• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Droplets diameter distribution using maximum entropy formulation combined with a new energy-based sub-model

    2016-06-07 05:44:34SeyedMostafaHosseinalipourHadisehKarimaeiEhsanMovahednejad
    Chinese Journal of Chemical Engineering 2016年11期

    Seyed Mostafa Hosseinalipour ,Hadiseh Karimaei,*,Ehsan Movahednejad

    1 Energy and Environmental Lab,Dpt.Mech.Eng.,Iran University of Science and Technology,16846-13114,Narmak,Tehran,Iran

    2 University of California,Berkeley,USA

    1.Introduction

    The droplet size distribution in sprays is one of the vital parameters required for fundamental analysis of practical sprays.Detailed information about the droplet size distribution is consequently important for the design,performance and optimization of spray systems[1].Information of droplets size distribution in immediate downstream the breakup is necessary as the boundary condition for computational fluid dynamics(CFD)and two-phase spray computations[2].The classic models to predict Sauter Mean Diameter(SMD)were emanated principally from the experimental information.In this method,a distribution curve is fitted on different experimental data resulted from different operational conditions of an injector.This procedure is the basic foundation of available probability distribution functions such as Rosin–Rambler,Nukiyama–Tanasawa,Log–Kernel etc.[2,3].Several studies were carried out to obtain a more general droplet distribution based on statistical approaches.Since 1985,the maximum entropy principle(MEP)has been applied in atomization and spray fields in order to estimate droplet size and velocity distributions and gained a lot of success.This approach can estimate the most probable droplet size and velocity distributions under a set of constraints.Sellens and Brzustowski[4]and Li and Tankin[5]were pioneers of applying the MEP approach for modeling of spray and atomization.In this approach besides the conservation of mass,momentum and energy,maximum entropy principle must be satisfied by the droplet size distribution function.The most probable size distribution could be determined from the conservation equations if the system entropy is maximized.Liand Tankin[5]utilized a single constraint of energy but Sellens et al.[6]used separate constraints for the liquid–gas surface energy and kinetic energy of the system.After solving the equation system by the Newton–Raphs on method,Sellens et al.found that the probability size and velocity distribution functions(PDF)are in a way that the probability of droplets with a zero diameter does not tend to zero.Li and Tankin[7]used from the volumetric distribution function instead of the diametrical distribution function and therefore used droplets volume instead of droplets size in the equations.The results were in close agreement with the experimental data.However,the method of Li and Tankin[7]for very small droplets predicted zero frequency.Dumouchel[8]published a review paper about droplet size distributions of sprays using the maximum entropy method in which he investigated different types of ME models with emphasizing on similarities and differences of them and discussed about the expectations that can be accessed by these models.The maximum entropy formulation needs a mean diameter as an input that was earlier provided from the experimental measurements.In the present paper,it is attempted to provide the input of the ME model by a theoretical model rather than experimental measurement.

    In the past,there have been many attempts to predict the mean droplets diameter.Concerning the calculation methods for mean droplets diameter,empirical correlations have been proposed for different types of nozzles[8,9].As an engineering tool to calculate the mean droplets diameter,convenient models which do not require the experimental parameters and much time to compute are preferred.In the present paper,a simple estimation method,which is entitled the energy-based model,is proposed based on the energy conservation law for the liquid sheet atomization to predict the mean droplets diameter.This method is based on the deterministic aspects of liquid atomization process using the energy approach.The other advantage of this method is that it does not need any experimental data or coefficient.

    In this study,the maximum entropy formulation(MEF)combined with the energy-based method(EBM)was used for simulation of droplets formation.The two models have been connected together using the mean droplets diameter.An industrial swirl injector(Miser)with hollow cone spray characterized by previous researches[10,11]is investigated as a case study for the present model.The new results show a close agreement with the available experimental data[12].The major objective of this paper is investigation of the ability of maximum entropy formulation combined with the energy-based model to predict the mean droplets diameter of a spray.

    2.The Maximum Entropy Formulation

    Droplets formation is a random process;therefore,it can be modeled using a statistical method in which PDFs are utilized for droplet size and velocity distributions[12–14].Governing equations are written for a control volume which extends from the injector exit plane towards the zone of primary droplets formation at starting point of the breakup process.The control volume is illustrated in Fig.1.The control volume length is identical to the breakup length obtained from experimental data.The conservation equations of liquid mass,momentum,and energy must be satisfied through the atomization process.Concerning the entropy maximization,the conservation equations can be represented based on probability density function pijwhich is the probability of being present a droplet with volume Viand velocity uj,where i and j are related to i th and j th intervals of volume and velocity of droplets.Therefore,the conservation equations can be written as follows[13–16]:

    where,˙n is the droplet production rate and also˙mo,˙JO,and˙EOare respectively the mass flow rate,momentum and energy that enter to the control volume from the injector outlet.Sm,Smuand Seare the source terms of mass,momentum and energy equations,respectively.

    Since the sum of probabilities has to be equal to one,the following equation has to be considered besides the above equations.

    There is an unlimited number of probability distribution functions(pij)which satisfy Eqs.(1)–(3),but the most probable and proper distribution is the one that can maximize Shannon entropy[17]:

    where K is the Boltzmann's constant.If volume and velocity of droplets are transformed to diameter and velocity,then the formalism can be rewritten according to the probability of being present the droplets whose diameters are betweenand whose velocities are betweenand[7].Eqs.(1)–(3)can be written in a nondimensional and integral form as Eq.(7)[3].The Lagrangian multipliers method is used for maximizing of Shannon entropy(Eq.(5)).By using the method of Lagrange multipliers,a probability distribution,that should maximize the Shannon entropy,can be obtained.Therefore,probability function will be as follows:

    The non-dimensional form of probability function is represented in Eq.(8).The set of λiis a set of Lagrangian multipliers which must be computed.Consequently,to obtain the Lagrange coefficients(λi)in the probability function(f),it is essential to solve the following normalized set of equations[18].

    Fig.1.Control volume which extends from the injector exit plane towards the zone of primary droplets formation.

    In the present study,the mass source term is set to zero implying that the evaporation during the atomization is disregarded.It should be noted that,any energy conversion inside the control volume is not regarded as a source term.In the control volume,there is a momentum exchange between the gas and liquid flow because of drag force acting on liquid bulk.It should be considered as a momentum source term.There is a source term of energy in the ME formulation for the purpose of including turbulence effect in estimation of the dropletsize distribution that can be estimated and considered in the model.The MEF needs a mean droplets diameter as an input provided in the next section.The Newton–Raphson method is used to solve equation set(7)and the probability function is determined by Eq.(8).The range of variation for both the nondimensional diameter and velocity were considered from 0 to 3.

    3.The Energy-Based Model

    In the following,the energy conservation law for the atomization process is implemented with considering some assumptions.Then,a calculation method to predict the mean droplets diameter is proposed.According to Fig.1,a control volume extends from the injector outlet towards the primary breakup region.This control volume covers the distance between the nozzle outlet and breakup region.Eq.(10)presents the energy conservation law for the mentioned control volume.It is assumed that there are no energy input,work output and energy source.Therefore the fluid and gas energies including the total enthalpy,kinetic and potential energy,and also the liquid surface free energy are considered in the control volume.

    The pressure inside the liquid at both the input and output of control volume is equal to the sum of ambient gas pressure and Laplace pressure as Eq.(11)shows.

    By substituting Eq.(11)into Eq.(10)and considering some further assumptions,Eq.(12)can be derived.In this equation,the potential energy is neglected.The change in the internal energy is adequately lower than the change in the kinetic energy,therefore,it is neglected,and also there is no change in the output gas energy rather than the input gas.

    Eq.(12)shows that an increase in the Laplace pressure and surface free energy is equivalent to a decrease in the kinetic energy.It means that the energy is converted to the Laplace pressure and surface free energy through the atomization.Eqs.(13)and(14)represent the relations between the mass flow rate and flux of surface area of liquid for spherical droplets and liquid sheet,respectively.It is assumed that the liquid sheet enters into the control volume and the spherical droplets exit from that.

    Based on the equation derived from the energy conservation law,the mean droplets diameter(d)can be estimated.Eq.(15)is obtained by substituting Eqs.(13)and(14)into Eq.(12)and manipulating that as follows:

    To obtain an appropriate formula,one parameter is defined as atomization efficiency(η).The atomization efficiency shows the ratio of the decrease in the kinetic energy to the in flow energy.Eq.(16)represents the atomization efficiency.

    By employing Eq.(16)and the Weber number into Eq.(15),the following formula is derived to obtain the mean droplets diameter of spray as follows.

    The formulation proposed has the ability to calculate the mean droplets diameter with using no experimental parameter or coefficient.As can be seen the mean droplets diameter is proportional to the reverse of Weber number and atomization efficiency.

    4.Results and Discussions

    Fig.2.Mean droplets diameter versus atomization efficiency drawn based on Eq.(17).

    Mean droplets diameter versus atomization efficiency in terms of the mean liquid velocity is drawn as Fig.2 based on Eq.(16).Based on the amount of atomization efficiency,the mean droplets diameter can be estimated.With considering Eq.(16),the maximum atomization efficiency(ηmax)is obtained when the decrease in the kinetic energy becomes the maximum value,however,with assuming that there are no other energy losses.As a case study an industrial swirl injector with the geometrical and performance characteristics presented in Table 1 is investigated.The Weber and Reynolds numbers of the liquid sheet,drag force on the liquid sheet and atomization efficiency are calculated and presented in Table 2.Regarding Fig.2,the mean droplets size is estimated equal to 73 μm for this case study.The mean droplets diameter estimated using the energy-based model furthermore the available experimental data[12]are represented in Table 3.As can be seen,this model as a simple,time-saving and reliable enough model can provide a very good estimation of the mean droplets size at the primary breakup stage rather than using complicated methods like the linear instability theory to use as an input in the MEF.

    Table 1 Geometrical characteristics of the injector[9,10]

    Table 2 The Weber and Reynolds numbers of the liquid sheet and the drag force on the liquid sheet

    Table 3 the mean droplets diameter estimated from the combined model(MEF/EBM)and experiment

    The source terms of the MEF including the energy and momentum are respectively as follows:

    Cfis the drag coefficient of the air passing over a liquid flat plate with contact area A.It was suggested and used in some previous studies[10,12–14].All energy exchanges which happen inside the control volume are ignored.Just the energy which comes in or out of the control volume is considered as a source term.It should be noted that the heat transfer during the process is ignored.The source terms are calculated and presented in Table 4.

    Table 4 The calculated source terms

    Fig.3 presents the probability of size distribution calculated from the ME model and obtained from the experimental measurement for the under-studied injector.In this figure,the size distributions resulting from the ME model using the energy-based sub-model,ME model using the mean droplets diameter experimentally measured and the distribution experimentally measured are illustrated.As can be observed,the theoretical result of the ME model using the new sub model is in good agreement with the experimental data reported in reference[12].As can be seen,the new sub-model provides the reliable prediction close to the experimental data.Therefore,this model can be a good substitute for the experimental measurements or use of complicated methods such as the linear instability theory[20].

    Fig.3.Comparison of the droplets size distributions obtained from the ME modelusing the energy-based sub-model and experimental data[12].

    For the droplets diameter smaller than 100 μm,the theoretical model overestimates the frequency of them a little bit,but totally the prediction of theoretical model matches well with the experimental data in the entire range of droplets size.Therefore it can be concluded that the combined model(MEF/EBM)presented in the paper can well estimate the initial droplet size distribution.Also the result shows that the existence of the small droplets(smaller than 75 μm)is more probable than the larger ones.The existence probability of the droplets greater than 180 μm is obtained equal to zero from the MEF but the experimental data shows that the droplets with sizes up to 200 μm have the existence probability.A bit difference between the experimental data and theoretical study can be because of the probable errors in the experimental measurement and assumptions considered in the theoretical model.Dumouchel[8]believes that due to the interaction between the surface tension and aerodynamic forces,very small or very large droplets cannot form;therefore,the droplets smaller than 15 μm have not been observed among the experimental data.

    Fig.4 presents the probability of size distribution calculated from the ME model as per the different mean droplet diameters in the range of 50–100 μm.Using Fig.4 it is possible to compare the predicted droplet diameters distribution in terms of atomization efficiency.This figure shows the importance of obtaining a good estimation of mean droplet size and its effect on the results of ME model.Therefore obtaining a mean droplets size close to the experimental data can lead to predict the droplet size distribution close to the experimental data.The objective is investigation of the effect of mean droplet diameter of a spray on the prediction of maximum entropy formulation and here,the other parameters of MEF are not considered.

    Fig.4.Comparison of the droplets size distributions obtained from the MEF as per the different mean droplets diameters(50–100 μm).

    5.Conclusions

    In this paper,the stochastic process of the atomization was modeled using the maximum entropy principle(MEP)in order to estimate the distribution of the droplet size in the primary breakup zone.Moreover,one predictive modelas a simple and time-saving modelto estimate the mean droplets size of sprays based on the deterministic aspects of a liquid atomization process has been discussed.This model was proposed as a theoretical model based on the energy conservation law to calculate the droplets diameter produced by the liquid sheet atomization.This model shows that an increase in the Laplace pressure and surface free energy is equal to a decrease in the kinetic energy and therefore the kinetic energy loss causes the atomization process and droplets production.Therefore the droplets diameter can be estimated based on the kinetic energy loss evaluation.The mean droplet diameter estimated using the energy-based model is in good agreement with the available experimental data.

    The MEmodeland energy-based sub-model were combined together by the mean droplets diameter of spray.The droplets diameter distribution estimated using the combined model(MEF/EBM)has been compared with the available experimental data.Although some assumptions were considered to simplify and solve the governing equations,but the results showed a very good agreement with the experimental data in terms of both the quantity and trend.The parametric study showed that the droplet size distribution predicted by the ME model is significantly sensitive to the mean droplets diameter.Since the experimental measurement of a spray is a hard and expensive job to do,therefore,replacing it with an analytical model to well predict the mean droplets diameter and a numerical model to well predict the droplets diameter distribution can be very noticeable.Consequently,it can be concluded that the energy-based model can provide a good prediction of the mean droplets size to use subsequently in the modeling of droplets size distribution using the MEF independent of the experimental data.

    [1]U.Fritsching,Spray simulation,second ed.Cambridge University Press,London,UK,2004 128–130.

    [2]A.H.Lefebvre,Atomization and sprays,fourth ed.Hemisphere Publishing,Washington,US,1989 210–310.

    [3]E.Babinsky,P.E.Sojka,Modeling droplet size distributions,Prog.Energy Combust.Sci.28(2002)303–329.

    [4]R.W.Sellens,T.A.Brzustowski,A prediction of drop-size distribution in a spray from if rst principles,Atomization Spray Technol.1(1985)89–102.

    [5]X.Li,R.S.Tankin,Droplet size distribution:A deviation of a Nukiyama–Tanasawa type distribution function,Combust.Sci.Technol.56(1987)65–76.

    [6]R.W.Sellens,Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism,Part.Part.Syst.Charact.6(1989)17–27.

    [7]X.Li,R.S.Tankin,Derivation of droplet size distribution in sprays by using information theory,Combust.Sci.Technol.60(1987)345–357.

    [8]C.Dumouchel,The maximum entropy formalism and the prediction of liquid spray drop-size distribution,Entropy 11(2009)713–747.

    [9]N.Ashgriz,Handbook of atomization and sprays,Theory and applications,3th ed.Springer,New York,US 2011,pp.720–900.

    [10]H.Liu,Science and engineering of droplets:Fundamentals and applications,materials science and process technology,second ed.William Andrew,Utah,US,1999 250–270.

    [11]C.Eberhart,D.Lineberry,M.Moser,Experimental cold flow characterization of a swirl coaxial injector element,45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,Denver,Colorado 2009,p.5140.

    [12]E.Movahednejad,Prediction of size and velocity distribution of droplets in spray by maximum entropy principle and using wave instability,University of Tarbiat Modares,2010(Doctoral dissertation).

    [13]K.Y.Huh,E.Lee,J.Y.Koo,Diesel spray atomization model considering nozzle exit turbulence conditions,Atomization Sprays 8(1998)453–469.

    [14]E.Movahednejad,F.Ommi,Development of maximum entropy method for prediction of droplet size distribution in primary breakup region of spray,World Acad.Sci.Eng.Technol.59(2011)1844–1850.

    [15]E.Movahednejad,F.Ommi,S.M.Hosseinalipour,et al.,Application of maximum entropy method for droplet size distribution prediction using instability analysis of liquid sheet,Heat Mass Transf.47(2011)1591–1600.

    [16]E.Movahednejad,F.Ommi,S.M.Hosseinalipour,Prediction of droplet size and velocity distribution in droplet formation region of liquid spray,Entropy 12(2010)1484–1498.

    [17]C.E.Shannon,W.Weaver,The mathematical theory of communication, first ed.University of Illinois Press,Urbana,US,1949 190–250.

    [18]X.Li,L.P.Chin,R.S.Tankin,et al.,Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer,Combust.Flame 86(1991)73–89.

    [19]F.M.White,Viscous fluid flow,second ed.McGrow-Hill,New York,US,1991 381–390.

    [20]S.M.Hosseinalipour,R.Ghorbani,H.Karimaei,Effect of liquid sheet and gas streams characteristics on the instability of a hollow cone spray using an improved linear instability analysis,Asia Pac.J.Chem.Eng.11(2016)24–33.

    午夜两性在线视频| 日本91视频免费播放| 我要看黄色一级片免费的| av在线播放精品| 国产视频首页在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲国产一区二区在线观看 | 国产老妇伦熟女老妇高清| 国产在视频线精品| 女性被躁到高潮视频| 国产精品一二三区在线看| 一个人免费看片子| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 一区二区三区乱码不卡18| 久久久久久久大尺度免费视频| a级片在线免费高清观看视频| 亚洲av电影在线进入| 欧美人与性动交α欧美精品济南到| 国产人伦9x9x在线观看| 欧美日韩黄片免| 亚洲成人国产一区在线观看 | 国产无遮挡羞羞视频在线观看| 人妻 亚洲 视频| 亚洲欧美一区二区三区黑人| 777米奇影视久久| 91九色精品人成在线观看| 国产一级毛片在线| 成人免费观看视频高清| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 在线亚洲精品国产二区图片欧美| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 黄色片一级片一级黄色片| 久久精品亚洲av国产电影网| 国产精品偷伦视频观看了| 18禁黄网站禁片午夜丰满| av又黄又爽大尺度在线免费看| 欧美日韩亚洲综合一区二区三区_| 国产男女超爽视频在线观看| 永久免费av网站大全| 日韩大码丰满熟妇| 久久久久久亚洲精品国产蜜桃av| 男女高潮啪啪啪动态图| 国产亚洲午夜精品一区二区久久| 2018国产大陆天天弄谢| 视频区图区小说| 中文字幕人妻熟女乱码| 国产极品粉嫩免费观看在线| 成人黄色视频免费在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 别揉我奶头~嗯~啊~动态视频 | 又大又爽又粗| 国产精品一国产av| 日韩制服骚丝袜av| 精品国产一区二区久久| 少妇人妻久久综合中文| 国产精品人妻久久久影院| 欧美+亚洲+日韩+国产| 校园人妻丝袜中文字幕| 久久亚洲精品不卡| 老汉色∧v一级毛片| 亚洲 国产 在线| 男女无遮挡免费网站观看| www.999成人在线观看| 亚洲一码二码三码区别大吗| 别揉我奶头~嗯~啊~动态视频 | 国产精品 欧美亚洲| 亚洲国产欧美网| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线| 涩涩av久久男人的天堂| 亚洲人成网站在线观看播放| 亚洲精品久久成人aⅴ小说| 国产亚洲av片在线观看秒播厂| 精品一品国产午夜福利视频| 精品国产一区二区三区四区第35| 巨乳人妻的诱惑在线观看| 少妇被粗大的猛进出69影院| 日本黄色日本黄色录像| 欧美日韩亚洲综合一区二区三区_| 午夜福利免费观看在线| 午夜福利在线免费观看网站| 国产精品 国内视频| 久久性视频一级片| 亚洲av男天堂| 在线精品无人区一区二区三| 大陆偷拍与自拍| 久久免费观看电影| 麻豆国产av国片精品| av一本久久久久| 亚洲国产欧美网| 欧美日韩av久久| 成人国产一区最新在线观看 | 久久精品国产综合久久久| 97在线人人人人妻| 久久精品成人免费网站| 青青草视频在线视频观看| 国产一级毛片在线| 人人妻人人澡人人爽人人夜夜| 国产97色在线日韩免费| 亚洲国产精品成人久久小说| 国产成人一区二区在线| 精品熟女少妇八av免费久了| 午夜91福利影院| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 国产日韩一区二区三区精品不卡| 日韩制服丝袜自拍偷拍| 久久中文字幕一级| 成人影院久久| 欧美日韩黄片免| 视频区欧美日本亚洲| av片东京热男人的天堂| 九色亚洲精品在线播放| 宅男免费午夜| 国产一区二区三区av在线| 国产av国产精品国产| 亚洲av成人不卡在线观看播放网 | 精品久久蜜臀av无| 亚洲三区欧美一区| 看十八女毛片水多多多| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 看免费成人av毛片| 亚洲av男天堂| 国产精品一二三区在线看| 岛国毛片在线播放| 亚洲综合色网址| 麻豆乱淫一区二区| 久久中文字幕一级| 久久综合国产亚洲精品| 一个人免费看片子| 一级,二级,三级黄色视频| 9色porny在线观看| 国产深夜福利视频在线观看| 久久久亚洲精品成人影院| 9色porny在线观看| 日本欧美视频一区| 成人黄色视频免费在线看| 国产免费一区二区三区四区乱码| 欧美变态另类bdsm刘玥| 国产麻豆69| av不卡在线播放| 日韩精品免费视频一区二区三区| 国产精品一国产av| 亚洲国产精品成人久久小说| 国产精品.久久久| 一本—道久久a久久精品蜜桃钙片| 精品国产国语对白av| 精品一区二区三区av网在线观看 | 久久免费观看电影| 日本午夜av视频| 亚洲精品国产一区二区精华液| 精品一区二区三区av网在线观看 | 你懂的网址亚洲精品在线观看| 午夜av观看不卡| 高清av免费在线| 亚洲av片天天在线观看| 热re99久久精品国产66热6| 亚洲第一av免费看| 人人妻人人澡人人爽人人夜夜| 麻豆av在线久日| 中文字幕最新亚洲高清| 一级黄片播放器| 人妻 亚洲 视频| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 91精品三级在线观看| 亚洲av男天堂| 午夜两性在线视频| 国产免费福利视频在线观看| 高清不卡的av网站| 久久久精品免费免费高清| 超色免费av| 亚洲欧美一区二区三区久久| 青春草视频在线免费观看| 1024香蕉在线观看| 欧美另类一区| av在线播放精品| 精品一区二区三区av网在线观看 | 蜜桃在线观看..| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 亚洲情色 制服丝袜| 高清欧美精品videossex| 亚洲专区中文字幕在线| a级片在线免费高清观看视频| 国产免费福利视频在线观看| 国产成人91sexporn| 真人做人爱边吃奶动态| 亚洲精品国产区一区二| 欧美激情 高清一区二区三区| 嫁个100分男人电影在线观看 | 欧美精品人与动牲交sv欧美| 在线观看免费高清a一片| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 欧美人与性动交α欧美软件| 国产欧美日韩精品亚洲av| 一本—道久久a久久精品蜜桃钙片| 亚洲熟女毛片儿| 国产成人精品在线电影| √禁漫天堂资源中文www| 欧美成人精品欧美一级黄| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 精品亚洲成国产av| 国产熟女午夜一区二区三区| 精品少妇一区二区三区视频日本电影| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 久久天堂一区二区三区四区| 大片电影免费在线观看免费| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| 欧美97在线视频| 欧美人与性动交α欧美精品济南到| 国产老妇伦熟女老妇高清| 啦啦啦 在线观看视频| 亚洲综合色网址| 纯流量卡能插随身wifi吗| 国产福利在线免费观看视频| 亚洲国产欧美网| 亚洲精品一二三| 十分钟在线观看高清视频www| 久久精品久久久久久久性| 久久中文字幕一级| 中文字幕高清在线视频| 国产xxxxx性猛交| 一级片免费观看大全| 欧美在线一区亚洲| 久久久久久久大尺度免费视频| 国产精品久久久av美女十八| 满18在线观看网站| 欧美另类一区| 午夜两性在线视频| 国产欧美日韩精品亚洲av| 国产麻豆69| 五月天丁香电影| 国产91精品成人一区二区三区 | 国产野战对白在线观看| 永久免费av网站大全| 男女高潮啪啪啪动态图| 性色av一级| 亚洲久久久国产精品| 亚洲欧洲国产日韩| 欧美乱码精品一区二区三区| 精品国产一区二区三区四区第35| 日韩大码丰满熟妇| 啦啦啦中文免费视频观看日本| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看完整版高清| 欧美日韩亚洲综合一区二区三区_| 麻豆av在线久日| 亚洲av成人精品一二三区| 一边亲一边摸免费视频| 精品少妇久久久久久888优播| 一区二区三区乱码不卡18| 欧美成人午夜精品| 尾随美女入室| 男女边摸边吃奶| 在线av久久热| 精品少妇内射三级| 亚洲精品国产av蜜桃| videosex国产| 99热网站在线观看| 99九九在线精品视频| tube8黄色片| 国产男女超爽视频在线观看| 免费不卡黄色视频| 99国产精品99久久久久| 狠狠精品人妻久久久久久综合| 国产三级黄色录像| 精品久久久久久电影网| 丝袜美足系列| 免费黄频网站在线观看国产| 黑丝袜美女国产一区| 精品久久久久久电影网| 我要看黄色一级片免费的| 精品一品国产午夜福利视频| 欧美日韩成人在线一区二区| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站 | 中文乱码字字幕精品一区二区三区| 手机成人av网站| 亚洲国产毛片av蜜桃av| 肉色欧美久久久久久久蜜桃| 午夜久久久在线观看| 下体分泌物呈黄色| 亚洲成人国产一区在线观看 | 欧美精品亚洲一区二区| 蜜桃在线观看..| 精品国产乱码久久久久久小说| av国产久精品久网站免费入址| 欧美av亚洲av综合av国产av| 国产免费现黄频在线看| 深夜精品福利| 国产精品一国产av| 亚洲成人手机| 精品一品国产午夜福利视频| 国产一区二区三区av在线| 久久久久久久久免费视频了| 韩国精品一区二区三区| 国产精品久久久久久人妻精品电影 | 2021少妇久久久久久久久久久| 极品少妇高潮喷水抽搐| 麻豆av在线久日| 亚洲中文日韩欧美视频| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 亚洲欧美一区二区三区久久| 久久人人97超碰香蕉20202| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 精品第一国产精品| 国产1区2区3区精品| 丝瓜视频免费看黄片| 大型av网站在线播放| 青青草视频在线视频观看| tube8黄色片| 1024视频免费在线观看| netflix在线观看网站| 国产午夜精品一二区理论片| 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区 | 99九九在线精品视频| 国产日韩欧美在线精品| 嫁个100分男人电影在线观看 | 国产熟女欧美一区二区| 校园人妻丝袜中文字幕| 午夜影院在线不卡| 只有这里有精品99| 热99国产精品久久久久久7| 国产91精品成人一区二区三区 | 七月丁香在线播放| 成在线人永久免费视频| 又大又黄又爽视频免费| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三 | 国产麻豆69| 国产日韩一区二区三区精品不卡| 一级黄色大片毛片| 在线天堂中文资源库| 在线av久久热| 下体分泌物呈黄色| 国产在线视频一区二区| 少妇的丰满在线观看| 一级黄片播放器| 久久鲁丝午夜福利片| 亚洲免费av在线视频| 国产老妇伦熟女老妇高清| 欧美黑人欧美精品刺激| 国产成人av教育| 国产精品一区二区精品视频观看| 久久鲁丝午夜福利片| 可以免费在线观看a视频的电影网站| 国产亚洲一区二区精品| 丝袜美腿诱惑在线| 国产人伦9x9x在线观看| 男女午夜视频在线观看| 最新的欧美精品一区二区| 天天躁日日躁夜夜躁夜夜| 蜜桃在线观看..| 国产高清videossex| 另类亚洲欧美激情| 两个人看的免费小视频| 捣出白浆h1v1| 免费一级毛片在线播放高清视频 | 国产91精品成人一区二区三区 | 亚洲国产中文字幕在线视频| 国产精品国产av在线观看| 男女高潮啪啪啪动态图| 人人妻人人爽人人添夜夜欢视频| 日日夜夜操网爽| 美女高潮到喷水免费观看| 少妇猛男粗大的猛烈进出视频| 欧美激情极品国产一区二区三区| 国产免费一区二区三区四区乱码| 免费女性裸体啪啪无遮挡网站| 婷婷色综合www| 亚洲欧美精品自产自拍| 亚洲午夜精品一区,二区,三区| av网站免费在线观看视频| 一二三四在线观看免费中文在| 电影成人av| 亚洲精品成人av观看孕妇| 亚洲av国产av综合av卡| 啦啦啦啦在线视频资源| 99香蕉大伊视频| 成年av动漫网址| 日韩制服骚丝袜av| 国产又爽黄色视频| 99久久综合免费| www.999成人在线观看| 中国国产av一级| kizo精华| 午夜久久久在线观看| 日本欧美视频一区| 十分钟在线观看高清视频www| 91字幕亚洲| 十八禁人妻一区二区| 91九色精品人成在线观看| 久久毛片免费看一区二区三区| 亚洲av男天堂| a 毛片基地| 国产av精品麻豆| 黑人欧美特级aaaaaa片| 久久国产精品男人的天堂亚洲| 成人黄色视频免费在线看| 亚洲国产精品成人久久小说| 波野结衣二区三区在线| 9色porny在线观看| 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 国产一级毛片在线| 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 国产伦人伦偷精品视频| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 亚洲人成电影免费在线| 一区二区三区激情视频| 亚洲精品自拍成人| 精品国产国语对白av| 成年人免费黄色播放视频| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡| 久久性视频一级片| 精品福利观看| 国产精品av久久久久免费| 国产成人a∨麻豆精品| 在线精品无人区一区二区三| www.精华液| 国产xxxxx性猛交| 欧美黄色淫秽网站| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 久久久久网色| 午夜福利免费观看在线| 黄色怎么调成土黄色| 黄片小视频在线播放| 各种免费的搞黄视频| 午夜免费成人在线视频| av天堂在线播放| 一级a爱视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 2018国产大陆天天弄谢| 人人妻,人人澡人人爽秒播 | 婷婷色综合大香蕉| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 亚洲欧洲日产国产| 欧美97在线视频| 91麻豆av在线| 国产野战对白在线观看| 在线观看免费午夜福利视频| 麻豆乱淫一区二区| 男女下面插进去视频免费观看| 日日摸夜夜添夜夜爱| 亚洲,欧美精品.| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 精品免费久久久久久久清纯 | av网站免费在线观看视频| 又黄又粗又硬又大视频| 色94色欧美一区二区| 中文欧美无线码| 国产亚洲午夜精品一区二区久久| 嫩草影视91久久| 中文字幕人妻熟女乱码| 亚洲精品在线美女| 亚洲七黄色美女视频| 99久久综合免费| videosex国产| 热re99久久国产66热| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美一区二区综合| 一边摸一边抽搐一进一出视频| 性色av乱码一区二区三区2| 老司机深夜福利视频在线观看 | 女人被躁到高潮嗷嗷叫费观| 国产精品 国内视频| 99久久精品国产亚洲精品| 老司机午夜十八禁免费视频| 日韩 亚洲 欧美在线| 久久女婷五月综合色啪小说| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 中文字幕精品免费在线观看视频| 亚洲欧美精品自产自拍| 老司机在亚洲福利影院| 免费高清在线观看视频在线观看| 九色亚洲精品在线播放| 又大又爽又粗| 热re99久久精品国产66热6| 国产精品一国产av| 欧美亚洲日本最大视频资源| 亚洲国产精品一区二区三区在线| 日韩免费高清中文字幕av| 久久99一区二区三区| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| 一本综合久久免费| 成在线人永久免费视频| 精品少妇内射三级| 90打野战视频偷拍视频| 王馨瑶露胸无遮挡在线观看| 成人亚洲欧美一区二区av| 国产av国产精品国产| 女性生殖器流出的白浆| 精品国产国语对白av| 99国产综合亚洲精品| 色播在线永久视频| 成在线人永久免费视频| 婷婷色综合www| 亚洲av日韩在线播放| 日韩 亚洲 欧美在线| 亚洲人成电影观看| 激情视频va一区二区三区| 国产精品一国产av| 中文字幕制服av| 色婷婷av一区二区三区视频| 人人妻,人人澡人人爽秒播 | 在线观看免费高清a一片| 亚洲黑人精品在线| 成年av动漫网址| 亚洲欧洲日产国产| 成人亚洲精品一区在线观看| 国产精品一区二区精品视频观看| 久久久精品国产亚洲av高清涩受| avwww免费| 美女福利国产在线| 视频在线观看一区二区三区| 97在线人人人人妻| 久久综合国产亚洲精品| 国产免费福利视频在线观看| 欧美日韩亚洲高清精品| 国产成人啪精品午夜网站| 日韩熟女老妇一区二区性免费视频| 国产精品一区二区精品视频观看| 亚洲国产av影院在线观看| 极品少妇高潮喷水抽搐| 色综合欧美亚洲国产小说| 免费黄频网站在线观看国产| 午夜av观看不卡| 日韩中文字幕视频在线看片| 日本91视频免费播放| 日韩中文字幕视频在线看片| 日韩视频在线欧美| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 国产精品二区激情视频| 91精品国产国语对白视频| 精品国产一区二区三区久久久樱花| 女人爽到高潮嗷嗷叫在线视频| 亚洲一码二码三码区别大吗| 国产亚洲av高清不卡| 精品熟女少妇八av免费久了| 日本91视频免费播放| 2018国产大陆天天弄谢| 久久av网站| 亚洲黑人精品在线| 美女国产高潮福利片在线看| 亚洲精品久久久久久婷婷小说| 中文字幕亚洲精品专区| 首页视频小说图片口味搜索 | 一本一本久久a久久精品综合妖精| 啦啦啦在线免费观看视频4| 国产有黄有色有爽视频| 亚洲专区国产一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜喷水一区| 午夜久久久在线观看| 亚洲av国产av综合av卡| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 久久久久久免费高清国产稀缺| 亚洲欧美成人综合另类久久久| 精品人妻1区二区| 美女扒开内裤让男人捅视频| 亚洲精品一二三| 在线观看免费高清a一片| 日本a在线网址| 亚洲欧美激情在线| 18禁黄网站禁片午夜丰满| 亚洲欧美色中文字幕在线| 伦理电影免费视频| 亚洲精品美女久久av网站| 一本久久精品| 久久久久久久久久久久大奶| 亚洲三区欧美一区| 精品久久久久久电影网| 亚洲国产看品久久| 丰满迷人的少妇在线观看| 国产免费现黄频在线看| 国产精品熟女久久久久浪| 亚洲五月婷婷丁香| 自线自在国产av| 日韩中文字幕视频在线看片| 18禁国产床啪视频网站| 色播在线永久视频| av网站免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 国产成人91sexporn| 人妻 亚洲 视频| 亚洲色图综合在线观看| 一级毛片黄色毛片免费观看视频|