• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving chemical dynamic optimization problems with ranking-based differential evolution algorithms☆

    2016-06-07 05:44:28XuChenWenliDuFengQian
    Chinese Journal of Chemical Engineering 2016年11期
    關(guān)鍵詞:收治退行性瓣膜

    Xu Chen ,Wenli Du *,Feng Qian

    1 Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,East China University of Science and Technology,Shanghai 200237,China

    2 School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China

    1.Introduction

    Dynamic optimization problems(DOPs)are often encountered in chemical engineering,as most industrial process models are time dependent and described by differential equations.The solution of DOPs is usually very difficult because of their highly nonlinear and multidimensional nature,as well as the presence of constraints on state and control variables and implicit process discontinuities[1].Given the profound importance of DOPs in industrial and engineering practices,developing efficient methods for DOPs has attracted great interest.Dynamic optimization methods can be roughly divided into three categories:dynamic programming(DP),indirect methods,and direct methods.

    Classic DP method relies on Bellman's optimality[2].DP is a successful method for solving DOPs,except for dimension curse.To overcome this drawback,Luus[3]proposed iterative dynamic programming method by use of coarse grid points and search region reduction strategies.However,its high computational cost for systems involving a large number of differential-algebraic equations has restricted its application to problems on a smaller scale[4].

    With indirect methods,DOPs are solved by using Pontryagin's maximum principle[5].It converts the original problem into a two-point boundary value problem,which rarely has an analytical solution and requires numerical alternative such as shooting method[6].The two point boundary value problem is always extremely difficult to solve,especially in the presence of pointor path constraints on state variables.Therefore,indirect methods are extremely complicated to apply in practice.

    Direct methods transform the original dynamic problem(which is in finite dimensional)into a finite dimensional non-linear programming(NLP)problem,either using complete parameterization(CP)[7]or control vector parameterization(CVP)[8,9].CP method,also named simultaneous strategy,discretizes both state and control variables.This full discretization results in a large-scale NLP and specialized NLP solvers have to be used to solve the NLP efficiently.The CP method has been recently reviewed by Kameswaran and Biegler[7].CVP method only discretizes control variables and transforms original DOP into an NLP where the system dynamics(differential equations)must be solved for each evaluation of the performance index.The dimension of the NLP problems in CVP is much smaller than that in CP.Therefore,CVP is relatively easier to implement,and a large number of optimization algorithms,including deterministic gradient-based algorithms[8]and stochastic optimization algorithms[10],have been combined with CVP to deal with DOPs.

    The NLPs from the application of direct approaches(such as CVP)are frequently multimodal.Deterministic gradient-based algorithms may converge to local optima,especially if they are started far away from the global solution[9].In addition,explicit mathematical descriptions of industrial model sometimes do not exist,and methods based on gradient information may become incapable.To surmount these difficulties,stochastic optimization algorithms based on evolutionary computing can be used as robust alternatives.The use of evolutionary methods to optimize DOPs,including genetic algorithm[10–12],simulated annealing[13,14],particle swarm optimization[15–17],and scatter search[18],has received increasing interest.

    Differential evolution(DE)is a population based stochastic optimization technique,invented by Storn and Price[19].Since its inception in 1995,it has emerged as a very competitive form of evolutionary computing.The use of DE algorithms to solve DOPs also has drawn the attention of many researchers[20].Chiou and Wang[20]developed a hybrid DE algorithm by embedding an acceleration phase and a migration phase into the original DE algorithm to solve DOPs in fed-batch fermentation process.Kapadi and Gudi[21]employed standard DE(SDE)to solve optimal control and parameter selection problems of fed-batch fermentation involving general constraints on state variables.To speed up DE and solve DOPs,Babu and Angira[22]introduced modified DE(MDE)that utilizes only one set of population compared with the two sets in the original DE at any given time point in a generation.Angira and Santosh[1]suggested the use of trigonometric DE(TDE)to solve DOPs encountered in chemical engineering.Fan et al.[23]proposed a hybrid DE algorithm called Alopex-DE by integrating Alopex to solve DOPs of chemical processes.

    Das and Suganthan[24]pointed out that DE's weak selective pressure(due to unbiased selection of parents or target vectors)may result in inefficient exploitation.To overcome this weakness,Gong and Cai[25]presented a ranking-based mutation operator(RMO)for DE algorithms,in which better individuals have larger possibilities to be selected in mutation operator.This study deals with the utilization of RMO to enhance the performance of CVP-based DE algorithms for DOPs.The DOPs are first converted into NLP problems by CVP approach;then the RMO is incorporated into three DE algorithms,SDE[21],MDE[22],and TDE[1],to obtain three ranking-based differential evolution(DE-RMO)algorithms,i.e.,SDE-RMO,MDE-RMO,and TDE-RMO,to solve DOPs.Three DERMO algorithms and their non-ranking DE algorithms are applied to solve four constrained DOPs from previous studies.The simulation results indicate that the DE-RMO algorithms can provide better findings in terms of solution accuracy and convergence speed compared with previous non-ranking DE algorithms.

    2.Formulation of Dynamic Optimization Problems

    Dynamic optimization allows the computation of optimal operating policies to minimize(or maximize)a predefined performance index[18].The objective function is formulated as

    where J is the objective function,is a Mayer item,andis a Lagrangian term.

    The dynamic model of a chemical process is often described by differential equations as follows:

    where x(t)∈Rndenotes the vector of state variables,u(t)∈Rmdenotes the vector of control variables(or operational variables),and x(t0)=x0is the initial conditions.

    Four kinds of constraints may exist in the DOPs.They are path inequality constraints,path equality constraints,terminal inequality constraints,and terminal equality constraints.Path constraints should be satisfied in the entire time interval[t0,tf],i.e.,

    3.Differential Evolution Algorithms

    DE is a population-based stochastic optimizer in the continuous search domain,proposed by Storn and Price[19].It is capable of handling non-differentiable,non-linear and multi-modal optimization problems.DE initializes a population of NP individuals and employs mutation,crossover,and selection operators at each generation to evolve its population toward the optimal direction.DE population initializes NP individuals(each individualis called a targetvector)from the search space

    where g denotes the generation counter and D defines the number of variables.

    After initialization,the mutation operator is applied to generate mutant vectorfor each target vectorMany mutation strategies are described in previous studies.A classical strategy is“DE/rand/1”:

    where F is a scale factor,r1,r2,and r3are three mutually different integers randomly generated from[1,NP]and different from the target vector index i.

    After mutation,DE employs a crossover operator to produce the trial vectorbetween.The crossover operator performed on each component is

    where CR is the crossover rate and jrandis a randomly generated integer in{1,D}.

    A selection operator then adopts a one-to-one competition between

    DE repeats these three operators until a termination criterion is satisfied.Due to its simple structure,ease of use and good performance,several DE algorithms have been proposed to deal with DOPs,such as SDE[21],MDE[22],and TDE[1].

    MDE is proposed to reduce the computational time of original DE and optimize DOPs[22].It utilizes only one set of population compared with the two sets in the original DE.If a generated trial vectoris better than its corresponding target vectorthe former is immediately copied into the current population and participates in the mutation.Such an improvement enhances the convergence speed,with less function evaluations as compared to DE.The detailed implementation of MDE can be found in[22].

    TDE was proposed by Fan and Lampinen[26],in which a new local search operation,i.e.,trigonometric mutation operation(TMO),is embedded into the original DE.Angira and Santosh[1]dealt with the application and evaluation of TDE to solve DOPs.In TDE,the TMOis performed according to the following equation

    TDE performs the TMO with a probability Mt and performs the“DE/rand/1”using Eq.(10),with a probability 1-Mt.The detailed procedure of TDE can be found in literature[1].

    4.Ranking-based Differential Evolution Algorithms for DOPs

    In this section,we present the ranking-based DE algorithms for constrained DOPs.First,we state the CVP approach.Next,the RMO technology is described.Finally,we integrate RMO into previous DE algorithms to form three ranking-based differential evolution(DE-RMO)algorithms for constrained DOPs.

    4.1.CVP approach

    The original DOP is an in finite-dimensional optimization problem,as the control vector u(t)to be optimized is a continuous function of time t.Therefore,CVP[8]is required to transform original problem into a finite-dimensional NLP problem.In the present work,time interval[t0,tf]is divided into N stages and the ith time stage is[ti?1,ti](i=1,2,...,N).Control variables are approximated by constant functions in the ith stage[ti?1,ti].Hence,the coding of optimization variables are expressed as

    where uji(j=1,2,...,m;i=1,2,...,N)is the approximation of the j th control variable ujin the i th time stage.After discretization,an optimization algorithm can be applied to select the optimal values of X.During optimization,the differential equations[i.e.,Eqs.(2)and(3)]must be solved using a differential equations solver for each evaluation of the objective function value(OFV).

    There are four kinds of constraints in the DOPs:path inequality constraints,path equality constraints,terminal inequality constraints,and terminal equality constraints.To deal with the path inequality constraints(i.e.Eq.(4))and path equality constraints(i.e.Eq.(5)),p additional variablescalled state constraint variables[27],are introduced using the following relationship

    The final value xn+i(tf)gives the total violation of ith path constraint integrated over the entire time interval.

    For terminal inequality constraints(i.e.Eq.(6))and terminal equality constraints(i.e.Eq.(7)),the constraint violations can be calculated as

    After obtaining the objective values and overall constraint violations of all individuals in the DE algorithms,Deb's feasibility-based rule[28]is used to compare two solutions.

    Given two individuals X1and X2,their corresponding objective function values and overall constraint violations are(OFV1,OCV1)and(OFV2,OCV2).X1is said to be better than X2,if any of the following three conditions is met:

    (1)both X1and X2are infeasible,and OCV1<OCV2;

    (2)X1is feasible,but X2is infeasible;

    (3)both X1and X2are feasible,and OFV1<OFV2.

    Compared with the penalty function constraint-handling method,Deb's feasibility-based rule does not introduce any sensitive parameter.Interested readers can read the survey paper of constraint-handling methods by Mezura-Montes and Coello[29].

    4.2.Ranking-based mutation operator

    Previous studies indicate that the DE algorithms may suffer from low convergence speed,because of the unbiased selection of parents in mutation operators[24].Recently,Gong and Cai[25]introduced the ranking-based mutation operator into DE.In the RMO,better individuals have more chance to be utilized to produce offspring,which is helpful for the performance enhancement of DE algorithms.

    This paper uses RMO to enhance the performance of DE to solve constrained DOPs.Therefore,the RMO technology is integrated into CVP-based DE algorithms.A feasibility-based ranking technique is used to sort the DE population from best to worst.The feasibility based ranking technique is based on Deb's feasibility-based rule[28]described in subsection 4.1.It is described as follows:

    (1)feasible individuals are sorted before infeasible individuals;

    (2)feasible individuals are sorted on the basis of their OFVs;

    (3)infeasible individuals are sorted on the basis of their OCVs.

    Gong et al.[30,31]have proposed some adaptive ranking mutation technique for constrained DE,but our feasibility-based ranking technique is much simpler compared with the adaptive ranking mutation technique,which may be more suitable for chemical DOPs.

    Subsequently,the ranking Riof i th vector is assigned as

    where NP is the population size.According to Eq.(21),the best vector in the current population will give the highest ranking.

    The selection probability of i th individual is calculated as

    The individuals in the RMO are finally selected according to the selection probabilities.The ranking-based individual selection in RMO is illustrated in Fig.1.The individuals with higher rankings(or selection probabilities)are more likely to be chosen in the mutation operator.This is beneficial for the performance enhancement of DE algorithms.

    Fig.1.Ranking-based individual selection in RMO.

    4.3.Implementations of DE-RMO algorithms

    In this work,the RMO is incorporated into SDE[21],MDE[22],and TDE[1]to form three DE-RMO algorithms,namely SDE-RMO,MDE-RMO,and TDE-RMO,to solve constrained DOPs.We choose these three DE algorithms because all of them can be realized easily,which is beneficial for chemical DOPs.Here we only describe TDERMO in detail.The main procedure is given as follows.

    Step 1:Initial a population with NP individuals.Set scale factor F,crossover rate CR,and trigonometric mutation probability Mt.

    Step 2:Calculate the OFV and OCV for each individual using the CVP approach.The explicit Runge–Kutta method is used to solve the differential equations.

    近年來,我國老齡化趨勢逐漸加重,老年人群由于各項生理機能逐漸衰退,機體抵抗力和免疫力逐漸下降,大大增加了其患病幾率。老年退行性心臟瓣膜病變?nèi)菀滓l(fā)心力衰竭、心律不齊等不良反應(yīng),病情嚴重患者還會出現(xiàn)猝死現(xiàn)象,因此,提高診斷準確率對于抑制患者病情發(fā)展具有重要意義[1]。此次研究專就2016年8月—2017年7月我院收治的老年退行性心臟瓣膜病變患者應(yīng)用彩色多普勒超聲心動圖診斷的應(yīng)用價值進行探究,現(xiàn)做如下報告。

    Step 3.Sortthe population according to the feasibility-based ranking technique.

    Step 4:For each individual,do Steps 5–8.

    Step 5:If rand<Mt,perform the TMO according to Eq.(13);else,perform the RMO according to Fig.1 and Eq.(10).

    Step 6:Perform the crossover operator according to Eq.(15).

    Step 7:Calculate the OFV and OCV for each individual using the CVP approach.

    Step 8:Perform the selection operator Eq.(11)based on Deb's feasibility-based rule.

    Step 9:Return to Step 3 until the termination condition is met.

    Step 10:Output the best solutions.

    Fig.2.illustrates the flowchart of TDE and TDE–RMO for DOPs.From Fig.2,we can see that the differences between TDE and TDE–RMO are:(1)TDE–RMO needs to sort the DE population before the mutation operators;(2)TDE–RMO employs RMO,while TDE employs the classic"DE/rand/1".However,both modifications can be easily realized.Therefore,TDE-RMO does not significantly increase the complexity of TDE algorithm.

    5.Case Studies

    In this section,the DE-RMO algorithms are applied to four constrained DOPs by CVP.First,we state the simulation setup for this study.Subsequently,simulations are conducted to compare the DE-RMO algorithms with their non-ranking DE algorithms.Finally,TDE-RMO is compared with some other stochastic optimization algorithms.

    5.1.Simulation setup

    Four constrained DOPs from the literature are used to evaluate the performance of the DE-RMO algorithms.The parameter settings of these DE algorithms are in Table 1.

    Three evaluation criteria are adopted to measure the performance of the algorithms.

    BOFV(best objective function value):it records the best objective function values when the maximal number of function evaluation maxNFES is reached.The best,mean,and worst BOFV,as well as the standard deviations(std),are presented.BOFV measures the solution accuracy of an algorithm.

    SR(success rate):It is equal to the number of successful runs over total runs.A success run means that within maxNFES,the algorithm finds a solution with satisfactory precision Js.

    ANFES:It is used to record the average number of function evaluations for an algorithm to find a solution with satisfactory precision Js.ANFES measures the convergence speed of an algorithm.

    5.2.Simulation results

    The DE-RMO algorithms and their non-ranking DE algorithms are used to solve four constrained DOPs.All algorithms are coded in matlab.The built-in routine “ode45”is chosen as differential equation solver.

    5.2.1.Problem 1—constrained van der Pol oscillator

    This problem is extracted from a previous study[32]and described as follows.

    For problem 1,the time interval is divided into N=20 stages in CVP approach.BOFV is recorded when maxNFES reaches 30000,and the satisfactory solution precision is setas Js=2.97500.The values of maxNFES and Jsare set based on the numeric experiments,because we cannot know the best objective function values in advance for a real-world DOP.

    Fig.2.Flowcharts(a)TDE for DOPs(b)TDE-RMO for DOPs.

    Table 2 shows the results of these DE algorithms.The boldface means that DE-RMO algorithms are better than their corresponding non-ranking DE algorithms.Thus our proposed DE-RMO algorithms provide consistently more accurate solutions than their corresponding non-ranking DE algorithms with respect to BOFV.Considering the std.of BOFV,we find that all of the DE-RMO algorithms give smaller std.values than their corresponding non-ranking DE algorithms.Thus the RMO is able to enhance the robustness of the previous DE algorithms.All three DE-RMO algorithms succeed in finding satisfactory solutions for each of 20 runs.In terms of ANFES,DE-RMO algorithms get less ANFES compared with their corresponding non-ranking DE algorithms,so that DE-RMO algorithms converge faster.Considering the overall performance,TDE-RMO ranks the first,followed by MDE-RMO,TDE,SDERMO,MDE,and SDE.

    The reported best result 2.95436 is obtained by Vassiliadis et al.[32],with a gradient-based algorithm.Ourbestresult2.97228 is within 0.61%of the reported best value.Fig.3 illustrates the optimal control profile and the path constraint trajectory obtained by the TDE-RMO.The optimal control pro file is in agreement with that in[32].The path constraint x1(t)≥?0.4 is satisfied,and it is active in the interval[0.494,1.650].

    Table 1 Parameter settings for the DE algorithms

    Table 2 Numerical results for problem 1

    5.2.2.Problem 2—mathematical system with nonlinear inequality constraint

    The mathematical model of this problem is presented as[27]

    For problem 2,the time interval is divided into N=20 stages,and other parameters are:D=20,maxNFES=60000,and Js=0.17500.Table 3 shows the results of these DE algorithms.The DERMO algorithms consistently give better results than their corresponding non-ranking DE algorithms in terms of BOFV,SR and ANFES.Hence,the RMO is able to enhance the solution accuracy,success rate,and convergence speed of DE algorithms.TDE-RMO gives the best performance in this problem,followed by MDE-RMO,TDE,SDE-RMO,MDE,and SDE.Mekarapiruk and Luus[27]divided the interval into N=20 stages and achieved a value of0.17266 with the iterative dynamic programming algorithm.Ourbestresult0.17272 is very close to theirresult.The optimal control pro file and the path constraint trajectory obtained by the TDERMO are plotted in Fig.4.The optimal control pro file is in agreement with that in[27],and the path constraint h(x,t)≤0 is active in the interval[0.290,0.706].

    Fig.3.The optimal control pro file and the path constraint trajectory for problem 1.

    Table 3 Numerical results for problem 2

    5.2.3.Problem 3—optimal operation for a batch reactor with a cooling jacket

    This problem formulates a first-order consecutive exothermic reaction,A→P→S,occurring in a batch reactor with a cooling jacket[33].The objective is to determine the optimal coolant flow rate u so that product P is maximized.The problem is described as

    where x1,x2,and x3denote the concentrations of A,P and S,respectively;x4,x5,and x6are the temperatures(in Kelvin)of contents,C,and jacket,respectively;u is the coolant flow rate(m3·h?1);k1and k2are the reaction rate constants.The first three differential equations describe the material balances,and other three differential equations describe the energy balances.

    Two constraints are path and terminal constraints.

    For problem 3,the time inter val is divided into N=20 stages,and the other parameters are:D=20,maxNFES=60000,and Js=0.64500.The results of these DE algorithms are presented in Table 4.This problem is more difficult than problems 1 and 2,as DE and MDE cannot find satisfactory solutions within max NFES.By contrast,all three DE-RMO algorithms give SR of 20/20.Therefore,DE-RMO algorithms are more reliable than their non-ranking DE algorithms.Overall,the results indicate that our DE-RMO algorithms perform better than their corresponding nonranking DE algorithms in terms of BOFV,SR and ANFES.For this problem,TDE-RMO still ranks the first,followed by MDE-RMO,SDE-RMO,TDE,MDE,and SDE.

    Table 4 Numerical results for problem 3

    Fig.4.The optimal control pro file and the path constraint trajectory for problem 2.

    Sun et al.[33]acquired a value of 0.6446,with the line-up competition algorithm.Our best result is 0.64586,better than that in[33].The optimal control pro file and the constraint trajectory obtained by the TDE-RMO are plotted in Fig.5.The path constraint x4(t)≤370K is active in the interval[1.151,2.848],and terminal constraint x4(tf)≤320K is active at the final time.

    5.2.4.Problem 4—optimal monoclonal antibody production

    This problem considers the optimal monoclonal antibody production in a hybridoma fed-batch reactor[34].The problem is described as

    where Xv,Glc,Gln,Lac,Amm,and MAb are the concentrations in viable cells,glucose,glutamine,lactate,ammonia,and monoclonal antibodies,respectively;V is the fermenter volume;Glcmand Glnmare the concentrations of glucose and glutamine in the feed stream,respectively;the control variables F1and F2are the volumetric feed rate of glucose and glutamine,respectively.The mathematical expressions of the specificratesμ,kd,qGln,qGlc,qLac,qAmm,qMAb,and the system parameters are provided in[34].

    In this problem,the value of V(t)is constrained by

    For this problem,the time interval is divided into N=20 stages,and the other parameters are:D=20,maxNFES=150000,and Js=333.50000.Table 5 presents the results of the six DE algorithms.Our DE-RMO algorithms perform better than their non-ranking DE algorithms.The optimal control pro file and the constraint trajectory are plotted in Fig.6.The path constraint is active at the final time.

    According to the simulation results,it can be concluded that:

    ?DE-RMO algorithms perform better than the non-ranking DE algorithms in terms of solution accuracy,success rate,and convergence speed for DOPs.The better per for mance of DE-RMO algorithms should be attributed to the introduction of RMO.

    ?The path constraints and terminal constraints are active at the optimal solutions in the four DOPs.

    ?TDE-RMO provides the best performance among all the used DE algorithms.It is suggested to be used as an efficient optimizer to solve DOPs in the future.

    5.3.Further comparison with other evolutionary algorithms

    In the previous subsection,the performance of DE-RMO algorithms verified by solving four DOPs.TDE-RMO provides the best results among three DE-RMO algorithms.To provide additional comparison for reference,TDE-RMO is compared with four other evolutionary algorithms,adaptive particle swarm optimization(APSO)[35],real-code genetic algorithm(RCGA)[36],artificial bee colony(ABC)[37],and teaching–learning-based optimization(TLBO)[38].The parameters of these four algorithms are set as recommended in their original literature.All the algorithms use the same constraint-handling method as that in TDE-RMO.Table 6 shows TDE-RMO is better than these four algorithms on all problems.BOFV of TDE-RMO are more accurate and better than those of other algorithms.TDE-RMO also provides the smallest std.of BOFV over 20 run.Considering the SR,TDE-RMO is the most reliable.In terms of ANFES,TDE-RMO gets less ANFES compared with their corresponding non-ranking DE algorithms,which means that DE-RMO algorithms converge faster.The ranks of five algorithms for the four DOPs are TDE-RMO,TLBO,APSO,RCGA,and ABC.

    Fig.5.The optimal coolant flow rate and the constraint trajectory for problem 3.

    Table 5 Numerical results for problem 4

    Table 6 Comparison between TDE-RMO and other evolutionary algorithms

    6.Conclusions

    In this study,the RMO technology has been proposed to enhance the DE algorithms to solve DOPs.Three DE-RMO algorithms have been designed by incorporating the RMO.The DE-RMO algorithms and their non-ranking DE algorithms are evaluated by solving four constrained DOPs from the literature.The simulation results demonstrate that the DE-RMO algorithms perform better than previous non-ranking DE algorithms in terms of solution accuracy,success rate and convergence speed.Hence,the DE-RMO algorithms can be used as promising alternatives to solve DOPs in the future.

    [1]R.Angira,A.Santosh,Optimization of dynamic systems:A trigonometric differential evolution approach,Comput.Chem.Eng.31(9)(2007)1055–1063.

    [2]R.Bellman,R.E.Kalaba,Dynamic Programming and Modern Control Theory,Academic Press,New York,1965.

    [3]R.Luus,Optimal control by dynamic programming using systematic reduction in grid size,Int.J.Control.51(5)(1990)995–1013.

    [4]J.E.Jiménez-Hornero,I.M.Santos-Due?as,I.García-García,Optimization of biotechnological processes.The acetic acid fermentation.Part III:Dynamic optimization,Biochem.Eng.J.45(1)(2009)22–29.

    [5]L.S.Pontryagin,V.G.Boltyanskii,R.V.Gamkrelidze,E.Mishchenko,The Mathematical Theory of Optimal Processes,Interscience,New York,1962.

    [6]J.Lee,W.F.Ramirez,Optimal fed-batch control of induced foreign protein production by recombinant bacteria,AICHE J.40(5)(1994)899–907.

    [7]S.Kameswaran,L.T.Biegler,Simultaneous dynamic optimization strategies:Recent advances and challenges,Comput.Chem.Eng.30(10)(2006)1560–1575.

    [8]E.Balsa Canto,J.R.Banga,A.A.Alonso,V.S.Vassiliadis,Restricted second order information for the solution of optimal control problems using control vector parameterization,J.Process Control 12(2)(2002)243–255.

    [9]J.R.Banga,E.Balsa-Canto,C.G.Moles,A.A.Alonso,Dynamic optimization of bioprocesses:Efficient and robust numerical strategies,J.Biotechnol.117(4)(2005)407–419.

    [10]D.Sarkar,M.J.Modak,Optimisation of fed-batch bioreactors using genetic algorithms,Chem.Eng.Sci.58(11)(2003)2283–2296.

    [11]A.R.Mandli,J.M.Modak,Evolutionary algorithm for the determination of optimal mode of bioreactor operation,Ind.Eng.Chem.Res.51(4)(2011)1796–1808.

    [12]Q.T.Pham,Using fuzzy logic to tune an evolutionary algorithm for dynamic optimization of chemical processes,Comput.Chem.Eng.37(2012)136–142.

    [13]R.Faber,T.Jockenh?vel,G.Tsatsaronis,Dynamic optimization with simulated annealing,Comput.Chem.Eng.29(2)(2005)273–290.

    [14]P.S.Shelokar,V.K.Jayaraman,B.D.Kulkarni,Multicanonical jump walk annealing assisted by tabu for dynamic optimization of chemical engineering processes,Eur.J.Oper.Res.185(3)(2008)1213–1229.

    [15]X.Chen,W.Du,R.Qi,F.Qian,H.Tian field,Hybrid gradient particle swarm optimization for dynamic optimization problems of chemical processes,Asia Pac.J.Chem.Eng.8(5)(2013)708–720.

    [16]X.Chen,W.Du,H.Tian field,R.Qi,W.He,F.Qian,Dynamic optimization of industrial processes with nonuniform discretization-based control vector parameterization,IEEE Trans.Autom.Sci.Eng.11(4)(2014)1289–1299.

    [17]Y.Zhou,X.Liu,Control parameterization-based adaptive particle swarm approach for solving chemical dynamic optimization problems[J],Chem.Eng.Technol.37(4)(2014)692–702.

    [18]J.A.Egea,E.Balsa-Canto,M.S.G.Garcia,J.R.Banga,Dynamic optimization of nonlinear processes with an enhanced scatter search method,Ind.Eng.Chem.Res.48(9)(2009)4388–4401.

    [19]R.Storn,K.Price,Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces,A Technical Report TR-95-012,International Computer Science Institute,Berkeley,CA,March 1995.

    [20]J.P.Chiou,F.S.Wang,Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process,Comput.Chem.Eng.23(9)(1999)1277–1291.

    [21]M.D.Kapadi,R.D.Gudi,Optimal control of fed-batch fermentation involving multiple feeds using differential evolution,Process Biochem.39(11)(2004)1709–1721.

    [22]B.V.Babu,R.Angira,Modified differential evolution(MDE)for optimization of nonlinear chemical processes,Comput.Chem.Eng.30(6)(2006)989–1002.

    [23]Q.Q.Fan,Z.M.Lv,X.F.Yan,M.J.Guo,Chemical process dynamic optimization based on hybrid differential evolution algorithm integrated with Alopex,J.Cent.South Univ.20(2013)950–959.

    [24]S.Das,P.N.Suganthan,Differential evolution:A survey of the state-of-the-art,IEEE Trans.Evol.Comput.15(1)(2011)4–31.

    [25]W.Gong,Z.Cai,Differential evolution with ranking-based mutation operators,IEEE Trans.Cybern.43(6)(2013)2066–2081.

    [26]H.Y.Fan,J.Lampinen,A trigonometric mutation operation to differential evolution,J.Glob.Optim.27(1)(2003)105–129.

    [27]W.Mekarapiruk,R.Luus,Optimal control of inequality state constrained systems,Ind.Eng.Chem.Res.36(5)(1997)1686–1694.

    [28]K.Deb,An efficient constraint handling method for genetic algorithms,Comput.Methods Appl.Mech.Eng.186(2)(2000)311–338.

    [29]E.Mezura-Montes,C.A.C.Coello,Constraint-handling in nature-inspired numerical optimization:past,present and future,Swarm Evol.Comput.1(4)(2011)173–194.

    [30]W.Gong,Z.Cai,D.Liang,Engineering optimization by means of an improved constrained differential evolution,Comput.Methods Appl.Mech.Eng.268(2014)884–904.

    [31]W.Gong,Z.Cai,D.Liang,Adaptive ranking mutation operator based differential evolution for constrained optimization,IEEE Trans.Cybern.45(4)(2015)716–727.

    [32]V.S.Vassiliadis,R.W.H.Sargent,C.C.Pantelides,Solution of a class of multistage dynamic optimization problems.2.Problems with path constraints,Ind.Eng.Chem.Res.33(9)(1994)2123–2133.

    [33]D.Y.Sun,P.M.Lin,S.P.Lin,Integrating controlled random search into the line-up competition algorithm to solve unsteady operation problems,Ind.Eng.Chem.Res.47(22)(2008)8869–8887.

    [34]J.A.Roubos,G.Van Straten,A.J.B.Van Boxtel,An evolutionary strategy for fed-batch bioreactor optimization;concepts and performance,J.Biotechnol.67(2)(1999)173–187.

    [35]Z.H.Zhan,J.Zhang,Y.Li,H.H.Chung,Adaptive particle swarm optimization,IEEE Trans.Syst.Man Cybern.Part B Cybern.39(6)(2009)1362–1381.

    [36]K.Deb,R.B.Agrawal,Simulated binary crossover for continuous search space,Complex Syst.9(3)(1994)1–15.

    [37]D.Karaboga,B.Basturk,A powerful and efficient algorithm for numerical function optimization:artificial bee colony(ABC)algorithm,J.Glob.Optim.39(3)(2007)459–471.

    [38]R.V.Rao,V.J.Savsani,D.P.Vakharia,Teaching–learning-based optimization:An optimization method for continuous non-linear large scale problems,Inf.Sci.183(1)(2012)1–15.

    猜你喜歡
    收治退行性瓣膜
    新型冠狀病毒肺炎定點收治醫(yī)院應(yīng)急病房籌建策略
    新型冠狀病毒肺炎流行期間急腹癥患者收治與防控體會
    寧夏定點醫(yī)院收治68例確診新型冠狀病毒感染肺炎患者臨床癥狀分析
    全院病床統(tǒng)籌收治模式下的績效核算方法初探
    心瓣瓣膜區(qū)流場中湍流剪切應(yīng)力對瓣膜損害的研究進展
    “爛”在心里
    大學生(2017年10期)2017-10-23 18:35:06
    衰老與神經(jīng)退行性疾病
    退行性肩袖撕裂修補特點
    關(guān)節(jié)置換治療老年膝關(guān)節(jié)退行性骨關(guān)節(jié)炎30例臨床報道
    非瓣膜性心房顫動患者尿酸與CHADS2CHA2DS2-VASc評分的關(guān)系
    免费观看精品视频网站| 午夜精品久久久久久毛片777| 色av中文字幕| 欧美精品啪啪一区二区三区| 国产不卡一卡二| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| av在线老鸭窝| 日本黄大片高清| 久久久久久久久大av| 最近中文字幕高清免费大全6 | 日日夜夜操网爽| 九九在线视频观看精品| 深夜精品福利| 毛片女人毛片| av黄色大香蕉| 在线天堂最新版资源| 精品国产三级普通话版| 亚洲精华国产精华精| 久久99热6这里只有精品| 日韩大尺度精品在线看网址| 亚洲成人免费电影在线观看| 国产精品人妻久久久影院| videossex国产| 欧美高清性xxxxhd video| 成人高潮视频无遮挡免费网站| 久久人人精品亚洲av| 欧美一区二区国产精品久久精品| 很黄的视频免费| 国产激情偷乱视频一区二区| 欧美又色又爽又黄视频| 我要搜黄色片| 亚洲久久久久久中文字幕| 天天一区二区日本电影三级| 日本 av在线| 岛国在线免费视频观看| 久久精品国产鲁丝片午夜精品 | 成年人黄色毛片网站| 日韩欧美国产在线观看| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| 人妻少妇偷人精品九色| 国产亚洲精品综合一区在线观看| 深夜a级毛片| 亚洲av一区综合| 99热这里只有是精品在线观看| 日韩在线高清观看一区二区三区 | 午夜福利视频1000在线观看| 国内精品久久久久久久电影| 久久精品国产亚洲av天美| 午夜福利成人在线免费观看| 免费看美女性在线毛片视频| 人人妻,人人澡人人爽秒播| 亚洲精品日韩av片在线观看| 午夜福利欧美成人| 精品乱码久久久久久99久播| 久久人人爽人人爽人人片va| 一级毛片久久久久久久久女| 男女视频在线观看网站免费| 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月| 欧美zozozo另类| 能在线免费观看的黄片| 久久人妻av系列| 可以在线观看毛片的网站| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕一区二区三区有码在线看| 午夜a级毛片| 色播亚洲综合网| 啦啦啦啦在线视频资源| 国产探花极品一区二区| www日本黄色视频网| 国产伦人伦偷精品视频| 成熟少妇高潮喷水视频| h日本视频在线播放| 搡老岳熟女国产| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 亚州av有码| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 亚洲人成伊人成综合网2020| 黄色一级大片看看| 精品乱码久久久久久99久播| 热99re8久久精品国产| 人人妻人人看人人澡| 久久久午夜欧美精品| av在线天堂中文字幕| 久久精品国产99精品国产亚洲性色| 日韩国内少妇激情av| 美女免费视频网站| 久久久久九九精品影院| 亚洲人成网站高清观看| 国产男靠女视频免费网站| 亚洲无线在线观看| 极品教师在线视频| 全区人妻精品视频| 久久精品综合一区二区三区| 成年免费大片在线观看| 色综合色国产| 国产精品,欧美在线| 久久久色成人| 国产成人一区二区在线| 一进一出好大好爽视频| 熟女人妻精品中文字幕| 国产精品乱码一区二三区的特点| 国内揄拍国产精品人妻在线| 在现免费观看毛片| 伦精品一区二区三区| 搡老岳熟女国产| 毛片一级片免费看久久久久 | 午夜福利18| av视频在线观看入口| 别揉我奶头 嗯啊视频| 九九在线视频观看精品| 亚洲精品国产成人久久av| 啦啦啦啦在线视频资源| 在线a可以看的网站| 99热网站在线观看| 在现免费观看毛片| 中文资源天堂在线| 亚洲综合色惰| 热99re8久久精品国产| 伦精品一区二区三区| 一区福利在线观看| 国产精品久久视频播放| 色综合婷婷激情| 国产精品无大码| 日韩av在线大香蕉| 国产在线精品亚洲第一网站| 男人舔奶头视频| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 在线观看av片永久免费下载| 69av精品久久久久久| 国内久久婷婷六月综合欲色啪| 日本成人三级电影网站| 最近视频中文字幕2019在线8| 人妻久久中文字幕网| 国语自产精品视频在线第100页| 亚洲一级一片aⅴ在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲中文日韩欧美视频| 久久国产乱子免费精品| 国产亚洲av嫩草精品影院| 赤兔流量卡办理| 亚洲乱码一区二区免费版| 中亚洲国语对白在线视频| 亚洲人成网站高清观看| av在线观看视频网站免费| 女人十人毛片免费观看3o分钟| av黄色大香蕉| 欧美日本亚洲视频在线播放| 一本久久中文字幕| 亚洲,欧美,日韩| 热99在线观看视频| 男女之事视频高清在线观看| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 婷婷亚洲欧美| 国产三级中文精品| 日韩精品有码人妻一区| 床上黄色一级片| 精品久久久久久久末码| 免费看av在线观看网站| 中文字幕av在线有码专区| 永久网站在线| 日本 av在线| 最近中文字幕高清免费大全6 | 国产 一区 欧美 日韩| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av中文av极速乱 | 精品久久久久久成人av| 国产免费男女视频| 色哟哟哟哟哟哟| 黄色丝袜av网址大全| 韩国av一区二区三区四区| 国产午夜福利久久久久久| av中文乱码字幕在线| 十八禁网站免费在线| 精品久久久久久久末码| 亚洲av不卡在线观看| 91在线观看av| 亚洲 国产 在线| 国产黄a三级三级三级人| 国内精品宾馆在线| 九九爱精品视频在线观看| 国产免费男女视频| 日日啪夜夜撸| 九色成人免费人妻av| 久久午夜亚洲精品久久| 看十八女毛片水多多多| 99九九线精品视频在线观看视频| 欧美国产日韩亚洲一区| 2021天堂中文幕一二区在线观| 亚洲精品影视一区二区三区av| av专区在线播放| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 国内精品一区二区在线观看| 九九热线精品视视频播放| 免费黄网站久久成人精品| 91久久精品电影网| 欧美zozozo另类| 美女被艹到高潮喷水动态| 婷婷色综合大香蕉| 欧美色欧美亚洲另类二区| 波野结衣二区三区在线| 九九热线精品视视频播放| 国内久久婷婷六月综合欲色啪| 神马国产精品三级电影在线观看| 给我免费播放毛片高清在线观看| 日韩,欧美,国产一区二区三区 | 美女大奶头视频| 男人和女人高潮做爰伦理| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| av黄色大香蕉| 最新中文字幕久久久久| 麻豆av噜噜一区二区三区| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av| 亚洲精华国产精华液的使用体验 | 欧美日韩精品成人综合77777| 国产亚洲精品久久久com| 亚洲性久久影院| 亚洲自偷自拍三级| 精品人妻一区二区三区麻豆 | 18禁黄网站禁片免费观看直播| 午夜精品在线福利| .国产精品久久| a级毛片a级免费在线| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观| 久久九九热精品免费| 久久精品国产亚洲av涩爱 | 国产精品免费一区二区三区在线| 色av中文字幕| 亚洲自拍偷在线| 亚洲av免费高清在线观看| 搞女人的毛片| 亚洲最大成人av| 国产高清三级在线| 久久99热这里只有精品18| 一级黄片播放器| 国产极品精品免费视频能看的| 国产黄色小视频在线观看| 免费观看精品视频网站| 久久精品国产清高在天天线| 精品久久久久久成人av| 一级a爱片免费观看的视频| 国产真实乱freesex| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 韩国av一区二区三区四区| 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 精品人妻视频免费看| 男插女下体视频免费在线播放| 人妻制服诱惑在线中文字幕| 一级毛片久久久久久久久女| 美女被艹到高潮喷水动态| 久久久久久伊人网av| 国产亚洲欧美98| 1000部很黄的大片| 最后的刺客免费高清国语| 两性午夜刺激爽爽歪歪视频在线观看| 狂野欧美激情性xxxx在线观看| 乱码一卡2卡4卡精品| 搡老岳熟女国产| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 日本一二三区视频观看| 久久香蕉精品热| av视频在线观看入口| 国产精品人妻久久久久久| 国产精品国产三级国产av玫瑰| 精品日产1卡2卡| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久com| h日本视频在线播放| 亚洲av一区综合| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 免费人成在线观看视频色| 亚洲综合色惰| 又爽又黄a免费视频| eeuss影院久久| x7x7x7水蜜桃| 亚洲 国产 在线| 一本一本综合久久| 欧美日韩综合久久久久久 | 窝窝影院91人妻| 国产精品,欧美在线| 精品99又大又爽又粗少妇毛片 | 日韩欧美在线二视频| 国产午夜精品久久久久久一区二区三区 | av天堂在线播放| 久久久国产成人免费| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 国产精品爽爽va在线观看网站| 免费观看精品视频网站| 天堂√8在线中文| 午夜久久久久精精品| 久久精品国产自在天天线| 欧美3d第一页| 亚洲精品亚洲一区二区| 亚洲国产色片| 91久久精品电影网| 久99久视频精品免费| 亚洲电影在线观看av| 中国美女看黄片| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| av在线亚洲专区| 久久久久久久午夜电影| 免费一级毛片在线播放高清视频| 少妇的逼好多水| 日本一本二区三区精品| 丰满的人妻完整版| 99热这里只有精品一区| 男女做爰动态图高潮gif福利片| 国产单亲对白刺激| 精华霜和精华液先用哪个| 色视频www国产| 亚洲av中文av极速乱 | 色噜噜av男人的天堂激情| 色视频www国产| 精品人妻1区二区| bbb黄色大片| 国产精品综合久久久久久久免费| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 午夜老司机福利剧场| 国产白丝娇喘喷水9色精品| 久久6这里有精品| 欧美人与善性xxx| 国产一区二区三区在线臀色熟女| 中文资源天堂在线| 国产伦人伦偷精品视频| 看免费成人av毛片| 69av精品久久久久久| 免费看光身美女| 男女之事视频高清在线观看| 国产精品国产高清国产av| 91久久精品国产一区二区三区| 直男gayav资源| 欧美日韩瑟瑟在线播放| 真人做人爱边吃奶动态| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 男人狂女人下面高潮的视频| 搞女人的毛片| 久久中文看片网| 久99久视频精品免费| 亚洲av五月六月丁香网| 亚洲精品影视一区二区三区av| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 中亚洲国语对白在线视频| 黄色日韩在线| 春色校园在线视频观看| 国产极品精品免费视频能看的| 给我免费播放毛片高清在线观看| 成年女人看的毛片在线观看| 亚洲最大成人手机在线| 成人毛片a级毛片在线播放| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 成年人黄色毛片网站| 色哟哟哟哟哟哟| 亚洲国产色片| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区| 最好的美女福利视频网| 欧美成人免费av一区二区三区| 一a级毛片在线观看| 人妻久久中文字幕网| 午夜a级毛片| 国产精品永久免费网站| 国产成人影院久久av| 熟女电影av网| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 99在线视频只有这里精品首页| 国产精品综合久久久久久久免费| 亚洲人成伊人成综合网2020| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 国产高清激情床上av| 久久久久久久久久久丰满 | 嫁个100分男人电影在线观看| 中文亚洲av片在线观看爽| 桃红色精品国产亚洲av| av在线蜜桃| 国产成人aa在线观看| 久久欧美精品欧美久久欧美| 美女高潮的动态| 18禁黄网站禁片免费观看直播| 校园春色视频在线观看| 美女黄网站色视频| 看片在线看免费视频| 成人特级av手机在线观看| 午夜日韩欧美国产| 岛国在线免费视频观看| 九九在线视频观看精品| 国产人妻一区二区三区在| 国产高清视频在线播放一区| 一级黄片播放器| 精品久久久久久,| 久久草成人影院| 国产高清视频在线播放一区| 桃色一区二区三区在线观看| 久久精品国产自在天天线| 亚洲第一电影网av| 精品午夜福利在线看| 成人一区二区视频在线观看| 久久久久久大精品| 免费看光身美女| 最近最新免费中文字幕在线| 动漫黄色视频在线观看| 成人性生交大片免费视频hd| av在线观看视频网站免费| 亚洲欧美精品综合久久99| 国产不卡一卡二| 午夜久久久久精精品| 亚洲自偷自拍三级| netflix在线观看网站| 99九九线精品视频在线观看视频| 久久精品国产亚洲av涩爱 | 久久久久久国产a免费观看| 亚洲成av人片在线播放无| 国内毛片毛片毛片毛片毛片| 白带黄色成豆腐渣| 国产精华一区二区三区| 两个人的视频大全免费| 美女高潮的动态| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看 | 午夜福利视频1000在线观看| 嫩草影视91久久| 色视频www国产| 婷婷色综合大香蕉| 日本一本二区三区精品| 噜噜噜噜噜久久久久久91| 亚洲国产精品合色在线| 久久国内精品自在自线图片| 亚洲 国产 在线| 成年女人毛片免费观看观看9| 黄色女人牲交| 国产精品野战在线观看| 国产高清有码在线观看视频| 亚洲中文字幕日韩| bbb黄色大片| 赤兔流量卡办理| 成年女人永久免费观看视频| 少妇熟女aⅴ在线视频| 99riav亚洲国产免费| 老熟妇仑乱视频hdxx| 97超级碰碰碰精品色视频在线观看| 欧美bdsm另类| 亚洲人成网站高清观看| 听说在线观看完整版免费高清| 亚洲欧美日韩东京热| 在线观看午夜福利视频| 国产三级中文精品| 欧美另类亚洲清纯唯美| 久久人人爽人人爽人人片va| 国产免费男女视频| 亚洲欧美清纯卡通| av中文乱码字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 伦精品一区二区三区| 中国美女看黄片| 日本免费一区二区三区高清不卡| 99久国产av精品| 精品乱码久久久久久99久播| 欧美日本视频| 成人无遮挡网站| 91午夜精品亚洲一区二区三区 | 国产精品一及| 亚洲午夜理论影院| 中亚洲国语对白在线视频| 91久久精品电影网| 精品日产1卡2卡| 国产精品一区二区三区四区久久| 亚洲,欧美,日韩| 国产成人影院久久av| 日韩精品青青久久久久久| 欧美另类亚洲清纯唯美| 亚洲熟妇熟女久久| 国内精品一区二区在线观看| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 又爽又黄a免费视频| a级毛片免费高清观看在线播放| 日韩精品中文字幕看吧| 国产淫片久久久久久久久| 日韩欧美精品v在线| 尤物成人国产欧美一区二区三区| 色综合站精品国产| 老熟妇乱子伦视频在线观看| 精品一区二区三区视频在线| 搡老岳熟女国产| 亚洲在线观看片| a级毛片a级免费在线| 国产亚洲精品av在线| 久久久久久大精品| 久久人人爽人人爽人人片va| 欧美高清性xxxxhd video| 亚洲乱码一区二区免费版| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 久久久色成人| ponron亚洲| 一进一出抽搐动态| 国产三级在线视频| av在线老鸭窝| 一个人免费在线观看电影| 日本-黄色视频高清免费观看| 久久久久性生活片| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添av毛片 | 特级一级黄色大片| 亚洲av免费高清在线观看| 亚洲国产精品sss在线观看| 国产在线精品亚洲第一网站| 校园人妻丝袜中文字幕| 国内精品美女久久久久久| 中出人妻视频一区二区| 波多野结衣高清作品| 国产免费男女视频| 国产欧美日韩一区二区精品| 美女免费视频网站| 可以在线观看毛片的网站| 一个人观看的视频www高清免费观看| 国产爱豆传媒在线观看| 亚洲人成网站在线播| 国产精品日韩av在线免费观看| 少妇高潮的动态图| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播放欧美日韩| 国产亚洲欧美98| 亚洲精品色激情综合| 国产探花极品一区二区| 99精品久久久久人妻精品| 久久精品国产自在天天线| 看片在线看免费视频| 久久午夜福利片| 日日啪夜夜撸| 男女那种视频在线观看| 亚洲七黄色美女视频| ponron亚洲| 欧美国产日韩亚洲一区| av在线天堂中文字幕| 999久久久精品免费观看国产| 久久精品国产99精品国产亚洲性色| 免费高清视频大片| 国产乱人伦免费视频| 免费在线观看成人毛片| 精品乱码久久久久久99久播| 不卡视频在线观看欧美| 亚洲国产色片| 国产免费av片在线观看野外av| 在线观看舔阴道视频| 亚洲四区av| 久久精品久久久久久噜噜老黄 | 嫩草影院入口| 日日啪夜夜撸| 亚洲在线自拍视频| 69av精品久久久久久| 国产三级中文精品| 九色国产91popny在线| 日日干狠狠操夜夜爽| 日日啪夜夜撸| 亚洲在线自拍视频| 少妇猛男粗大的猛烈进出视频 | 亚洲 国产 在线| 乱码一卡2卡4卡精品| 精品免费久久久久久久清纯| 国产一区二区三区视频了| 国产精品久久久久久久久免| 亚洲内射少妇av| 一级黄色大片毛片| 男人狂女人下面高潮的视频| 色哟哟·www| 精品不卡国产一区二区三区| 免费看日本二区| 成年女人永久免费观看视频| 国产亚洲精品久久久久久毛片| 中出人妻视频一区二区| 亚洲av日韩精品久久久久久密| 夜夜看夜夜爽夜夜摸| 成人亚洲精品av一区二区| a级毛片免费高清观看在线播放| 夜夜看夜夜爽夜夜摸| 一卡2卡三卡四卡精品乱码亚洲| 露出奶头的视频| 欧美日韩黄片免| 亚洲男人的天堂狠狠| 国产成人福利小说| 99视频精品全部免费 在线| 国产v大片淫在线免费观看| 久久久久久大精品| 国产一区二区三区视频了| 直男gayav资源| 69人妻影院| av天堂在线播放|