线视频| 亚洲电影在线观看av| 曰老女人黄片| 手机成人av网站| 欧美不卡视频在线免费观看 | 亚洲一区中文字幕在线| 色老头精品视频在线观看| 免费在线观看视频国产中文字幕亚洲| 成人永久免费在线观看视频| 中文资源天堂在线| 亚洲国产欧美网| 色综合婷婷激情| 91九色精品人成在线观看| netflix在线观看网站| 亚洲av片天天在线观看| 真人做人爱边吃奶动态| 热re99久久国产66热| 热re99久久国产66热| 日日摸夜夜添夜夜添小说| 欧美最黄视频在线播放免费| 欧美久久黑人一区二区| 午夜免费鲁丝| 首页视频小说图片口味搜索| 免费在线观看黄色视频的| 欧美人与性动交α欧美精品济南到| 99在线视频只有这里精品首页| av福利片在线| 午夜激情福利司机影院| 亚洲人成伊人成综合网2020| xxxwww97欧美| 桃色一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲免费av在线视频| 首页视频小说图片口味搜索| 91麻豆av在线| 国产成人啪精品午夜网站| 熟女少妇亚洲综合色aaa.| 熟女少妇亚洲综合色aaa.| 色尼玛亚洲综合影院| 人妻久久中文字幕网| 久久草成人影院| 成熟少妇高潮喷水视频| 亚洲av电影不卡..在线观看| 首页视频小说图片口味搜索| 免费在线观看亚洲国产| av福利片在线| 免费在线观看成人毛片| 免费在线观看成人毛片| 狂野欧美激情性xxxx| 亚洲国产精品久久男人天堂| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站高清观看| 欧美最黄视频在线播放免费| 国产亚洲精品综合一区在线观看 | 久久精品亚洲精品国产色婷小说| 亚洲自偷自拍图片 自拍| 老司机在亚洲福利影院| 夜夜看夜夜爽夜夜摸| 亚洲成人久久性| 午夜福利高清视频| 男人舔奶头视频| 国产精品久久久久久亚洲av鲁大| 91成人精品电影| 午夜福利一区二区在线看| 一进一出好大好爽视频| 变态另类丝袜制服| 叶爱在线成人免费视频播放| 一个人观看的视频www高清免费观看 | 国产高清有码在线观看视频 | 在线永久观看黄色视频| 日本精品一区二区三区蜜桃| 黄色视频不卡| av在线天堂中文字幕| 亚洲一码二码三码区别大吗| 中国美女看黄片| 午夜精品久久久久久毛片777| 老司机午夜十八禁免费视频| 国产亚洲欧美精品永久| 久久热在线av| 久久国产亚洲av麻豆专区| 超碰成人久久| 亚洲五月色婷婷综合| 精品电影一区二区在线| 美女大奶头视频| 免费电影在线观看免费观看| 国产一区二区激情短视频| 国产黄色小视频在线观看| 最新在线观看一区二区三区| 99久久综合精品五月天人人| 91麻豆av在线| 在线播放国产精品三级| 国产久久久一区二区三区| 国产aⅴ精品一区二区三区波| 91老司机精品| 国产亚洲精品av在线| 日日爽夜夜爽网站| 中文字幕av电影在线播放| 99国产精品一区二区三区| 精品一区二区三区视频在线观看免费| 一区二区三区高清视频在线| 亚洲av成人不卡在线观看播放网| 精品电影一区二区在线| av在线播放免费不卡| 女性生殖器流出的白浆| 香蕉丝袜av| 老鸭窝网址在线观看| www.www免费av| 最近最新免费中文字幕在线| 可以在线观看的亚洲视频| 法律面前人人平等表现在哪些方面| 黑人欧美特级aaaaaa片| 久久 成人 亚洲| 可以在线观看毛片的网站| 啦啦啦观看免费观看视频高清| 人人澡人人妻人| 可以在线观看毛片的网站| 久久精品亚洲精品国产色婷小说| 少妇 在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产精品影院久久| 国产真人三级小视频在线观看| 在线视频色国产色| 久久精品国产清高在天天线| 一个人免费在线观看的高清视频| 男女视频在线观看网站免费 | 亚洲人成电影免费在线| 人妻久久中文字幕网| 日日夜夜操网爽| 少妇熟女aⅴ在线视频| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 亚洲无线在线观看| 69av精品久久久久久| 成年人黄色毛片网站| 亚洲成国产人片在线观看| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看 | 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| 国产一区二区三区在线臀色熟女| 日韩大码丰满熟妇| 桃色一区二区三区在线观看| 淫妇啪啪啪对白视频| 欧美 亚洲 国产 日韩一| 黄色 视频免费看| 国产不卡一卡二| 国产精品日韩av在线免费观看| 视频在线观看一区二区三区| av片东京热男人的天堂| 淫妇啪啪啪对白视频| 手机成人av网站| 免费看a级黄色片| 88av欧美| 成人午夜高清在线视频 | 免费在线观看影片大全网站| 精品国产一区二区三区四区第35| 亚洲精品粉嫩美女一区| 久久精品成人免费网站| 久久久久久亚洲精品国产蜜桃av| 久久人妻av系列| 少妇熟女aⅴ在线视频| 97碰自拍视频| 中文字幕人妻丝袜一区二区| 免费搜索国产男女视频| av片东京热男人的天堂| 一级毛片女人18水好多| 亚洲人成网站在线播放欧美日韩| 免费高清视频大片| 国产成人一区二区三区免费视频网站| 国产又爽黄色视频| 他把我摸到了高潮在线观看| 一夜夜www| 99久久精品国产亚洲精品| 看免费av毛片| 麻豆成人av在线观看| 一级a爱片免费观看的视频| 久久久久久大精品| 成人手机av| 国产高清videossex| 又黄又爽又免费观看的视频| av中文乱码字幕在线| 亚洲熟妇熟女久久| 一区二区三区精品91| 法律面前人人平等表现在哪些方面| 韩国av一区二区三区四区| 欧美一区二区精品小视频在线| 国产91精品成人一区二区三区| 国产精品久久久久久人妻精品电影| 成年免费大片在线观看| 看片在线看免费视频| 亚洲精品国产区一区二| 一进一出好大好爽视频| 久久久久久久精品吃奶| 在线av久久热| 亚洲av成人一区二区三| 欧美一区二区精品小视频在线| 深夜精品福利| 久久精品91无色码中文字幕| 可以免费在线观看a视频的电影网站| 久久久久久久久中文| 少妇粗大呻吟视频| 99精品欧美一区二区三区四区| 久久久久国内视频| 亚洲国产精品久久男人天堂| 天天一区二区日本电影三级| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 久久人妻av系列| 黑人巨大精品欧美一区二区mp4| avwww免费| 18禁美女被吸乳视频| 在线av久久热| av电影中文网址| 婷婷精品国产亚洲av在线| 久久久久久大精品| 可以在线观看的亚洲视频| 啦啦啦韩国在线观看视频| 国产午夜福利久久久久久| 精品乱码久久久久久99久播| 18禁裸乳无遮挡免费网站照片 | 欧美日韩精品网址| 18禁黄网站禁片免费观看直播| 日本免费a在线| 国产成人欧美在线观看| 国产精品亚洲美女久久久| 午夜福利18| 中文字幕另类日韩欧美亚洲嫩草| 97超级碰碰碰精品色视频在线观看| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网| 视频区欧美日本亚洲| 国产极品粉嫩免费观看在线| 看免费av毛片| 国内少妇人妻偷人精品xxx网站 | 好看av亚洲va欧美ⅴa在| 中文资源天堂在线| 人人妻人人澡欧美一区二区| 天天添夜夜摸| 国产区一区二久久| 9191精品国产免费久久| 日韩精品青青久久久久久| 亚洲人成77777在线视频| 日韩有码中文字幕| 日日夜夜操网爽| 老汉色∧v一级毛片| 日韩三级视频一区二区三区| 午夜精品久久久久久毛片777| 亚洲欧美日韩高清在线视频| 麻豆成人av在线观看| 91麻豆精品激情在线观看国产| 1024视频免费在线观看| 亚洲第一电影网av| 精品少妇一区二区三区视频日本电影| 午夜福利一区二区在线看| 99riav亚洲国产免费| 中文在线观看免费www的网站 | 少妇 在线观看| 香蕉av资源在线| 嫁个100分男人电影在线观看| 观看免费一级毛片| 亚洲精品在线美女| 亚洲国产欧洲综合997久久, | 午夜两性在线视频| 日韩欧美三级三区| 香蕉国产在线看| 看免费av毛片| 18禁观看日本| 亚洲无线在线观看| 非洲黑人性xxxx精品又粗又长| 一级毛片高清免费大全| 自线自在国产av| 国产精品爽爽va在线观看网站 | 中文字幕久久专区| 日韩精品青青久久久久久| 国产精品自产拍在线观看55亚洲| 亚洲免费av在线视频| 欧美性长视频在线观看| 国产又色又爽无遮挡免费看| 国产成人精品无人区| 国产v大片淫在线免费观看| 曰老女人黄片| 国产av一区二区精品久久| 国产精品久久久久久人妻精品电影| 美女扒开内裤让男人捅视频| 色婷婷久久久亚洲欧美| 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 观看免费一级毛片| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 国产日本99.免费观看| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区久久 | 欧美国产日韩亚洲一区| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 亚洲七黄色美女视频| 首页视频小说图片口味搜索| netflix在线观看网站| 最好的美女福利视频网| 亚洲熟妇中文字幕五十中出| 国产成人影院久久av| 久久热在线av| 一进一出抽搐gif免费好疼| 国产精品爽爽va在线观看网站 | 高清在线国产一区| 亚洲精品一卡2卡三卡4卡5卡| 18禁黄网站禁片免费观看直播| 久久精品91无色码中文字幕| 脱女人内裤的视频| 久久久久久九九精品二区国产 | 午夜影院日韩av| 亚洲性夜色夜夜综合| 少妇的丰满在线观看| 老司机在亚洲福利影院| 久久国产精品男人的天堂亚洲| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器 | 国产真实乱freesex| 一区二区三区国产精品乱码| 午夜免费成人在线视频| 日日干狠狠操夜夜爽| 国产激情久久老熟女| 成年版毛片免费区| 亚洲激情在线av| 1024视频免费在线观看| 国产激情久久老熟女| 亚洲熟女毛片儿| 99精品欧美一区二区三区四区| 操出白浆在线播放| 又黄又粗又硬又大视频| 日本 av在线| 午夜免费激情av| 精品国内亚洲2022精品成人| av天堂在线播放| 亚洲欧美一区二区三区黑人| 国产精品 欧美亚洲| 91字幕亚洲| 国产成人精品无人区| 制服人妻中文乱码| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| 久久人妻av系列| 99国产极品粉嫩在线观看| 99久久精品国产亚洲精品| 99精品在免费线老司机午夜| 欧美日韩黄片免| 黄色视频,在线免费观看| 亚洲国产中文字幕在线视频| 熟女电影av网| 老汉色av国产亚洲站长工具| 久久久国产成人精品二区| 亚洲熟女毛片儿| 长腿黑丝高跟| xxxwww97欧美| 国产精品亚洲一级av第二区| 久久久国产精品麻豆| 亚洲av电影不卡..在线观看| 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 91麻豆av在线| 妹子高潮喷水视频| 丝袜美腿诱惑在线| 欧美一级a爱片免费观看看 | 精品电影一区二区在线| 国产高清有码在线观看视频 | 两个人视频免费观看高清| 欧美成人免费av一区二区三区| 久热爱精品视频在线9| 十八禁网站免费在线| 成人国语在线视频| 亚洲国产高清在线一区二区三 | 嫁个100分男人电影在线观看| 男男h啪啪无遮挡| 午夜福利欧美成人| 黄片大片在线免费观看| 日日爽夜夜爽网站| av欧美777| 国产国语露脸激情在线看| 少妇熟女aⅴ在线视频| 成人免费观看视频高清| 91麻豆av在线| 夜夜看夜夜爽夜夜摸| 精品国产乱码久久久久久男人| 国产成人啪精品午夜网站| 国产高清视频在线播放一区| 成人午夜高清在线视频 | 免费av毛片视频| 18禁黄网站禁片午夜丰满| 精品福利观看| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 18禁观看日本| 色精品久久人妻99蜜桃| 亚洲国产欧美网| 免费高清视频大片| 狂野欧美激情性xxxx| 亚洲国产欧美日韩在线播放| 满18在线观看网站| 丁香六月欧美| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 午夜影院日韩av| 好男人在线观看高清免费视频 | 久久中文字幕人妻熟女| 午夜久久久久精精品| 久久久久亚洲av毛片大全| 99riav亚洲国产免费| 白带黄色成豆腐渣| 黑丝袜美女国产一区| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观 | 黄片播放在线免费| 国产爱豆传媒在线观看 | 久久久久九九精品影院| 中文字幕精品免费在线观看视频| 久久精品影院6| 色尼玛亚洲综合影院| 精品人妻1区二区| 麻豆成人午夜福利视频| 黄色成人免费大全| 亚洲九九香蕉| 可以在线观看毛片的网站| 国产精品久久久久久精品电影 | 此物有八面人人有两片| 黄片大片在线免费观看| 女性被躁到高潮视频| av在线播放免费不卡| 很黄的视频免费| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站| 日本熟妇午夜| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 国产一区在线观看成人免费| 午夜激情福利司机影院| 999久久久精品免费观看国产| 久久亚洲真实| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出| 成人18禁在线播放| 国产又爽黄色视频| aaaaa片日本免费| 午夜福利在线在线| 国产精品美女特级片免费视频播放器 | 一区福利在线观看| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 妹子高潮喷水视频| 麻豆av在线久日| 757午夜福利合集在线观看| 成在线人永久免费视频| 久久精品国产综合久久久| 19禁男女啪啪无遮挡网站| 久久热在线av| 国产精品久久久久久精品电影 | 波多野结衣av一区二区av| 亚洲一区高清亚洲精品| 午夜福利18| 久久久久国产一级毛片高清牌| 精品久久久久久,| 国产单亲对白刺激| 巨乳人妻的诱惑在线观看| 成熟少妇高潮喷水视频| 日韩精品免费视频一区二区三区| 99热这里只有精品一区 | 嫁个100分男人电影在线观看| 亚洲人成网站在线播放欧美日韩| 男女视频在线观看网站免费 | 亚洲午夜精品一区,二区,三区| 国产精品av久久久久免费| 国产激情欧美一区二区| 十八禁网站免费在线| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久 | 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 亚洲av成人av| 国产成人av激情在线播放| 黄片小视频在线播放| 91大片在线观看| 国产91精品成人一区二区三区| 中文在线观看免费www的网站 | 91麻豆精品激情在线观看国产| 久久伊人香网站| 草草在线视频免费看| 国内久久婷婷六月综合欲色啪| av欧美777| 伦理电影免费视频| 国产高清激情床上av| 老司机福利观看| 午夜福利欧美成人| 色av中文字幕| 男女下面进入的视频免费午夜 | 又黄又爽又免费观看的视频| 日日干狠狠操夜夜爽| 欧美日韩瑟瑟在线播放| 国产精品久久久久久人妻精品电影| 欧美激情久久久久久爽电影| 男女之事视频高清在线观看| 女性被躁到高潮视频| 国产精品爽爽va在线观看网站 | 亚洲三区欧美一区| 一区二区三区精品91| 久久精品91蜜桃| 1024手机看黄色片| 日韩欧美 国产精品| 午夜老司机福利片| 嫩草影视91久久| 老司机午夜十八禁免费视频| 亚洲精品一区av在线观看| 欧美一级毛片孕妇| 午夜影院日韩av|