賀昌海,陳 輝,劉 全
(武漢大學(xué)水資源與水電工程科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430072)
?
基于CATIA建模的導(dǎo)流工程三維數(shù)值模擬研究
賀昌海,陳 輝,劉 全
(武漢大學(xué)水資源與水電工程科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢 430072)
摘要:提出了包括實(shí)際工程地形的施工導(dǎo)流工程三維數(shù)值模擬的方法.基于CATIA模型設(shè)計(jì)軟件建立了蘇丹上阿特巴拉水利樞紐儒米拉大壩分期導(dǎo)流三維模型,實(shí)現(xiàn)了實(shí)際工程地形與建筑物實(shí)體的融合,真實(shí)地反映了實(shí)際工程的空間布置情況.將模型導(dǎo)入計(jì)算水動(dòng)力學(xué)軟件Flow-3D中,采用紊流雙方程中的 RNG模型,用TruVOF 方法進(jìn)行自由表面的追蹤,在1 000 m3/s、5 380 m3/s 流量下,對(duì)溢洪道內(nèi)部水流流速、流態(tài)、水面線、底板壓力進(jìn)行了數(shù)值模擬.經(jīng)過(guò)對(duì)比分析,證明了模擬結(jié)果與試驗(yàn)值吻合較好,從而驗(yàn)證了模型的可靠性.在取得水力學(xué)參數(shù)的基礎(chǔ)上,考慮建筑物附近的河床沖刷,探討了圍堰附近覆蓋層沖刷的數(shù)值模擬方法.該研究為解決復(fù)雜水利工程的三維建模問(wèn)題及相關(guān)數(shù)值模擬提供了新的方法,具有一定的參考價(jià)值和良好的應(yīng)用前景.
關(guān)鍵詞:施工導(dǎo)流;三維建模;三維數(shù)值模擬;紊流模型;物理模型試驗(yàn)
網(wǎng)絡(luò)出版時(shí)間:2015-07-24. 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/12.1127.N.20150724.1530.002.html.
施工導(dǎo)流是水利水電工程施工組織設(shè)計(jì)的重要內(nèi)容.目前三維施工導(dǎo)流數(shù)值模擬的研究已取得不少成果.國(guó)內(nèi)外眾多研究者[1-8]基于ELCIRC模型對(duì)簡(jiǎn)化的三維河道進(jìn)行了模擬,分析了不利流態(tài)對(duì)通航的影響;針對(duì)不同類型的溢洪道或?qū)Я鞫赐ㄟ^(guò)Flow-3D或Fluent軟件采取合適的紊流模型計(jì)算其流場(chǎng),并將結(jié)果與物理模型試驗(yàn)進(jìn)行對(duì)比,二者吻合均較好,驗(yàn)證了計(jì)算軟件和數(shù)值方法的可靠性.
諸多前人的研究證明了三維數(shù)值模擬的計(jì)算成果與物理模型試驗(yàn)的結(jié)果是相對(duì)一致的,可以與物理模型試驗(yàn)共同為實(shí)際工程問(wèn)題提供參考和依據(jù).但是面對(duì)三維河道及建筑物建模的復(fù)雜性問(wèn)題,上述研究大多僅針對(duì)導(dǎo)流建筑物或簡(jiǎn)化的河道進(jìn)行數(shù)值模擬,沒(méi)有實(shí)現(xiàn)河道地形與建筑物聯(lián)合的三維流場(chǎng)的模擬,這樣就使得計(jì)算結(jié)果不能很好地指導(dǎo)工程實(shí)踐.本文以蘇丹上阿特巴拉水利樞紐儒米拉大壩分期導(dǎo)流工程為例,實(shí)現(xiàn)了三維復(fù)雜建模設(shè)計(jì)和計(jì)算流體動(dòng)力學(xué)數(shù)值模擬的聯(lián)合應(yīng)用.通過(guò)比尺1∶60的水工模型試驗(yàn)對(duì)溢洪道各個(gè)水力特性參數(shù)進(jìn)行了對(duì)比試驗(yàn)研究,其成果可為工程實(shí)際提供參考.
上阿特巴拉水利樞紐工程儒米拉大壩分期導(dǎo)流工程樞紐總長(zhǎng)6 316.55 m.溢洪道最大高度54.80 m,寬80 m,設(shè)4個(gè)泄洪底孔、1個(gè)泄洪表孔.溢洪道底孔溢流面高程482.00 m,孔口尺寸8.0 m(寬)× 8.5 m(高).在導(dǎo)流階段,溢流堰體不施工,表孔缺口作為泄水建筑物,缺口底部高程482.00 m.工程施工導(dǎo)流采用二期三段法.二期導(dǎo)流采用100年一遇洪水標(biāo)準(zhǔn),流量為5 380 m3/s,設(shè)計(jì)上游水位高程491.70 m.上游圍堰設(shè)計(jì)頂高程492.70 m.二期導(dǎo)流平面布置如圖1所示.
圖1 二期導(dǎo)流平面布置Fig.1 Layout of second stage diversion
1.1三維河道地形生成
采用CATIA軟件進(jìn)行河道地形建模,步驟如下:①基于VB語(yǔ)言開(kāi)發(fā)的程序直接將地形等高線數(shù)據(jù)轉(zhuǎn)換為點(diǎn)云數(shù)據(jù);②在CATIA的數(shù)字外形編輯模塊,將點(diǎn)云數(shù)據(jù)導(dǎo)入CATIA;③過(guò)濾點(diǎn)云及刪除錯(cuò)誤的點(diǎn),完成點(diǎn)云的修飾工作;④構(gòu)建mesh地表面;⑤在Quick Surface Reconstruction模塊,生成形曲面;⑥進(jìn)入零件設(shè)計(jì)模塊,將已繪制好的輪廓拉伸形成實(shí)體,使用分割工具,利用地表曲面來(lái)分割拉伸后的形體,即形成地質(zhì)模型體[9].構(gòu)建完成的三維河道地形如圖2 所示.
圖2 構(gòu)建完成的三維河道地形Fig.2 Complicated three-dimensional river terrain
1.2建筑物創(chuàng)建與裝配設(shè)計(jì)
建筑物包括溢洪道和上下游圍堰.將二維AutoCAD圖直接導(dǎo)入CATIA草圖編輯器之中,建立起三維實(shí)體模型,之后再加以編輯修改,完成建筑物三維模型的創(chuàng)建[10].圖3為創(chuàng)建好的建筑物模型.
圖3 溢洪道及圍堰三維模型Fig.3 Three-dimensional models of spillway and cofferdam
按照各建筑物的相對(duì)位置關(guān)系,將已經(jīng)完成的河道地形、溢洪道、上下游圍堰進(jìn)行裝配,如圖4所示.
圖4 儒米拉大壩導(dǎo)流工程三維模型Fig.4 Three-dimensional model of Rumela dam diversion project
表1為計(jì)算工況.為了更好地與物理模型試驗(yàn)結(jié)果進(jìn)行對(duì)比,并分析縮尺效應(yīng)對(duì)物理模型試驗(yàn)的影響,數(shù)值計(jì)算采用兩種尺寸(一種為物理模型試驗(yàn)的尺寸,另一種為原型尺寸)對(duì)工況1進(jìn)行模擬,最終的數(shù)據(jù)對(duì)比均換算為原型數(shù)據(jù).對(duì)工況2進(jìn)行水流模擬的同時(shí)也對(duì)覆蓋層的沖刷情況進(jìn)行模擬.
表1 數(shù)值模擬計(jì)算工況Tab.1 Calculation conditions of numerical simulation
2.1紊流模型
本文研究的導(dǎo)流問(wèn)題因地勢(shì)起伏以及消力池與水流之間的作用,水流會(huì)出現(xiàn)劇烈的變形破碎,采用RNG k- ε模型.模型控制方程如下:
連續(xù)方程
動(dòng)量方程
紊動(dòng)能k方程
紊動(dòng)能耗散率方程
式中:ui為流速?gòu)埩糠至?;xi為三維直角坐標(biāo)張量分量;t為時(shí)間;iA、gi、fi分別為三維坐標(biāo)方向上可流動(dòng)的面積分?jǐn)?shù)、重力加速度和黏滯力;μ為水的動(dòng)力黏滯系數(shù);tμ為紊動(dòng)黏滯系數(shù);VF為可流動(dòng)的體積分?jǐn)?shù);kσ和εσ分別為紊動(dòng)能和耗散率所對(duì)應(yīng)的Prandtl數(shù);Gk為紊動(dòng)能k的產(chǎn)生項(xiàng);ρ為流體密度;k為紊動(dòng)能;ε為紊動(dòng)能耗散率;為經(jīng)驗(yàn)常數(shù).
處理流體自由表面采用TruVOF方法.該方法由Hirt和Nichols提出,適用于2種或2 種以上互不穿透流體界面的跟蹤計(jì)算[11].
對(duì)控制方程的離散采用交錯(cuò)矩形網(wǎng)格的有限差分法,速度和面積分?jǐn)?shù)定義在網(wǎng)格邊界面的中心點(diǎn)上.壓力速度分離式解法采用極小殘差(GMRES)算法.
2.2沖刷數(shù)值計(jì)算模型
沖刷模型主要是通過(guò)模擬水流作用下的泥沙顆粒運(yùn)動(dòng)規(guī)律,預(yù)測(cè)泥沙侵蝕、平流擴(kuò)散和沉積等[12].假設(shè)泥沙顆粒為球形,并且每個(gè)泥沙顆粒周圍的水流以黏性影響為主.漂移系數(shù)的計(jì)算式為
式中:SCRDIA為中值粒徑;RHOF為液體密度.
沖刷中的“懸揚(yáng)”成分是基于推移質(zhì)輸沙模型的一個(gè)經(jīng)驗(yàn)?zāi)P?,在填充層界面?jì)算的泥沙上舉速度按照式(6)計(jì)算:
式中:SCRRHO為沉積物顆粒密度,通常泥沙為2.653g/cm;g為重力加速度.
當(dāng)泥沙密度大于臨界固結(jié)濃度時(shí),即假定泥沙顆粒的黏結(jié)力足夠大.當(dāng)泥沙填充率大于黏粒體積分?jǐn)?shù)并且小于臨界填充率時(shí),則使用黏粒固結(jié)模型.當(dāng)固體顆粒分?jǐn)?shù)小于黏粒體積分?jǐn)?shù)時(shí),阻力模型不再適用,黏性影響增大[13].增值黏滯系數(shù)的表達(dá)式為
式中:μ*為增值黏滯系數(shù);0μ為液體黏滯系數(shù);Sf為黏粒體積分?jǐn)?shù);Scr為臨界固結(jié)填充率.
2.3數(shù)值模擬過(guò)程
(1)計(jì)算范圍.選擇壩軸線上游600 m至下游600 m之間區(qū)域進(jìn)行計(jì)算,即圖5(a)中網(wǎng)格涵蓋的區(qū)域.
(2)網(wǎng)格剖分.模型網(wǎng)格均采用結(jié)構(gòu)化網(wǎng)格,網(wǎng)格數(shù)量在500萬(wàn)左右.在溢洪道分流檻、尾墩區(qū)域附近流動(dòng)情況比較復(fù)雜,因此在其附近進(jìn)行網(wǎng)格加密以提高計(jì)算的速度和精度.網(wǎng)格剖分示意如圖5所示.
(3)邊界條件設(shè)置.上游設(shè)置為流量邊界;下游為壓力出口并設(shè)相應(yīng)水位;固體邊界采用壁面無(wú)滑移條件;液面為自由表面.
本次模擬在初始時(shí)刻將上游河道填充上與邊界條件水位一致的靜止水體.將靜水壓強(qiáng)方向設(shè)置為沿z軸線性變化.
圖5 計(jì)算區(qū)域的網(wǎng)格剖分Fig.5 Mesh generation of computational domain
3.1計(jì)算域水流流態(tài)
工況1計(jì)算流態(tài)圖與模型試驗(yàn)的流態(tài)照片如圖6所示.觀察計(jì)算結(jié)果可知溢洪道進(jìn)水渠水流平順,無(wú)跌水、無(wú)立軸漩渦及回流現(xiàn)象.消力池直墻(高程(EL):491.00 m)有涌浪水流溢出,其中溢出的水流直接進(jìn)入基坑,存在影響大壩干地施工的風(fēng)險(xiǎn),建議適當(dāng)加高消力池直墻或增加基坑排水設(shè)施.與物理模型試驗(yàn)照片相比,可以發(fā)現(xiàn)二者水流流態(tài)基本相符,但是在紊動(dòng)強(qiáng)烈的消力池前端部分?jǐn)?shù)值模擬流態(tài)與物理模型試驗(yàn)流態(tài)有所差異.
圖6 數(shù)值模擬與物理模型試驗(yàn)流態(tài)對(duì)比(工況1)Fig.6 Flow regime comparison between numerical simulation and physical model test(condition 1)
3.2計(jì)算域水面線
圖7為模型試驗(yàn)中水力參數(shù)測(cè)點(diǎn)的樁號(hào).圖8為數(shù)值模擬水面線云圖.各個(gè)測(cè)點(diǎn)水位的計(jì)算值與試驗(yàn)值的對(duì)比如表2所示,對(duì)比分析可知,各個(gè)工況的溢洪道內(nèi)部數(shù)值模擬水面線與試驗(yàn)水面線吻合較好,各個(gè)工況的最大絕對(duì)誤差在0.5 m(原型)左右.對(duì)比得到工況1按照模型尺寸計(jì)算的結(jié)果比按照原型尺寸的計(jì)算結(jié)果誤差整體上要小,用模型尺寸計(jì)算的各點(diǎn)誤差平均值為0.20 m,用原型尺寸計(jì)算的為0.27 m.說(shuō)明物理模型試驗(yàn)存在一定的縮尺影響,對(duì)水位誤差的影響約為0.07 m.
圖7 模型試驗(yàn)溢洪道測(cè)點(diǎn)樁號(hào)Fig.7 Stake mark of measurement points of the spillway
圖8 溢洪道數(shù)值模擬水面線云圖Fig.8 Water surface profile of the spillway by numerical simulation
表2 溢洪道特征點(diǎn)水位對(duì)比Tab.2 Contrast of water level at characteristic points of the spillway
3.3計(jì)算域壓強(qiáng)分布
圖9為溢洪道底板壓強(qiáng)水頭計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比曲線.各個(gè)工況的壓強(qiáng)計(jì)算值與試驗(yàn)結(jié)果吻合較好.工況1的計(jì)算點(diǎn)相對(duì)誤差可控制在10% 以內(nèi).工況2的計(jì)算點(diǎn)相對(duì)誤差控制在15% 左右,其中相對(duì)誤差較大的點(diǎn)在消力池前端0-72和0-93.6附近,因?yàn)樵撎帀毫Ψ植急容^復(fù)雜,伴隨著大量的氣體摻入,數(shù)值模擬對(duì)摻氣水流的模擬還不是很成熟.對(duì)比按模型尺寸計(jì)算和按原型尺寸計(jì)算的工況1的兩種情形,用模型尺寸計(jì)算的相對(duì)誤差平均值為1.95% ,用原型尺寸計(jì)算的為2.28% .說(shuō)明物理模型試驗(yàn)存在一定的縮尺影響,對(duì)壓強(qiáng)相對(duì)誤差的影響約為0.33% .
圖9 溢洪道底板壓強(qiáng)水頭計(jì)算結(jié)果與試驗(yàn)結(jié)果對(duì)比Fig.9 Contrast of pressure heads of the spillway bottom plate between calculation and test
3.4計(jì)算域流速分布
圖10為流速計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比,可以看出,90% 以上流速測(cè)點(diǎn)相對(duì)誤差在15% 以內(nèi),二者流速分布情況基本一致.所選各個(gè)斷面流速值誤差較大的為斷面0-126.該處水流條件紊亂,內(nèi)部水流翻滾劇烈,數(shù)值模擬對(duì)流態(tài)紊亂區(qū)的模擬尚不能完全精確,加上物理模型試驗(yàn)測(cè)量?jī)x器的誤差等因素,導(dǎo)致二者有差距.另外對(duì)比工況1兩種情形,發(fā)現(xiàn)用模型尺寸計(jì)算的流速結(jié)果與模型試驗(yàn)結(jié)果更為接近,用模型尺寸計(jì)算的結(jié)果相對(duì)誤差平均值為12.24% ,用原型尺寸計(jì)算的結(jié)果為34.78% .說(shuō)明物理模型試驗(yàn)存在一定的縮尺影響,對(duì)流速相對(duì)誤差的影響約為22.54% .
圖10 溢洪道中心線特征點(diǎn)流速計(jì)算結(jié)果與試驗(yàn)結(jié)果對(duì)比Fig.10 Comparison of velocities at characteristic points of the spillway center line between calculation and test
3.5沖刷模擬結(jié)果分析
上游圍堰坡腳局部沖刷試驗(yàn)?zāi)M范圍為:壩軸線上游0+300.00 m至上游圍堰坡腳,模擬長(zhǎng)度約150 m,寬度120 m,覆蓋層厚度約6 m.對(duì)工況2進(jìn)行沖刷試驗(yàn).最終模型試驗(yàn)沖坑結(jié)果如圖11所示.結(jié)果顯示,靠近縱向圍堰頭部長(zhǎng)約55 m范圍上游圍堰坡腳局部被沖刷,最大沖刷深度1.83 m,距上游圍堰坡腳約20 m,沖坑最低高程為475.17 m,沖坑縱向坡度約5.2°.
圖11 物理模型試驗(yàn)沖坑結(jié)果Fig.11 Scour results by physical model test
按照要求的動(dòng)床范圍進(jìn)行模型修改.數(shù)值模擬修改后的計(jì)算模型如圖12所示,圖中紅色區(qū)域?yàn)楦采w層區(qū)域,深度為6.0 m.
設(shè)置圖中紅色區(qū)域的床沙中值粒徑為0.2 mm,并按照河床覆蓋層級(jí)配設(shè)置代表粒徑.水下休止角為30°,臨界謝爾茲數(shù)為0.031.待沖刷穩(wěn)定后,提取最終沖刷結(jié)果云圖,如圖13所示.
圖12 數(shù)值模擬動(dòng)床范圍(紅色區(qū)域)Fig.12 Scope of movable riverbed by numerical simulation(the red region)
圖13 數(shù)值模擬沖坑高程云圖(黑色線條為等值線)Fig.13 Scour elevation contour by numerical simulation (black lines represent isolines)
可以看出數(shù)值模擬發(fā)生沖刷的位置位于上游圍堰左部,沖坑最低點(diǎn)高程為474.8 m,最大沖刷深度為2.2 m.模型試驗(yàn)沖坑最低高程為475.17 m,可見(jiàn)沖坑深度與試驗(yàn)基本一致.
本文通過(guò)三維建模軟件CATIA進(jìn)行三維設(shè)計(jì)建模,應(yīng)用Flow-3D為平臺(tái)進(jìn)行數(shù)值模擬計(jì)算分析.數(shù)值模擬采用適合實(shí)際問(wèn)題的RNG k- ε紊流模型,對(duì)蘇丹上阿特巴拉水利樞紐儒米拉大壩導(dǎo)流工程進(jìn)行了數(shù)值模擬,通過(guò)對(duì)比物理模型試驗(yàn)數(shù)據(jù),結(jié)果表明上述數(shù)值模擬方法對(duì)溢洪道導(dǎo)流工程的計(jì)算模擬是合適與合理的.證明了在復(fù)雜三維地形下的三維導(dǎo)流數(shù)值模擬是可以實(shí)現(xiàn)的,同時(shí)體現(xiàn)了本數(shù)值模擬計(jì)算的參考價(jià)值.
參考文獻(xiàn):
[1] Savage B M,Johnson M C. Flow over ogee spillway:Physical and numerical model case study [J]. Journal of Hydraulic Engineering,2001,127(8):640-649.
[2] Ho D K H,Boyes K M,Donohoo S M. Investigation of spillway behavior under increased maximum flood by computational fluid dynamics technique [C]// Proc Conf 14th Australasian Fluid Mechanics. Worley,North S-ydney,New South Wales,Australia,2001:577-580.
[3] Dargahi Bijan. Experimental study and 3D numerical simulations for a free-overflow spillway [J]. Journal of Hydraulic Engineering,2006,132(9):899-907.
[4] Johnson M C,Savage B M. Physical and numerical comparison of flow over ogee spillway in the presence of tailwater [J]. Journal of Hydraulic Engineering,2006,132(12):1353-1357.
[5] 王丹柏,劉聯(lián)兵,張成友,等. 導(dǎo)流洞數(shù)值模擬計(jì)算研究[J]. 中國(guó)農(nóng)村水利水電,2012(6):161-164. Wang Danbai,Liu Lianbing,Zhang Chengyou,et al. Research on numerical simulation of diversion tunnels [J]. China Rural Water and Hydropower,2012(6):161-164(in Chinese).
[6] Chinnarasri Chaiyuth,Kositgittiwong Duangrudee,Julien P Y. Model of flow over spillways by computational fluid dynamics [J]. Proceedings of the ICE-Water Management,2013,167(3):164-175.
[7] Fadaei-Kermani E,Barani G A. Numerical simulation of flow over spillway based on the CFD method [J]. Scientia Iranica,2014,21(1):91-97.
[8] 馬旭東,楊 慶,聶銳華,等. 中閘室弧形閘門關(guān)閉過(guò)程中泄洪洞水力特性研究[J]. 四川大學(xué)學(xué)報(bào):工程科學(xué)版,2014,46(2):1-7. Ma Xudong,Yang Qing,Nie Ruihua,et al. Study on flow characteristics of spillway tunnel downstream of middle gate chamber in the steel arch-gate closing process [J]. Journal of Sichuan University:Engineering Science Edition,2014,46(2):1-7(in Chinese).
[9] 劉 瑜,胡 純,張 琳,等. 基于GPR試驗(yàn)數(shù)據(jù)和CATIA的三維地質(zhì)建模[J]. 武漢大學(xué)學(xué)報(bào):工學(xué)版,2010,43(4):458-461. Liu Yu,Hu Chun,Zhang Lin,et al. 3D geological modeling based on GPR data and CATIA [J]. Engineering Journal of Wuhan University,2010,43(4):458-461(in Chinese).
[10] 張社榮,顧 巖,張宗亮. 水利水電行業(yè)中應(yīng)用三維設(shè)計(jì)的探討[J]. 水力發(fā)電,2008,27(3):65-69. Zhang Sherong,Gu Yan,Zhang Zongliang. Discussion on the application of the three-dimensional design for hydraulic engineering [J]. Journal of Hydroelectric Engineering,2008,27(3):65-69(in Chinese).
[11] 徐國(guó)賓,高仕趙,周富滿. 淤泥對(duì)平面鋼閘門啟門力影響的數(shù)值仿真分析[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2013,46(3):197-201. Xu Guobin,Gao Shizhao,Zhou Fuman. Numerical sim-ulation analysis on effect of silt sediment on lifting force of plane gate [J]. Journal of Tianjin University:Science and Technology,2013,46(3):197-201(in Chinese).
[12] 贠 鵬. 橋墩局部沖刷的數(shù)值模擬研究[D]. 青島:中國(guó)海洋大學(xué)工程學(xué)院,2012. Yun Peng. The Research of Numerical Simulation on Local Scour at Bridge Piers [D]. Qingdao:College of Engineering,Ocean University of China,2012(in Chinese).
[13] 趙雁飛. 海上風(fēng)電支撐結(jié)構(gòu)波浪力及基礎(chǔ)沖刷的三維數(shù)值模擬研究 [D]. 天津:天津大學(xué)建筑工程學(xué)院,2010. Zhao Yanfei. Three-Dimensional Numerical Simulation of Wave Force on the Offshore Wind Turbine Structure and Scour Around Foundation [D]. Tianjin:School of Civil Engineering,Tianjin University,2010(in Chinese).
(責(zé)任編輯:趙艷靜)
Three-Dimensional Numerical Simulation of River Diversion Based on CATIA Modeling
He Changhai,Chen Hui,Liu Quan
(State Key Laboratory of Water Resources and Hydropower Engineering,Wuhan University,Wuhan 430072,China)
Abstract:The research puts forward three-dimensional numerical methods to solve river diversion problem based on real terrain.The CATIA model design software was used to design three-dimensional stage diversion project of Sudan Upper Atbara Rumela Dam,which combined buildings with realistic terrain.It realistically reflected the spatial arrangement of engineering.Then the model was put into the Flow-3D software.RNG two-equation turbulent model and TruVOF method in the free surface tracking were used.The flow velocity,water flow regime,water surface profile and bottom pressure in spillway were simulated when the flow rate is 1 000 m3/s and 5 380 m3/s,respectively.By comparison and analysis,calculation results are consistent with experimental measurements,indicating the validity of the model.After obtaining the hydraulic parameters,the research considered the river bed scour near the building,explored the method of numerical simulation of the overburden erosion.This research provides a new way for complicated three-dimensional hydraulic modeling and corresponding numerical simulation.The method would have a certain reference value and good prospect.
Keywords:construction diversion;three-dimensional modeling;three-dimensional numerical simulation;turbulence model;physical model test
中圖分類號(hào):TV551
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0493-2137(2016)04-0422-07
DOI:10.11784/tdxbz201504098
收稿日期:2015-04-30;修回日期:2015-07-05.
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51379164).
作者簡(jiǎn)介:賀昌海(1966— ),男,教授,hch_2003@163.com.
通訊作者:陳 輝,sgch.happy@163.com.