張棟, 劉興元, 趙紅挺*
(1.杭州電子科技大學材料與環(huán)境工程學院環(huán)境材料與應用技術研究所,杭州 310018;2.廣東大眾農業(yè)科技股份有限公司,廣東 東莞 523169)
?
生物質炭對土壤無機污染物遷移行為影響研究進展
張棟1, 劉興元2, 趙紅挺1*
(1.杭州電子科技大學材料與環(huán)境工程學院環(huán)境材料與應用技術研究所,杭州 310018;2.廣東大眾農業(yè)科技股份有限公司,廣東 東莞 523169)
生物質炭材料來源廣泛,制備工藝相對簡單,且具備豐富的含氧官能團、發(fā)達的孔隙結構和表面電荷,對有機污染物和各類無機污染物(重金屬、氮磷、放射性元素)均具有良好的潛在吸附能力,被認為是一種低成本、高效的新型環(huán)境功能吸附材料。本文針對重金屬、氮磷等土壤無機物,在介紹生物質炭基本性質的基礎上,綜述了生物質炭吸附無機污染物的機制,探討了應用于無機污染土壤緩解和修復的可行性,并指出了相應的發(fā)展趨勢。生物質炭的基本特性受來源材料性質、裂解溫度等主要因子的影響,其碳含量和結構、H/C比值、孔隙結構、pH等性質有較大差異,這也導致生物質炭對重金屬、氮磷等無機污染物的吸附機制包含了表面物理吸附、絡合作用、靜電引力、陽離子交換、共沉淀、碘-碳特殊作用等多種機制。然而,受土壤復雜理化性質和生物活性、生物質炭遷移性和穩(wěn)定性等因素影響,生物質炭在無機污染土壤緩解和修復中的應用有很大潛力,但尚存在不確定性、調控性差等問題,甚至反而會活化土壤中的污染物。因此,在應用生物質炭緩解和修復重金屬污染土壤時,應充分考慮土壤性質、污染程度和類型與生物質炭性質的匹配度。生物質炭更適合pH和有機質含量較低的鎘、鉛、銅、鋅等重金屬污染土壤;與低溫生物質炭相比,高溫生物質炭的適用范圍更廣。
生物質炭; 吸附; 重金屬; 土壤; 修復
Summary Biochar is a carbon-rich product obtained from thermal treatment and pyrolysis of various plant- and animal-based biomass. The biomass for preparation of biochar had extensive sources, and the treatment is usually easy-operation, mainly thermochemical decomposition under a poor-oxygen condition. Biochar has been considered as a low-cost and high-efficiency sorbent for both organic and inorganic contaminants including heavy metals, radioactive elements, nitrogen and phosphate, due to its abundant O-containing functional groups and surface charges, advanced micro- and macro-pore structures, and rich carbon content.
In this paper, recent research progress on biochar with regards to its mechanisms and potential applications in remediation of inorganic contaminated soils was reviewed. The key parameters controlling biochar’s properties include pyrolysis temperatures and feedstock types, resulting in biochar with great difference in surface areas, pore size distribution, pH, H/C ratio, ion-exchange capacity, and carbon content. Therefore, the sorption mechanisms of inorganic pollutants varied with different properties of biochar. The sorption mechanisms of inorganic pollutants such as heavy metal, radioactive elements, nitrogen and phosphate were summarized as well as their potential applications in real soil condition. Several different possible mechanisms were proposed: 1) electrostatic outer-sphere complexation due to surface cationic exchange; 2) surface complexation with active O-containing functional groups such as carboxyl and hydroxyl groups; 3) electrostatic attraction of anionic inorganic pollutants such as phosphate and arsenic to protonated groups under alkaline pH; 4) co-precipitation of heavy metal and phosphate with organic matter and mineral oxides on surface of the biochar or pre-sorbed metal ions; 5) specific binding of iodide with aromatic carbon in biochar; 6) to donate electrons for mitigating/reducing heavy metal such as chromium; 7) physical adsorption of heavy metals onto biochar’s surface; 8) changing the pH of point of zero charge (pHpzc) to immobilize or mobilize heavy metals.
Generally and undoubtedly, the use of biochar as an environmental sorbent can have strong implications. It can effectively sorb various organic and inorganic contaminants in aqueous solutions. However, due to soil complexity, whether biochar is suitable for the remediation of inorganic contaminated soil is still unclear. These confused results could attribute to: 1) high dissolved organic carbon contents of soil at the increased pH induced by biochar addition may mobilize heavy metal leaching and/or form high available species; 2) electrostatic repulsion between anionic heavy metal ions and negatively charged biochar surface may enhance the desorption of heavy metal from soil-biochar matrix; 3) changing soil pH may result in mobilization or immobilization of heavy metals; 4) the transportation of biochar in soil system may influence the mitigation of sorbed heavy metals; 5) the availability of heavy metal sorbed by biochar to soil microorganism or plants; 6) the stability and biodegradation of biochar is also an uncertain factor for the application of biochar in the remediation of inorganic contaminated soil.
Based on the limited information, we proposed that biochars, especially those pyrolyzed at high temperature were suitable for the remediation of the low-pH and/or low dissolved organic carbon soil contaminated with cadmium, lead, copper, zinc and other heavy metals. Furthermore, further researches on interactions among soil-biochar-pollutants and field applications for remediation of contaminated soil are urgently needed.
生物質炭是生物質在缺氧或無氧條件下裂解形成的多孔、低密度的富碳材料[1-4]。近年來,生物質炭因具有溫室氣體控制、改良土壤性質、緩解土壤污染的作用[5-9],已成為國內外環(huán)境研究領域新的關注熱點(圖1A)。生物質炭制備材料來源廣泛(圖1B),具備豐富的含氧官能團、發(fā)達的孔隙結構和表面電荷,與有機污染物、重金屬、氮磷、放射性元素等其他無機污染物有較強的親和作用,被認為是一種低成本、高效的新型環(huán)境功能吸附材料[10-13]。已有文獻綜述介紹了生物質炭調控有機污染物的環(huán)境過程及其機制[8,14],本文針對重金屬、放射性元素、氮磷等無機污染物,從生物質炭的性質、吸附無機污染物的作用機制和影響因子等方面深入論述了生物質炭對土壤無機污染物遷移行為的影響。
生物質炭的主要特性標志是含碳豐富,且富含烷基和芳香結構[9,15-16],通常呈堿性或弱堿性[3]。生物質炭主要成分為纖維素、羰碳、羧酸及其衍生物、呋喃、吡喃、脫水糖、苯酚、烷烴及烯烴的衍生物等復雜有機碳化物[17],官能團較豐富,但極性官能團較少,以羧基、羥基等為主[18];從微觀上看,生物質炭多由緊密堆積、高度扭曲的芳香環(huán)片層結構組成[9],多孔特性顯著,具有較大的比表面積[19-20]。
生物質炭的富碳、多孔、結構和官能團特性及其廣泛多樣性,使其能在復雜環(huán)境污染物修復中具有較強的應用前景[2,8]。目前,學界普遍認可材料來源和裂解溫度是影響生物質炭的特性和環(huán)境應用的主要因子。生物質炭的元素組成和存在形態(tài)在一定程度上決定了生物質炭的官能團、結構和比表面積,進而決定其環(huán)境功能。生物質炭的組成元素為碳、氫、氧、氮、磷等,主要受材料來源和裂解溫度等因素的影響。AHMAD等[8]在綜述中介紹了生物質炭來源對元素組成及其關系的影響。對同一材料來源的生物質炭,各元素比例主要受裂解溫度的影響。隨裂解溫度的升高,生物質炭的碳元素、礦物灰分、磷等含量增大[21-24];氧、氫、硫等元素含量降低[21-23,25];氮元素含量變化規(guī)律不明確,可略有富集或下降[21,26],甚至可能先富集后降低[21-22]。生物質炭中碳元素含量隨制備溫度的升高會顯著增大,其存在形態(tài)也會發(fā)生變化。如KEILUWEIT等[21]發(fā)現(xiàn),在不同溫度(100~700 ℃)條件下制備的木材生物質炭和禾草生物質炭中碳元素含量均隨溫度升高而增大,分別從50.6%和48.6%增大到92.3%和94.2%。此外,H/C比值也隨裂解溫度的升高而降低,通常在100~500 ℃階段降低迅速,在500 ℃以上降低緩慢[25]。H/C比值的降低意味著碳元素的存在趨于芳環(huán)結構,特別是在較高溫度(500 ℃以上),主要為硬碳芳環(huán)結構[25],而羧基、醚鍵等極性基團降低,傅里葉變換紅外光譜分析也證明了這種推斷[21-22,25]。這不利于生物質炭與重金屬離子的絡合,但有利于生物質炭對碘離子等的捕獲。
圖1 2003—2015年生物質炭相關論文增長情況(A)及生物質炭來源解析(B)Fig.1 Growth in peer-reviewed publications on biochar from 2003—2015 based on Web of ScienceTM (A) and feedstock analysis of biochar (B)
灰分也是生物質炭的重要組成部分,因其含有Na+、K+、Mg2+、Ca2+等堿基陽離子的氧化物或碳酸鹽,使生物質炭溶于水后通常呈堿性。YUAN等[27]通過X射線衍射圖譜和碳酸鹽定量分析、傅里葉變換紅外光譜和zeta電位分析表明,羧酸鹽(COO—)是幾種作物秸稈生物質炭堿性的主要貢獻者。生物質炭pH與灰分含量呈正相關,且均與裂解溫度和來源材料有關[3,23,27-28]。裂解溫度越高,灰分含量高,則生物質炭pH越高。UCHIMIYA等[23]使用棉籽殼在不同溫度(200~650 ℃)燒制生物質炭,其灰分和pH均隨溫度升高而增大。來源材料灰分含量高,則制成生物質炭的pH也較高。如在550 ℃下用干材燒制的生物質炭pH為9.49(灰分為3.5%),而灰分含量更高的禽畜糞肥生物質炭pH為10.26(灰分為44.4%)[28]。
無機污染物(主要指重金屬,也包括放射性元素和氮磷等),主要通過采礦、冶煉、農藥化肥施用、金屬加工、火電廠和核電廠、廢水和污泥等人類活動進入到環(huán)境中[29-33]。與有機污染物不同,重金屬和放射性元素通常難以通過生物降解途徑去除[29,34];碳基材料常被應用至污染水體或土壤中,可降低重金屬生物有效性、生態(tài)毒性和風險[35]。目前,生物質炭對環(huán)境污染物的吸附研究主要集中于有機污染物,對重金屬、氮磷等無機污染物環(huán)境行為的影響近年關注度增加,但研究工作仍相對較少[2,8,14,16],特別對碘、銫等常見放射性元素環(huán)境行為的作用研究更是幾近空白。
此外,生物質炭還有一些特殊作用:在生物質炭上的含氧基團可以將Cr(Ⅵ)還原為Cr(Ⅲ),在吸附和吸持污染物的同時還可以將其轉化為毒性較小的形態(tài)[49-50];生物質炭可降低等電點時的pH,從而改變重金屬的存在形態(tài)[23];生物質炭比表面積較大,為表面物理吸附作用提供了良好的平臺[8,19-20]。
圖2 生物質炭與無機污染物的相互作用機制[8,36]Fig.2 Interaction and underlying mechanisms of biochar and inorganic pollutants[8,36]
我國土壤無機污染主要集中在重金屬污染,且部分地區(qū)污染程度較重。據(jù)《全國土壤污染狀況調查公報》,我國土壤Cd、Hg、As、Cu、Pb、Cr、Zn、Ni等8種無機污染物點位超標率分別為7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%和4.8%[51]。特別是我國大多數(shù)城市近郊農田均受到了不同程度的重金屬污染,嚴重影響到糧食產品的安全,需要進行修復或控制[52-56]。如NIU等[56]評估了我國土壤11種重金屬的生態(tài)風險,發(fā)現(xiàn)82%的樣品中Cd處于高風險狀態(tài),過半數(shù)樣品中Cu、Pb、Zn等污染物處于中高度風險狀態(tài)。ZHU等[57]研究發(fā)現(xiàn),粵北稻米Cd含量中位值達到0.33 mg/kg,遠超GB 2762—2012規(guī)定的最高值(0.20 mg/kg);由此導致人體月攝入Cd量達到55.01 μg/kg,比對照地區(qū)攝入量高出3.4倍。目前,重金屬污染土壤修復技術主要有熱脫附、電動修復、淋洗技術、穩(wěn)定和固化技術、植物修復、微生物修復及聯(lián)合修復技術等[53,58-62]。對有生產任務的輕污染農田土壤,穩(wěn)定和固化技術可能在緩解土壤重金屬污染風險、生產安全農產品或糧食中具有較強優(yōu)勢。
生物質炭對環(huán)境中的重金屬、放射性元素等無機污染物表現(xiàn)出了良好的吸附和親和性能[8]。然而,土壤環(huán)境體系復雜,pH、土壤可溶性有機物(碳)含量、污染物種類和濃度都可能影響生物質炭在緩解和修復重金屬污染土壤中的作用;因此,需對其在土壤修復中的應用進行可行性評價。近年來,生物質炭在無機污染土壤修復中的應用研究詳見表1。
表1 生物質炭對土壤中重金屬遷移行為的影響
FOC:有機碳質量分數(shù);CEC:陽離子交換量。
FOC: Fraction of organic carbon; CEC: Cation exchange capacity.
生物質炭是吸附、固定和鈍化土壤重金屬的良好材料,很多研究也證明了添加生物質炭可以降低土壤重金屬(Cu、Pb、Zn、Cd、Ni等)的遷移性、生物有效性和生物毒性[23,38,63-64,66-72]。然而,由于土壤環(huán)境的復雜性,即使添加同樣的生物質炭對不同污染物也會產生不同的效果[51],常見的影響因素有:1)生物質炭增大土壤pH,使土壤高有機碳含量對某些重金屬產生活化作用,如高含量有機碳更易于產生溶解性銅[66,72];2)靜電位阻效應阻止重金屬吸附到土壤固相,如陰離子型銻[70];3)生物質炭對土壤pH的影響,導致As、Cu等遷移活性的增大[65-66];4)生物質炭的穩(wěn)定性和遷移性也可能導致吸附態(tài)重金屬重新進入土壤溶液或隨生物質炭在土壤中遷移,但其作用機制和調控方法尚不明確。
雖然在現(xiàn)有研究中生物質炭在無機污染土壤修復中的應用表現(xiàn)出不同甚至相反的結果,但總體上生物質炭還是具有較大的應用潛力。如:1)在pH低的酸性土壤中,我國普遍存在的Cd、Cu、Pb、Zn等重金屬遷移活性和生態(tài)風險大[73-75],添加生物質炭可提高土壤微環(huán)境pH,有利于降低重金屬遷移性。2)土壤有機質含量也是影響重金屬形態(tài)的重要因子,對有機質含量較低的土壤,生物質炭可提供豐富的官能團,易于與重金屬(離子)進行陽離子交換、絡合等作用,降低其遷移性;而對有機質含量相對較高的土壤,添加低溫生物質炭有可能釋放出可溶性有機質,活化重金屬[65-66],此時可選擇具有更多穩(wěn)定芳環(huán)結構的高溫生物質炭,提供難利用的有機相[23,64,69]。
生物質炭在有機及無機污染物控制方面具有獨特的優(yōu)勢,是一種良好的吸附劑,在環(huán)境修復方面具有較大的應用前景。生物質炭制備來源廣泛,制備條件特別是裂解溫度范圍較寬,這是其優(yōu)勢,但也導致生物質炭基本特性、組成、吸附性能和機制、環(huán)境行為等都存在較大差異。
雖然已經初步探明了生物質炭與重金屬、氮磷等無機污染物的相互作用及其機制,但鑒于土壤性質的復雜性,將生物質炭用于無機污染土壤的控制和修復還存在較大的隨機性和不確定性。毋庸置疑,生物質炭在污染土壤緩解和修復領域必將發(fā)揮重要作用?,F(xiàn)階段我們應加大力度,完善理論體系和應用技術,一方面構建來源材料、制備條件與生物質炭性能的關系,完善多種多類污染物共存與生物質炭的相互作用;另一方面加快生物質炭用于土壤修復的進程,針對土壤性質和實際污染狀況,選擇性使用生物質炭,克服生物質炭在土壤中的穩(wěn)定性和遷移性等瓶頸,提高生物質炭的利用效率;此外,還需拓展生物質炭的應用領域,拓寬處理的污染物種類。
[1]LEHMANN J, RILLIG M, THIES J,etal. Biochar effects on soil biota: A review.SoilBiology&Biochemistry, 2011,43:1812-1836.
[2]BEESLEY L, MORENO-JIMéNEZ E, GOMEZ-EYLES J,etal. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils.EnvironmentalPollution, 2011,159:3269-3282.
[3]LEHMANN J. Bio-energy in the black.FrontiersinEcologyandtheEnvironment, 2007,5:381-387.
[4]SOHI S P, KRULL E, LOPEZ-CAPEL E,etal. A review of biochar and its use and function in soil.AdvancesinAgronomy, 2010,105:47-82.
[5]LEHMANN J. A handful of carbon.Nature, 2007,447:143-144.
[6]LEHMANN J, GAUNT J, RONDON M. Bio-char sequestration in terrestrial ecosystem: A review.MitigationandAdaptationStrategiesforGlobalChange, 2006,11:403-427.
[7]NOVAK J M, BUSSCHER W, LAIRD D L,etal. Impact of biochar amendment on fertility of a southeastern coastal plain soil.SoilScience, 2009,174(2):105-112.
[8]AHMAD M, RAJAPAKSHA A U, LIM J E,etal. Biochar as a sorbent for contaminant management in soil and water: A review.Chemosphere, 2014,99:19-33.
[9]LEHMANN J, JOSEPH S.BiocharforEnvironmentalManagement:ScienceandTechnology. UK: Earthscan Ltd., 2009:1-12.
[10]CAO X D, MA L, GAO B,etal. Dairy-manure derived biochar effectively sorbs lead and atrazine.EnvironmentalScience&Technology, 2009,43:3285-3291.
[11]YAO Y, GAO B, CHEN J J,etal. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer.EnvironmentalScience&Technology, 2013,47:8700-8708.
[12]徐秋桐,邱志騰,章明奎.生物炭對不同pH土壤中碳氮磷的轉化與形態(tài)的影響.浙江大學學報(農業(yè)與生命科學版),2014,40(3):303-313.
XU Q T, QIU Z T, ZHANG M K. Effects of biochar application on transformation and chemical forms of C, N and P in soils with different pH.JournalofZhejiangUniversity(AgricultureandLifeSciences), 2014,40(3):303-313. (in Chinese with English abstract)
[13]杜敬霆,孫朋飛,趙宇華,等.殼聚糖-生物炭微球對甲基紅的吸附及微球菌劑的吸附增益效應.浙江大學學報(農業(yè)與生命科學版),2015,41(2):228-236.
DU J T, SUN P F, ZHAO Y H,etal. Biosorption of chitosan-biochar microsphere for methyl red and biosorption enhancing effect of microsphere-microbe complex.JournalofZhejiangUniversity(AgricultureandLifeSciences), 2015,41(2):228-236. (in Chinese with English abstract)
[14]季雪琴,孔雪瑩,鐘作浩,等.秸稈生物炭對疏水性有機污染物的吸附研究綜述.浙江農業(yè)科學,2015,56(7):1114-1118.
JI X Q, KONG X Y, ZHONG Z H,etal. A review of sorption of hydrophobic organic compounds using straw-derived biochar.JournalofZhejiangAgriculturalSciences, 2015,56(7):1114-1118. (in Chinese)
[15]GLASER B, HAUMAIER L, GUGGENBERGER G,etal. Black carbon in soils: The use of benzenecarboxylic acids as specific markers.OrganicGeochemistry, 1998,29(4):811-819.
[16]李力,劉婭,陸宇超,等.生物炭的環(huán)境效應及其應用的研究進展.環(huán)境化學,2011,30(8):1411-1421.
LI L, LIU Y, LU Y C,etal. Review on environmental effects and applications of biochar.EnvironmentalChemistry, 2011,30(8):1411-1421. (in Chinese with English abstract)
[17]張阿鳳,潘根興,李戀卿.生物黑炭及其增匯減排與改良土壤意義.農業(yè)環(huán)境科學學報,2009,28(12):2459-2463.
ZHANG A F, PAN G X, LI L Q. Biochar and the effect on C stock enhancement, emission reduction of greenhouse gases and soil reclaimation.JournalofAgro-EnvironmentScience, 2009,28(12):2459-2463.
[18]CORNELISSEN G, GUSTAFSSON O, BUCHELI T D,etal. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation.EnvironmentalScience&Technology, 2005,39(18):6881-6895.
[19]CAO X D, HARRIS W. Properties of diary-manure-derived biochar pertinent to its potential use in remediation.BioresourceTechnology, 2010,101(14):5222-5228.
[20]?Z?IMEN D, ERSOY-MERI?BOYU A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials.RenewableEnergy, 2010,35:1319-1324.
[21]KEILUWEIT M, NICO P S, JOHNSON M G,etal. Dynamic molecular structure of plant biomass-derived black carbon (biochar).EnvironmentalScience&Technology, 2010,44:1247-1253.
[22]CHEN Z M, CHEN B L, CHIOU C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures.EnvironmentalScience&Technology, 2012,46:11104-11111.
[23]UCHIMIYA M, WARTELLE L H, KLASSON K T,etal. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil.JournalofAgriculture&FoodChemistry, 2011,59:2501-2510.
[24]SILBER A, LEVKOVITCH I, GRABER E R. pH-dependent mineral release and surface properties of cornstraw biochar: Agronomic implications.EnvironmentalScience&Technology, 2010,44:9318-9323.
[25]CHEN B L, CHEN Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.Chemosphere, 2009,76:127-133.
[26]CHEN B L, CHEN Z M, Lü S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate.BioresourceTechnology, 2011,102:716-723.
[27]YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures.BioresourceTechnology, 2011,102:3488-3497.
[28]SINGH B P, HATTON B J, SINGH B,etal. Influence of biochars on N2O emission and nitrogen leaching from two contrasting soils.JournalofEnvironmentalQuality, 2010,39(4):1224-1235.
[29]ADRIANO D C.TraceElementsinTerrestrialEnvironments. New York, USA: Springer, 2001:133-165.
[30]USMAN A R A, LEE S S, AWAD Y M,etal. Soil pollution assessment and identification of hyperaccumulating plants in chromate copper arsenate (CCA) contaminated sites, Korea.Chemosphere, 2012,87:872-878.
[31]OTERO N, VITORIA A, SOLER A,etal. Fertiliser characterisation: Major, trace and rare earth elements.AppliedGeochemistry, 2005,20:1473-1488.
[32]XU S, FREEMAN S P H T, HOU X,etal. Iodine isotopes in precipitation: Temporal responses to129I emissions from the Fukushima nuclear accident.EnvironmentalScience&Technology, 2013,47:10851-10859.
[33]HOU X L, FOGH C L, KUCERA J,etal. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation.ScienceofTotalEnvironment, 2013,308:97-109.
[34]ZHANG X K, WANG H L, HE L Z,etal. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.EnvironmentalScienceandPollutionResearch, 2013,20:8472-8473.
[35]IPPOLITO J A, STRAWN D G, SCHECKEL K G,etal. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar.JournalofEnvironmentalQuality, 2012,41:1150-1156.
[36]CHOUNG S, UM W, KIM M,etal. Uptake mechanism for iodine species to black carbon.EnvironmentalScience&Technology, 2013,47:10349-10355.
[37]CUI X Q, HAO H L, ZHANG C K,etal. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.ScienceoftheTotalEnvironment, 2016,539:566-575.
[38]JIANG T Y, JIANG J, XU R K,etal. Adsorption of Pb(Ⅱ) on variable charge soils amended with rice-straw derived biochar.Chemosphere, 2012,89:249-256.
[39]DING Y, LIU Y X, WU W X,etal. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns.WaterAir&SoilPollution, 2010,213(1/2/3/4):47-55.
[40]WANG M C, SHENG G D, QIU Y P. A novel manganese-oxide/biochar composite for efficient removal of lead(Ⅱ) from aqueous solutions.InternationalJournalofEnvironmentalScienceandTechnology, 2015,12:1719-1726.
[41]EBERHARDT T L, MIN S H, HAN J S. Phosphate removal by refined aspen wood fiber treated with carboxymethyl cellulose and ferrous chloride.BioresourceTechnology, 2006,97(18):2371-2376.
[42]YAO Y, GAO B, INYANG M,etal. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential.BioresourceTechnology, 2011,102(10):6273-6278.
[43]ZENG Z, ZHANG S D, LI T Q,etal. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants.JournalofZhejiangUniversity-ScienceB(Biomedicine&Biotechnology), 2013,14(12):1152-1161.
[44]WAND S S, GAO B, ZIMMERMAN A R,etal. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite.BioresourceTechnology, 2015,175:391-395.
[45]GERRITSE R G. Prediction of travel times of phosphate in soils at a disposal site for wastewater.WaterResearch, 1993,27(2):263-267.
[46]INYANG M, GAO B, YAO Y,etal. Removal of heavy metals from aqueous solution by biochar derived from anaerobically digested biomass.BioresourceTechnology, 2012,110:50-56.
[47]LU H L, ZHANG W H, YANG Y X,etal. Relative distribution of Pb2+sorption mechanisms by sludge-derived biochar.WaterResearch, 2012,46:854-862.
[48]KONG H L, HE J, GAO Y Z,etal. Cosorption of phenanthrene and mercury(Ⅱ) from aqueous solution by soybean stalk-based biochar.JournalofAgricultureandFoodChemistry, 2011,59:12116-12123.
[49]DONG X, MA L Q, LI Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing.JournalofHazardousMaterials, 2011,190:909-915.
[50]CHOPPALA G K, BOLAN N S, MALLAVARAPU M,etal. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils.JournalofEnvironmentalQuality, 2012,41:1175-1184.
[51]環(huán)境保護部和國土資源部.全國土壤污染狀況調查公報(2014).中國環(huán)保產業(yè),2014(5):10-11.
The Ministry of Environmental Protection and the Ministry of Land and Resources. Bulletin on national survey of soil contamination (2014).ChinaEnvironmentalProtectionIndustry, 2014(5):10-11. (in Chinese)
[52]張小敏,張秀英,鐘太洋,等.中國農田土壤重金屬富集狀況及其空間分布研究.環(huán)境科學,2014,35(2):692-703.
ZHANG X M, ZHANG X Y, ZHONG T Y,etal. Spatial distribution and accumulation of heavy metal in arable land soil of China.EnvironmentalScience, 2014,35(2):692-703. (in Chinese with English abstract)
[53]樊霆,葉文玲,陳海燕,等.農田土壤重金屬污染狀況及修復技術研究.生態(tài)環(huán)境學報,2013,22(10):1727-1736.
FAN T, YE W L, CHEN H Y,etal. Review on contamination and remediation technology of heavy metal in agricultural soil.EcologyandEnvironmentalSciences, 2013,22(10):1727-1736. (in Chinese with English abstract)
[54]李海光,施加春,吳建軍.污染場地周邊農田土壤重金屬含量的空間變異特征及其污染源識別.浙江大學學報(農業(yè)與生命科學版),2013,39(3):325-334.
LI H G, SHI J C, WU J J. Spatial variability characteristics of soil heavy metals in the cropland and its pollution source identification around the contaminated sites.JournalofZhejiangUniversity(AgricultureandLifeSciences), 2013,39(3):325-334. (in Chinese with English abstract)
[55]HUANG S S, LIAO Q L, HUA M,etal. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong District, Jiangsu Province, China.Chemosphere, 2007,67:2148-2155.
[56]NIU L L, YANG F X, XU C,etal. Status of metal accumulation in farmland soils across China: From distribution to risk assessment.EnvironmentalPollution, 2013,176:55-62.
[57]ZHU P, LIANG X X, WAND P,etal. Assessment of dietary cadmium exposure: A cross-sectional study in rural areas of south China.FoodControl, 2016,62:284-290.
[58]PAGE M M, PAGE C L. Electroremediation of contaminated soils.JournalofEnvironmentalEngineering, 2002,128(3):208-219.
[59]DERMONT G, BERGERON M, MERCIER G,etal. Soil washing for metal removal: A review of physical/chemical technologies and field applications.JournalofHazardousMaterials, 2008,152:1-31.
[60]BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R,etal. Remediation of heavy metal(loid)s contaminated soils: To mobilize or to immobilize?JournalofHazardousMaterials, 2014,266:141-166.
[61]MEAGHER R B. Phytoremediation of toxic elemental and organic pollutants.CurrentOpinioninPlantBiology, 2000,3:153-162.
[62]KHAM M S, ZAIDI A, WANI P A,etal. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils.EnvironmentalChemistryLetters, 2009,7:1-9.
[63]HERATH I, KUMARATHILAKA P, NAVARATNE A,etal. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar.JournalofSoilsandSediments, 2015,15:126-138.
[64]HOUBEN D, EVRARD L, SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar.Chemosphere, 2013,92:1450-1457.
[65]HARTLEY W, DICKINSON N M, RIBY P,etal. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted withMiscanthus.EnvironmentalPollution, 2009,157:2654-2662.
[66]BEESLEY L, MORENO-JIMéNEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil.EnvironmentalPollution, 2010,158:2282-2287.
[67]KARAMI M, CLEMENTE R, MORENO-JIMéNEZ E,etal. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass.JournalofHazardousMaterials, 2011,191:41-48.
[68]AHMAD M, LEE S S, YAND J E,etal. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil.EcotoxicologyandEnvironmentalSafety, 2012,79:225-231.
[69]PARK J H, CHOPPALA G K, BOLAN N S,etal. Biochar reduces the bioavailability and phytotoxicity of heavy metals.Plant&Soil, 2011,348:439-451.
[70]UCHIMIYA M, BANNON D I, WARTELLE L H,etal. Lead retention by broiler litter biochars in small arms range soil: Impact of pyrolysis temperature.JournalofAgriculture&FoodChemistry, 2012,60:5035-5044.
[71]CAO X D, MA L, LIANG Y,etal. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar.EnvironmentalScience&Technology, 2011,45:4884-4889.
[72]KHAN S, CHAO C, WAQAS M,etal. Sewage sludge biochar influence upon rice (OryzasativaL.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.EnvironmentalScience&Technology, 2013,47:8624-8632.
[73]廖敏,黃昌勇,謝正苗.pH對鎘在土水系統(tǒng)中的遷移和形態(tài)的影響.環(huán)境科學學報,1999,19(1):81-86.
LIAO M, HUANG C Y, XIE Z M. Effect of pH on transport and transformation of cadmium in soil water system.ActaScientiaeCircumstantiae, 1999,19(1):81-86. (in Chinese with English abstract)
[74]BRADL H B. Adsorption of heavy metal ions on soils and soils constituents.JournalofColloidandInterfaceScience, 2004,277:1-18.
[75]BASTA N T, RYAN J A, CHANEY R L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability.JournalofEnvironmentalQuality, 2005,34:49-63.
Research progress in effects of biochar on transport of inorganic pollutants in soil.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(4):451-459
ZHANG Dong1, LIU Xingyuan2, ZHAO Hongting1*
(1.InstituteofEnvironmentalMaterials&Applications,CollegeofMaterials&EnvironmentalEngineering,HangzhouDianziUniversity,Hangzhou310018,China; 2.GuangdongDazhongAgricultureScienceCo.,Ltd.,Dongguan523169,Guangdong,China)
biochar; sorption; heavy metal; soil; remediation
國家自然科學基金(41271249,21407037);浙江省自然科學基金(LQ14B070006);廣東省東莞市引進創(chuàng)新科研團隊項目(2014607101003).
Corresponding author):趙紅挺(http://orcid.org/0000-0002-4562-4576),Tel:+86-571-87713572,E-mail:hzhao@hdu.edu.cn
聯(lián)系方式:張棟(http://orcid.org/0000-0002-7329-6370),Tel:+86-571-86919158,E-mail:zhangdong@hdu.edu.cn
2016-01-31;接受日期(Accepted):2016-06-23;網絡出版日期(Published online):2016-07-19
X 131; X 53
A
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160719.1832.002.html