喬永旭
(唐山師范學(xué)院 生命科學(xué)系,河北 唐山 063000)
?
鋁對(duì)黃瓜和黑籽南瓜RBCs生理特性的影響
喬永旭
(唐山師范學(xué)院 生命科學(xué)系,河北 唐山 063000)
[摘要]【目的】 探究黃瓜和黑籽南瓜幼苗根系邊緣細(xì)胞(Root border cells,RBCs)對(duì)鋁毒的應(yīng)答差異,進(jìn)一步闡明黑籽南瓜對(duì)鋁的抗性機(jī)制,為黑籽南瓜作為黃瓜的砧木提供依據(jù)?!痉椒ā?以‘津研四號(hào)’黃瓜和云南黑籽南瓜種子為試材,采用懸空培養(yǎng)法,研究了0(對(duì)照,CK),50,100和200 μmol/L Al3+對(duì)2種瓜類(lèi)根畸形率、根長(zhǎng)、根鮮質(zhì)量及RBCs的黏膠層厚度、數(shù)目、活率和凋亡率的影響?!窘Y(jié)果】 與CK相比,隨著Al3+濃度的增大,黃瓜根的畸形率也隨之增大,而黑籽南瓜根畸形率無(wú)顯著變化;2種瓜類(lèi)的根長(zhǎng)、根鮮質(zhì)量整體均呈下降趨勢(shì),但黃瓜根長(zhǎng)、根鮮質(zhì)量下降幅度較黑籽南瓜明顯。隨著Al3+濃度的增加,2種瓜類(lèi)RBCs的數(shù)目和活率均明顯降低,且黃瓜降低幅度較黑籽南瓜明顯;而RBCs凋亡率卻隨著Al3+濃度的增加而增大,該現(xiàn)象在黃瓜中較為明顯。與CK相比,Al3+處理明顯增加了2種瓜類(lèi)RBCs的黏膠層厚度,相同Al3+濃度下黑籽南瓜RBCs的黏膠層厚度均大于黃瓜?!窘Y(jié)論】 RBCs能提高植物根系抵御Al3+毒害的能力;黑籽南瓜RBCs因具有數(shù)目多、凋亡率低和較厚的黏膠層等特性,故其抵御Al3+毒害的能力優(yōu)于黃瓜。
[關(guān)鍵詞]黃瓜;黑籽南瓜;鋁;根系邊緣細(xì)胞
近年來(lái),隨著環(huán)境污染的加重,酸性土壤面積所占比例越來(lái)越高,嚴(yán)重影響了植株正常的生長(zhǎng)發(fā)育,而鋁毒是酸性土壤阻礙作物生長(zhǎng)的主要原因。Al3+對(duì)許多種植物具有毒害作用, 諸如水稻、擬南芥和香椿等,且微量的Al3+便可抑制多種作物根的生長(zhǎng)[1-4]。周楠等[5]研究發(fā)現(xiàn),Al3+可明顯抑制黃瓜根的生長(zhǎng),延緩了植株正常的發(fā)育,最終降低了黃瓜的產(chǎn)量。黃瓜是我國(guó)主要的設(shè)施蔬菜,選育耐Al3+毒害能力強(qiáng)的品種或砧木是今后重要的研究方向。而關(guān)于黃瓜的常用砧木黑籽南瓜對(duì)Al3+抗性機(jī)理的報(bào)道尚少,研究黃瓜和黑籽南瓜對(duì)于Al3+的應(yīng)答差異,對(duì)探索以黑籽南瓜為砧木嫁接黃瓜提高其耐Al3+性具有重要的意義。
根系邊緣細(xì)胞 (Root border cells,RBCs) 又稱(chēng)為根冠脫落細(xì)胞,來(lái)源于根冠分生組織,能夠合成并向外分泌一系列具有生物活性的化學(xué)物質(zhì),中和有毒物質(zhì),減緩有毒物質(zhì)對(duì)根系的毒害[6]。Miyasaka等[7]對(duì)菜豆的研究中發(fā)現(xiàn),RBCs在植物抗Al3+方面有著重要作用,菜豆在一定程度上能通過(guò)改變RBCs活性和黏膠層厚度對(duì)Al3+毒害做出適應(yīng)性反應(yīng)。有研究證明,RBCs可通過(guò)細(xì)胞程序性死亡來(lái)保護(hù)或減輕Al3+對(duì)植物的毒害[8]。RBCs在抗Al3+方面的作用越來(lái)越受到人們的重視。本試驗(yàn)選用黃瓜及其常用砧木黑籽南瓜作為材料,進(jìn)行懸浮培養(yǎng),探討Al3+對(duì)2者根系生長(zhǎng)及RBCs的數(shù)目、活率、黏膠層厚度和凋亡率等的影響,以揭示2種瓜類(lèi)作物對(duì)Al3+的應(yīng)答差異。
1材料與方法
1.1材料
‘津研四號(hào)’黃瓜(Cucumissativus)和黑籽南瓜(Cururbitaficifolia)種子,均由中國(guó)農(nóng)業(yè)大學(xué)農(nóng)學(xué)與生物技術(shù)學(xué)院提供。
1.2試驗(yàn)方法
挑選外形飽滿(mǎn)、均勻一致的黃瓜和黑籽南瓜種子,用體積分?jǐn)?shù)70%的乙醇溶液消毒60 s,無(wú)菌蒸餾水沖洗3次,并浸泡在無(wú)菌蒸餾水中3~4 h,之后轉(zhuǎn)移到28 ℃的培養(yǎng)箱內(nèi)催芽,待種子露白后進(jìn)行懸浮培養(yǎng)。
在1 000 mL的燒杯中放入150~200 mL蒸餾水,將鐵絲網(wǎng)固定在燒杯中,濾紙穿孔后置于鐵絲網(wǎng)上,將露白的種子播于孔中,每個(gè)燒杯內(nèi)30粒種子,共播種于12個(gè)燒杯中,每3個(gè)燒杯為1個(gè)處理,分別用0(對(duì)照,CK),50,100和200 μmol/L AlCl3溶液(含0.5 mmol/L CaCl2,pH 4.5)噴施,用塑料薄膜和橡皮筋封口,放到28 ℃培養(yǎng)箱中黑暗培養(yǎng)。每隔1 h處理1次,培養(yǎng)24 h后備用[9]。
1.3測(cè)定項(xiàng)目與方法
1.3.1根畸形率、根長(zhǎng)和根鮮質(zhì)量選取30個(gè)處理好的根尖,統(tǒng)計(jì)根畸形率,根畸形率=畸形根個(gè)數(shù)/根總數(shù)×100%。并挑選9個(gè)均勻一致的根尖浸入盛有100 μL蒸餾水的200 μL離心管中60 s,并用軟管輕微攪拌以便釋放大量的RBCs,制備細(xì)胞懸浮液,并將去除RBCs的根尖切下,測(cè)量根長(zhǎng)和根鮮質(zhì)量。
1.3.2RBCs數(shù)目和活率取40 μL RBCs細(xì)胞懸浮液于離心管中,加入4 μL 0.5%臺(tái)盼藍(lán)溶液染色,10 min后取10 μL溶液于血細(xì)胞計(jì)數(shù)板上,蓋片,在光學(xué)顯微鏡下統(tǒng)計(jì)RBCs數(shù)目和活率。RBCs活率=活細(xì)胞/總的RBCs×100%。
1.3.3RBCs黏膠層厚度取上述制備的RBCs細(xì)胞懸浮液10 μL于載玻片上,再取等體積的墨水混合,蓋片,置于光學(xué)顯微鏡下觀測(cè)。測(cè)量3個(gè)不同位置的黏膠層厚度,取其平均值[10]。
1.3.4RBCs凋亡率將獲得的RBCs懸浮液靜止2 h,棄去蒸餾水,加入少許體積分?jǐn)?shù)95%乙醇,再用pH 6.0的磷酸緩沖液沖洗2~3次。取細(xì)胞懸浮液與Hochest-33258染液(10 μg/mL )以1∶1 體積比混合,5 min后用熒光顯微鏡(OLYMPUS BX51)統(tǒng)計(jì)RBCs凋亡率。RBCs凋亡率=凋亡的RBCs/總的RBCs×100%[10]。
1.4數(shù)據(jù)統(tǒng)計(jì)及分析
所有數(shù)據(jù)均重復(fù)3次,采用“平均值±標(biāo)準(zhǔn)差(mean±SD)”表示,試驗(yàn)中的數(shù)據(jù)均經(jīng)過(guò)P=5%水平上的Tukey檢驗(yàn),應(yīng)用Microsoft Excel 2010進(jìn)行圖表繪制。
2結(jié)果與分析
2.1Al3+對(duì)黃瓜和黑籽南瓜根畸形率的影響
由圖1可知,高濃度Al3+能增加2種瓜類(lèi)根系的畸形率,黃瓜根畸形率的增加幅度明顯大于黑籽南瓜。與CK相比,50 μmol/L Al3+處理后,黃瓜根畸形率增加不顯著;100和200 μmol/L Al3+處理后,黃瓜的根畸形率分別增加了42.3%和61.1%,且與CK差異顯著。隨著Al3+濃度的增加,黑籽南瓜根畸形率略有增加,但與CK無(wú)顯著差異。
圖 1 Al3+對(duì)黃瓜和黑籽南瓜根畸形率的影響
2.2Al3+對(duì)黃瓜和黑籽南瓜根長(zhǎng)及根鮮質(zhì)量的影響
由圖2可知,與CK相比,50和100 μmol/LAl3+對(duì)2種瓜類(lèi)根長(zhǎng)和根鮮質(zhì)量的抑制程度不顯著;200 μmol/L Al3+處理后,黃瓜的根長(zhǎng)和根鮮質(zhì)量分別顯著降低了24.5%和28.8%,黑籽南瓜則無(wú)顯著變化??芍邼舛華l3+更能抑制黃瓜根長(zhǎng)和根鮮質(zhì)量,黑籽南瓜受到的抑制不明顯。
2.3Al3+對(duì)黃瓜和黑籽南瓜RBCs數(shù)目及存活率的影響
由圖3可知,隨著Al3+濃度的增加,黃瓜和黑籽南瓜RBCs的數(shù)目和活率均呈下降趨勢(shì),其中黃瓜RBCs數(shù)目和活率受到的抑制程度高于黑籽南瓜。與CK相比,低濃度(50 μmol/L)Al3+對(duì)黃瓜的RBCs數(shù)目和活率抑制作用不顯著;100和200 μmol/L的Al3+處理后,黃瓜RBCs的數(shù)目和活率顯著降低。與CK相比,50~200 μmol/L Al3+處理后黑籽南瓜RBCs的數(shù)目無(wú)顯著變化。與CK相比,50~100 μmol/L Al3+處理后,黑籽南瓜RBCs活率無(wú)顯著變化; 200 μmol/L Al3+處理后RBCs活率顯著降低。
圖 2 Al3+對(duì)黃瓜和黑籽南瓜根長(zhǎng)(A)和根鮮質(zhì)量(B)的影響
圖 3Al3+對(duì)黃瓜和黑籽南瓜RBCs數(shù)目(A)和活率(B)的影響
Fig.3Effects of Al3+on the number (A) and viability of RBCs (B) in cucumber and figleaf gourd seedlings
2.4Al3+對(duì)黃瓜和黑籽南瓜RBCs黏膠層厚度的影響
由圖4和圖5可知,50 μmol/L Al3+處理后,2種瓜類(lèi)RBCs的黏膠層厚度較CK增加不顯著;100和200 μmol/L Al3+處理后,黃瓜RBCs的黏膠層厚度分別增加了27.1%和47.4%,黑籽南瓜RBCs黏膠層厚度增加幅度較黃瓜更明顯,分別達(dá)到了 29.1% 和58.6%。表明高濃度(100~200 μmol/L)Al3+更能增加RBCs黏膠層厚度,黑籽南瓜RBCs黏膠層厚度的增加幅度高于黃瓜。
圖 4Al3+處理后黃瓜和黑籽南瓜RBCs的黏膠層
A~D.黃瓜;E~H.黑籽南瓜;A、E.0 μmol/L Al3+;B、F.50 μmol/L Al3+;C、G.100 μmol/L Al3+;D、H.200 μmol/L Al3+
Fig.4Mucilage layer of RBCs in cucumber and figleaf gourd seedlings treated with Al3+
A-D.Cucumber;E-H.Figleaf gourd;A,E.0 μmol/L Al3+;B,F.50 μmol/L Al3+;C,G.100 μmol/L Al3+; D, H.200 μmol/L Al3+
圖 5 Al3+對(duì)黃瓜和黑籽南瓜RBCs黏膠層厚度的影響
2.5Al3+對(duì)黃瓜和黑籽南瓜RBCs凋亡率的影響
由圖6可知,正常RBCs的細(xì)胞核外形較小,輪廓較圓,且質(zhì)地一致,呈現(xiàn)藍(lán)色的點(diǎn)狀;凋亡RBCs的細(xì)胞核則呈現(xiàn)出彌散現(xiàn)象,外形變大,輪廓不清晰,質(zhì)地明暗交替,降解為藍(lán)色的凋亡片段。
由圖7可知, 50 μmol/L Al3+處理后,2種瓜類(lèi)RBCs凋亡率較CK均無(wú)顯著變化,100 μmol/L Al3+顯著增加了黃瓜RBCs凋亡率,但對(duì)黑籽南瓜RBCs凋亡率影響不顯著;200 μmol/L Al3+則顯著增加了2種瓜類(lèi)RBCs的凋亡率。表明高濃度Al3+更能增加RBCs的凋亡率,同等濃度的Al3+誘導(dǎo)黃瓜RBCs的凋亡率高于黑籽南瓜。
3討論
在高度風(fēng)化的酸性土壤中,Al3+是限制作物生長(zhǎng)和礦質(zhì)元素吸收而導(dǎo)致減產(chǎn)的一個(gè)主要脅迫因子,它可以抑制植物細(xì)胞的分裂、伸長(zhǎng),引起細(xì)胞畸變,致使細(xì)胞活性下降甚至死亡[11-13]。Radmer等[11]研究發(fā)現(xiàn),Al3+能在短時(shí)間內(nèi)抑制燕麥根的伸長(zhǎng),可將根長(zhǎng)作為測(cè)定Al3+傷害的重要指標(biāo)。Cai等[1]認(rèn)為,作物品種之間對(duì)Al3+的耐受性存在差異,本試驗(yàn)也證實(shí)了該現(xiàn)象。本試驗(yàn)發(fā)現(xiàn),200 μmol/L Al3+顯著抑制黃瓜的根長(zhǎng)和根鮮質(zhì)量,增加了根畸形率,但Al3+對(duì)黑籽南瓜根系生長(zhǎng)的影響不顯著。Al3+對(duì)不同物種毒害的差異性,與物種的特性有關(guān)。由此推測(cè),在富含Al3+的土壤中,以黑籽南瓜為砧木嫁接黃瓜,能減輕Al3+對(duì)黃瓜的毒害,有助于保持黃瓜的產(chǎn)量和品質(zhì)。關(guān)于植株耐Al3+的機(jī)制有諸多報(bào)道,周楠等[5]發(fā)現(xiàn),RBCs具有減緩Al3+毒害黃瓜植株的能力,Al3+脅迫下黃瓜RBCs的果膠甲基酯酶活性提高,使細(xì)胞壁的果膠去甲基化,增加了Al3+的結(jié)合位點(diǎn),從而避免更多的Al3+進(jìn)入細(xì)胞內(nèi),造成對(duì)植株的傷害。Wen等[14]和Hawes等[15]認(rèn)為,自從根尖分離后RBCs向外分泌一系列糖類(lèi)、小分子蛋白、過(guò)氧化物酶等化學(xué)物質(zhì),這些物質(zhì)包圍在RBCs周?chē)纬梢粚泳哂斜Wo(hù)作用的黏膠層,從而減緩有毒物質(zhì)對(duì)根尖組織的傷害。本試驗(yàn)也證實(shí)了RBCs具有緩解Al3+毒害植株根系的能力,并且隨著Al3+濃度的增加,2種瓜類(lèi)RBCs的數(shù)目和活率均降低,其中黃瓜降低幅度更明顯,可能是由于RBCs受到了Al3+的直接毒害,導(dǎo)致細(xì)胞分裂受阻和部分細(xì)胞死亡,從而減緩了Al3+對(duì)根尖的直接傷害;此外2種瓜類(lèi)RBCs的黏膠層厚度卻在Al3+毒害下均有明顯增加,其中黑籽南瓜的增加幅度更明顯,因?yàn)轲つz層是保護(hù)細(xì)胞的結(jié)構(gòu)物質(zhì),黑籽南瓜的RBCs抵御Al3+毒害的能力強(qiáng)于黃瓜,由此也進(jìn)一步解釋了Al3+對(duì)黑籽南瓜根系生長(zhǎng)的影響小于黃瓜的原因。
圖 6 Hoechest-33258染色的正常(A)和凋亡(B)的RBCs
圖 7 Al3+對(duì)黃瓜和黑籽南瓜RBCs凋亡率的影響
馮英明等[16]研究表明,Al3+毒害對(duì)豌豆RBCs有致死效應(yīng),但致死的生理機(jī)制不清楚,本試驗(yàn)中Al3+毒害引起了黃瓜和黑籽南瓜RBCs的細(xì)胞核出現(xiàn)彌散現(xiàn)象,RBCs凋亡率增加,最終引起了RBCs的死亡。由于黑籽南瓜RBCs的黏膠層較厚,抵御Al3+毒害的能力較強(qiáng),其RBCs的凋亡率低于黃瓜,RBCs的致死率自然低于黃瓜。黑籽南瓜抵御Al3+毒害的能力優(yōu)于黃瓜,為在富集Al3+的土壤中以黑籽南瓜為砧木推廣嫁接黃瓜提供了理論依據(jù)。
[參考文獻(xiàn)]
[1]Cai M Z,Zhang S N,Xing C H,et al.Developmental characteristics and aluminum resistance of root border cells in rice seedlings [J].Plant Science,2011,180:702-708.
[2]Rehmus A,Bigalke M,Valarezo C,et al.Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador:Response of nutrient status to elevated Al concentrations [J].Plant Soil,2015,388:87-97.
[3]Ruíz-Herrera L F,López-Bucio J.Aluminum induces low phosphate adaptive responses and modulates primary and lateral root growth by differentially affecting auxin signaling inArabidopsisseedlings [J].Plant Soil,2013,371:593-609.
[4]Arunakumara K K I U,Walpola B C,Yoon M H.Aluminum toxicity and tolerance mechanism in cereals and legumes:A review [J].Journal of the Korean Society for Applied Biological Chemistry,2013,56:1-9.
[5]周楠,陳文榮,劉鵬,等.黃瓜根邊緣細(xì)胞特性及其對(duì)鋁的響應(yīng) [J].園藝學(xué)報(bào),2006,33(5):1117-1120.
Zhou N,Chen W R,Liu P,et al.Biological characteristic and the response to aluminum toxicity of cucumber border cells [J].Acta Horticulturae Sinica,2006,33(5):1117-1120.(in Chinese)
[6]Cai M Z,Wang N,Xing C H,et al.Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance inGlycinemaxL. [J].Environmental Science and Pollution Research,2013,20:8924-8933.
[7]Miyasaka S C,Hawes M C.Possible role of root border cells in detection and avoidance of aluminum toxicity [J].Plant Physiology,2001,125:1978-1987.
[8]Hassan H A,Kim S J,Jung A Y,et al.Biosorptive capacity of Cd(Ⅱ) and Cu(Ⅱ) by lyophilized cells ofPseudomonasstutzeri[J].Journal of General and Applied Microbiology,2009,55:27-34.
[9]Qiao Y X,Zhang Y P,Zhang H X,et al.Developmental characteristics and cinnamic acid resistance of root border cells in cucumber and figleaf gourd seedlings [J].Journal of Intergrative Agriculture,2013,12(11):2065-2073.
[10]喬永旭.黃瓜和黑籽南瓜幼苗根系邊緣細(xì)胞對(duì)肉桂酸脅迫的應(yīng)答差異 [J].園藝學(xué)報(bào),2015,42(5):890-896.
Qiao Y X.Studies on different response of cinnamic acid to root border cells in cucumber and figleaf gourd seedlings [J].Acta Horticulturae Sinica,2015,42(5):890-896.(in Chnese)
[11]Radmer L,Tesfaye M,Somers D A,et al.Aluminum resistance mechanisms in oat (AvenasativaL.) [J].Plant Soil,2012,351:121-134.
[12]Cai M Z,Wang F M,Li R F,et al.Response and tolerance of root border cells to aluminum toxicity in soybean seedlings [J].Journal of Inorganic Biochemistry,2011,105:966-971.
[13]Yu M,Shen R F,Liu J Y,et al.The role of root border cells in aluminum resistance of pea (Pisumsativum) grown in mist culture [J].Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahru,2009,172:528-534.
[14]Wen F,VanEtten H D,Tsaprailis G,et al.Extracellular proteins in pea root tip and border cell exudates [J].Plant Physiology,2007,143:773-783.
[15]Hawes M C,Curlango-Rivera G,Xiong Z G,et al.Roles of ro-ot border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA ‘trapping’ [J].Plant Soil,2012,355:1-16.
[16]馮英明,喻敏,溫海洋,等.鋁對(duì)豌豆根邊緣細(xì)胞存活率和黏膠層厚度的影響 [J].生態(tài)環(huán)境,2005,14(5):695-699.
Feng Y M,Yu M,Wen H Y,et al.Influence of Al on cell viability and mucilage of root border cells of pea (Pisumsativum) [J].Ecology and Environment,2005,14(5):695-699.(in Chinese)
Effects of aluminum on physiological characteristics of root border cells of cucumber and figleaf gourd
QIAO Yong-xu
(DepartmentofLifeScience,TangshanNormalUniversity,Tangshan,Hebei063000,China)
Abstract:【Objective】 This study explored the different responses of root border cells (RBCs) of cucumber and figleaf gourd seedlings to aluminum toxicity.【Method】 Changes in root malformation rate,root length,root flesh quality per plant,thickness of mucilage layer of RBCs,number of RBCs,viability of RBCs and apoptosis rate of RBCs in cucumber and figleaf gourd were investigated using floating culture technique with stress of 0 (CK),50,100 and 200 μmol/L Al3+.【Result】 Malformation rate of root and apoptosis rate of RBCs in cucumber seedlings increased with Al3+concentration while that in figleaf gourd changed insignificantly.Root length,root flesh quality per plant,number of RBCs and viability of RBCs of both cucumber and figleaf gourd were inhibited by Al3+and the inhibition in cucumber was more significant.With the increase of Al3+concentration,thicker RBCs mucilage layer was observed in both species and the thickness of figleaf gourd was larger than that of cucumber.【Conclusion】 RBCs could enhance the resistance against Al3+toxicity.Figleaf gourd seedlings were better because of more number,lower apoptosis rate of RBCs and thicker mucilage layer of RBCs.
Key words:cucumber;figleaf gourd;aluminum;RBCs
DOI:網(wǎng)絡(luò)出版時(shí)間:2016-01-0810:2210.13207/j.cnki.jnwafu.2016.02.021
[收稿日期]2015-08-09
[基金項(xiàng)目]河北省自然科學(xué)基金項(xiàng)目(C2015105091);唐山師范學(xué)院科學(xué)研究基金項(xiàng)目(2013D06)
[作者簡(jiǎn)介]喬永旭(1978-),男,山西晉城人,副教授,博士,主要從事植物細(xì)胞工程和逆境生理研究。
[中圖分類(lèi)號(hào)]S642.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]1671-9387(2016)02-0151-05
E-mail:qiaoyx123@163.com