• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COSMO-RS:An ionic liquid prescreening tool for gas hydrate mitigation☆

    2016-06-07 05:44:32CorneliusBavohBhajanLalOmarNashedMuhammadKhanLauKeongMohdAzmiBustam
    Chinese Journal of Chemical Engineering 2016年11期

    Cornelius B.Bavoh,Bhajan Lal,Omar Nashed,Muhammad S.Khan,Lau K.Keong,Mohd.Azmi Bustam

    Chemical Engineering Department,Universiti Teknologi PETRONAS,32610 Bandar Seri Iskandar,Perak Darul Ridzuan,Malaysia

    1.Introduction

    Gas hydrates are non-stoichiometric ice-like crystalline inclusion compounds formed by the physical combination of water and gases[1–5].Common gas hydrate formers are methane,propane,and carbon dioxide;more so,there are basically three gas hydrate structures;cubic structure I(sI),cubic structure II(sII)and hexagonal structure H(sH).Gas hydrate can be formed in oil and gas production,transportation,and processing facilities which cause serious operational,economic,and safety problems[2].Therefore,gas hydrate continues to be the major flow assurance challenge facing oil and gas industries.According to Xiao-Sen et al.[6],the maintenance of flow assurance in the oil and gas industry amounts to over 200 M USD annually due to gas hydrate formation and aggregation.Water removal,depressurization,heating and chemical inhibition are the main methods of mitigating gas hydrate,but currently chemical inhibition is used due to high economic cost,impracticability and/or ineffective implementation of the other methods[7].

    Strong electrostatic force and hydrogen bonding ability with water molecules are the molecular characteristics of gas hydrate inhibitors(such as methanol(MeOH)and ethylene glycol(EG)).These molecular characteristics result in strong hydrogen bonding between the inhibitor molecules and the water molecules reducing the activity of water to form hydrates with gas molecules.This effect changes the thermodynamic and kinetic conditions of hydrate formation[8].

    Recently,experimental studies[6,9–18]have introduced organic salts with low melting point,known as ionic liquids[19]as dual function gas hydrate inhibitors(i.e.they shift the equilibrium hydrate curve to high pressure and lowtemperature regionsand increase hydrate formation nucleation time).The uniqueness of ILs for inhibiting gas hydrate is that,they show strong electrostatic force and form hydrogen bonding with water molecules.MD simulation and modeling study of ILs on gas hydrate shows that the hydrogen bonding ability of ILs,which strongly depends on the anion type,and hydrophobicity(which depends on the cation chain length)are the critical parameters for gas hydrate inhibition[20,21].Therefore high inhibition depends on the anion–cation pairing or tuning of ILs.The hydrate inhibition strength of chemical inhibitors is generally determined by calculating the average depression temperature of the hydrate–liquid–vapor curve as;

    where n is the number of data points and ΔT is the difference between measured hydrate dissociation temperature in the presence of inhibitor and pure water at constant pressure.

    Currently,no desirable extent of gas hydrate inhibition in the presence of ILs has been achieved by IL gas hydrate researchers.Forexample at 10 wt.%concentration,shift of equilibrium hydrate temperature curve with studied ILs ranges from 0.7 to 1.50 K while that of conventional methanol and EG(ethylene glycol)at the same concentration is about 3.5–5.0 K and 2–2.50 K[18]respectively.Nevertheless the huge database and promising nature(low vapor pressure,tunable and dual functionality)of ILs still make them potential candidates for gas hydrate mitigation when carefully tuned.Presently,no available method has been proposed for tuning ILs for gas hydrate inhibition.Previous studies have shown that,researchers tuning ILs base on literature findings and trial and error random selection.

    The aforementioned selection mechanism of ILs for gas hydrate inhibition is based on random speculations making these methods probabilistic i.e.they may or may notinhibitgas hydrate when experimentally investigated.This may result in high cost and time wastage since the cost of purchasing ILs and gases is relatively high.Similarly,the time required in performing gas hydrate experiment is considerably longer.For a break through,there should be a predictive tool or method to pre-screen and tune ILs by predicting the gas hydrate inhibition properties of ILs,such as hydrogen bonding basic ity,cation chain length and cation–anion paring type,in order to select potential IL inhibitors before synthesis or purchase for hydrate studies.Structural–interpolation group contribution methods(GCMs)such as UNIQUAC Functional-group Activity Coefficients(UNIFAC)are widely and reliable methods used for predicting the thermo physical properties of solvents with less experimental data[22].GCMs are less accurate and face prediction challenge when very less experimental data of some compound mixtures are used.A more efficient and accurate method that presents necessary data and significant description of molecular interactions of compounds in solution is the conductor like screening model for real solvents(COSMO-RS).In addition,COSMORS uses very less experimental data compared to GCMs,and can be used as a tool for tuning ILs for gas hydrate mitigation.

    COSMO-RS is a software which combines quantum calculation and statistical thermodynamics introduced by Klamt and Schuurmann.COSMO-RS is an efficient method which allows fast thermodynamic calculations and screening of solvents[22].COSMO-RS has wide applications in chemical engineering,pharmaceutical study for drug development[23]and modeling thermodynamic properties of ILs[24–26].COSMORS has been reported as a screening tool of IL properties for carbon dioxide capture and solubility studies[27–31].Most recently,COSMO-RS was presented as a method for tuning ILs for natural gas dehydration[32],however there is no open literature regarding the use of COSMO-RS to screen ILs for gas hydrate studies.Claudio et al.[33]used COSMO-RS to predict the hydrogen bonding energies(EHB)of ILs,which is defined as the energy between IL accepter and donor in hydrogen-bonding interaction[34];and reported that,COSMO-RS predicted EHBhave a strong relationship with the experimental hydrogen bonding basic ity(ability of ILs to accept hydrogen atoms[35])of ILs[20,21].Klamt[36]described the interaction mechanism bet ween water and solute compounds by determining their sigma-prolife and sigma-potentials in COSMO-RS and concluded that COSMO-RS effectively describes water-solvent interactions of compounds.Therefore COSMO-RS can be used as a predictive tool for prescreening IL hydrogen bonding basic ity for gas hydrate purposes.

    This work presents COSMO-RS as a new prescreening tool of ILs for gas hydrate mitigation by predicting their hydrogen bonding energies(EHB),and analyzing the effect of predicted EHBon the average depression temperature(?)and induction time of studied ILs reported in the literature.It also discusses factors that affect EHBof ILs and presents a visual and better understanding of IL–water behaviors in terms of hydrogen bond donor and acceptor.This is done by determining the sigma pro file and sigma potential of some commonly studied IL cations and anions for gas hydrate mitigation.More so,this work is aimed at saving cost,time,and to aid in successive selection of more effective ILs for gas hydrate mitigation using COSMO-RS.

    2.Materials and Methods

    The experimental work in this paper is reported elsewhere in reference[12].The details of experimental data from reported literatures used in this work are shown in Table 1.These literatures were chosen for analysis because they present many types of ILs with the same cations,which open doors for data plotting and analysis.For simplicity,we considered thermodynamic and kinetic studies separately because thermodynamic of gas hydrates is well understood compared to kinetics.In addition,kinetics of hydrate formation is stochastic and depends on the type of apparatus used,rate of agitation,subcooling etc.Also,the data is analyzed differently due to some differences in reported results for same ILs by various research groups(see Table 1)which may be credited due to data validity.However the data validity cannot be questioned much since the differences can be related to,accuracy and calibration of equipment,and more importantly the purity level of the ILs used.

    The typical studied concentrations of thermodynamic and kinetics of hydrate inhibitors are 10 wt.%and 1 wt.%respectively.Therefore the average depression temperature(?)and average induction time of ILs for gas hydrate mitigation in this work were selected accordingly.

    2.1.Conductor like screening model for real solvents(COSMO-RS)

    In COSMO calculations,the solute molecules are calculated in a virtual conductor environment inducing a polarization charge density on the interface of the molecule and the conductor.Details on theory and application of COSMO-RS can be found in literature[24].The hydrogen-bonding energies,EHB,are described by the following equation[24];

    where(σacceptor,σdonor)isa function of the polarization charges of the two interacting segments,cHBis the threshold for hydrogen bonding;aeffis the effective contact area between two surface segments.The lowest energy conformer is used in the COSMO-RS calculations with the parameter file BP_TZVP_C21_0111.ctd.Furthermore,independent equimolar cation–anion and water mixture are used to predict the EHBvalues of pure ILs.Sigma surface,sigma pro file and sigma potential are determined by using independent IL cations and anions.Furthermore,statistical analysis was performed at p-value of≤0.05.

    3.Results and Discussion

    The COSMO-RS predicted EHBfor studied ILs in literature data are presented in Table 1.

    3.1.Predicted hydrogen bonding energies(EHB)

    3.1.1.Effect of predicted hydrogen bonding energies and chain length on thermodynamic hydrate inhibition(THI)

    The average depression temperature(?)is used to measure the hydrate inhibition performance of ILs.This property describes the ability of ILs to shift the hydrate phase equilibrium curve to high pressure and low temperature conditions[18].Fig.1 shows the plot of ? verses COSMO-RS predicted EHBof selected studied ILs in this work.

    In Fig.1,results show that predicted hydrogen bonding energies(EHB)of selected ILs strongly relate linearly to experimental average depression temperatures(?)ofIL gas hydrate inhibitors reported in selected literature.Ionic liquids with shorter cation alkyl chain(EMIM base)demonstrated high inhibition impact than those with longer alkyl chain(BMIM base).This implies that,IL cation chain length affects gas hydrate inhibition as reported by Xiao et al.[10].It is observed that the average depression temperatures increase with increasing EHBfor ILs with the same cation chain length but decrease with increasing cation chain length with the same anion.The variation in average depression temperatures in Fig.1 of BMIM base ILs studied by different authors[10,12]is due to data validity as mentioned earlier.

    For further analysis,a multiple regression analysis is performed to examine the effect of ILs EHBand chain length on the average depressiontemperatures of studied ILs.The analysis shows that,EHBand chain length significantly affect ?,with the p-values of 1.21 × 10?5and 0.000871 respectively and an adjusted R-Square of 0.83.The multiple regression coefficients suggest that,(1)the average depression temperature increases with increasing EHBand/or decreasing cation chain length.(2)IL cation chain length is very sensitive to gas hydrate inhibition impact compared to EHB.The reason could be credited to the inhibition mechanism for gas hydrate by reducing activity of water molecules in hydrate formation by forming hydrogen bonds with water molecules.An increase in IL cation chain length increases the hydrophobicity of the ILs,therefore reducing the interaction ability or the accessibility of the ILs with/to water molecules and restricting hydrogen bond formation between ionic liquid and water molecules.In other words the hydrogen bonding ability of ILs with water molecules depends on hydrophobic nature of ILs.For example BMIM-Cl(?30.62388 kJ·mol?1)has higher EHBthan EMIM-Br(?23.64372 kJ·mol?1)but the average depression temperature of the latter(1.03 K)is greater than that of the former(0.69 K)because EMIM-Br has less chain length therefore has the ability to access water molecules and form more hydrogen bond compared to BMIM-Cl.

    Table 1 Experimental details of reported literature used in this work and COSMO-RS predicted hydrogen bonding energies(E HB)

    Fig.1.Regression between average depression temperature(?)and hydrogen bonding energies(E HB)predicted by COSMO-RS.

    3.1.2.Effect of predicted hydrogen bonding energies and chain length on kinetic hydrate inhibition(KHI)

    The measurement of induction time is used by researchers as kinetic gas hydrate inhibition indicator.Considering the stochastic nature of induction time and factors affecting hydrate formation as stated earlier,it is assumed that,at least a decrease in one order of magnitude of kinetic measurement accuracy relative to thermodynamic measurement of hydrate formation can be accepted[1].The challenges with induction time measure mentresulted in difficulties in comparing COSMO-RS predicted EHBto average induction time as shown in Fig.2.However,in Fig.2,correlation analysis was performed to determine how average induction time correlates to EHBas reported in literature[9,10].

    Fig.2(a)and(b)shows R=0.70 suggesting that experimental average induction time moderately correlated high with EHB.This implies that,EHBand IL chain length play a role in kinetic inhibition of gas hydrate and likewise in thermodynamics agreeing with the result reported in literature[21].In contrary to thermodynamic inhibition of gas hydrates discussed,decreasing EHBand longer IL cation chain length increase the average induction time of hydrate formation in the presence of ILs.In view of this,COSMO-RS can be used to pre-screen ILs to obtain a critical EHBand chain length for high dual functional inhibition of gas hydrate.For further understanding and detailed analysis with respect to EHBand kinetics of gas hydrate,a predictable parameter such as hydrate growth rate can be considered rather than the induction time,since the induction time measurements are stochastic.

    Fig.2.Correlation between average induction time and hydrogen bonding energies(E HB)predicted by COSMO-RS:(a)reference[9]at 10 wt.%;(b)reference[10]at 1 wt.%.

    3.2.Factors affecting ionic liquid hydrogen bonding energies

    Aiming at proposing a method to screen ILs for hydrate mitigation,further comparisons were performed to determine the effect of IL cation alkyl chain length and different cation–anion pairing on the EHBof IL predicted by COSMO-RS.It is reported that the hydrogen basic ity of ILs depends on the anion while the acidity on the cation[37].In Fig.3(a)and(b),for a specific anion,there is no significant difference in predicted EHBfor different IL cation alkyl chain lengths,but in Fig.(3c),a significant difference in predicted EHBvalues are shown for specific ionic liquid anion with different cation types.This implies that,cation chain length has negligible effect on IL EHB,but significantly affects IL hydro phobicity.Presented earlier as a critical parameter that affects gas hydrate inhibition impact.IL cation–anion pairing affects the EHBagreeing to the finding reported by[15,22].Therefore in order to increase the EHBof an ILs for hydrate mitigation,the cation–anion pair must be considered critically.Furthermore,incorporating hydroxyl group into IL cations is known to also increase the hydrogen bonding strength of ILs and gas hydrate inhibition impact[12,18].

    Fig.3.Effects of chain length and cation type on hydrogen bonding energies(E HB)of halide anions predicted by COSMO-RS:(a)effect of different chain lengths of imidazolium base ILs;(b)effect of different chain lengths of pyridinium base ILs;(c)effect of different IL cations.

    3.3.COSMO-RS sigma(σ)pro file and sigma(σ)potential

    COSMO-RS σ-surface,σ-pro file and σ-potential of IL cations and anions can be employed for the prescreening of ILs for gas hydrate mitigation in addition to IL hydrogen bonding energies.The σ-surface,σ-pro file and σ-potential give a good explanation of IL cation and anion interaction behavior with water in a visualize and simple way by describing their electro-negativity and electro-positivity.Since in gas hydrate mitigation,one major aim of inhibitors(ILs)is to distract the activity of water molecules from hydrate formation through hydrogen bonding interaction with water molecules.Therefore,a pre-visual comparison of the interaction of ILs with water using COSMO-RS through σ-surface,σ-pro file and σ-potential will aid in the selection of desired ILs for gas hydrate mitigation.

    Fig.4 shows the σ-surface and σ-profile of water,MeOH,DEG and commonly studied IL anions for gas hydrate studies.The blue area on the σ-surface of water describes a strong negative(≥ ?100 eV·nm?2)of the hydrogen bond(HB)donors,the red area shows a strong positive(≤100 eV·nm?2)of HB-acceptors and the green area describes the nonpolar nature of the compound(≥ ?1 non-polar≤100 eV·nm?2)[36].Water and commercially used inhibitors(MeOH,DEG)exhibit two peaks of HB affinity(donor and acceptor)whereas the studied IL anions only exhibit strong HB acceptor affinity(positive side)in an increasing order of tetra fluoroborate(BF4)<iodide(I)<dicyanamide(C2N3)<bromide(Br)<chloride(Cl)(Fig.4).Theσ-profile result agrees with finding reported in Table 1 by various hydrate research groups.Considering IL anions in Fig.4,for the same cation(e.g.BMIM)the ? increases in the same order as observed in the σ-profile.This further explains why Cl is known to show high gas hydrate inhibition as reported in the literature[10],because Cl interacts strongly with water molecules by accepting hydrogen atoms from water molecules.

    Fig.4. σ-Surface and σ-pro files of water,some commercially used inhibitors and commonly studied IL anions for gas hydrate studies.

    Fig.5.σ-Profiles of water,some commercially used inhibitors and commonly studied IL cations.

    In Fig.5,IL cations turn to be more non-polar,accounting for the high induction time demonstrated by IL cations with high longer chain length.According to MD simulation studies by Ebrahim et al.[21]IL cations sticks to gas hydrate surface,reducing hydrate formation rate and growth.However they exhibit relatively weak hydrogen bond donor affinity and weakly interact with water molecules,resulting to poor gas hydrate thermodynamic inhibition impact.EMIM shows the strongest hydrogen bond donor affinity among selected IL cations in this work.On the other hand,MeOH and DEG(commercial inhibitors)exhibit strong hydrogen bond donor affinity.They exhibit strong HB donor and acceptor affinity with water molecules.This explains why they show high gas hydrate inhibition impact.Employing the σ-surface and σ-profile method using COSMO-RS,one can identify and/or select which IL cation and anion have strong affinity to form hydrogen bonding with water for high gas hydrate inhibition and promotion purposes.

    A better and detailed understanding of IL/water behavior can be achieved in the σ-potentials as shown in Figs.6 and 7.Though the σ-potential results are similar to σ-profile/σ-surface,nevertheless σpotential gives a detailed result with simplicity,making peak analysis easy to interpret when compared to σ-profile/σ-surface peaks which looks much clustered and sometimes difficult to interpret.For example,in Fig.4,it's quite difficult to interpret the hydrogen bond acceptor affinity of dicyanamide,but its interpretation is simply achieved in the σ-potential in Fig.6.

    Fig.6.σ-Potentials of water,some commercially used inhibitors and commonly studied IL anions for gas hydrate studies.

    Fig.7.σ-Potentials of water,some commercially used inhibitors and commonly studied IL cations.

    It is observed from the σ-profile and σ-potential that studied ILs(cations and anions)on gas hydrate inhibition impact exhibit strong HB acceptoraffinity than HB donoraffinity,as compared to commercially used inhibitors,therefore restricting hydrogen bonding interaction to HB donor affinity of water,causing the free HB acceptor of water to be less involved in hydrogen bonding.For high gas hydrate inhibition,gas hydrate researchers must screen for ILs that exhibit strong hydrogen bond acceptor and HB donor affinity for active engagement in hydrogen bonding with both HB acceptor and donor of water.Furthermore,due to the huge IL database,specific ILs cannot be generally proposed.However it is recommended that IL cations with strong HB donor affinity and less non-polarity should be selected for hydrate mitigation.

    4.Conclusions

    This study shows that COSMO-RS can be used as a prescreening tool of ILs for gas hydrate purposes via predicting IL EHB,adjusting IL cation–anion pairing and cations alkyl chains,and understanding IL/water behavior by determining the σ-surface,σ-profile and σ-potential of IL cations and anions.The results suggested that ? increases with increasing EHBand/or decreasing cation alkyl chains of ILs.EHBand cation chain length of ILs did not only relate to ?,but they also correlated relatively with the average induction time,therefore suggesting COSMO-RS as a tool to prescreen ILs in order to achieve higher gas hydrate inhibition impact for the oil and gas industry.

    [1]E.D.Sloan,C.A.Koh,Clathrate hydrates of natural gases,third ed.CRC Press,Baca Raton,2007.

    [2]C.A.Koh,E.D.Sloan,A.K.Sum,D.T.Wu,Fundamentals and applications of gas hydrates,Annu.Rev.Chem.Biomol.Eng.2(2011)237–257.

    [3]C.Sun,W.Li,X.Yang,F.Li,Q.Yuan,L.Mu,et al.,Progress in research of gas hydrate,Chin.J.Chem.Eng.19(2011)151–162.

    [4]X.Peng,Y.Hu,L.Yang,C.Jin,Decomposition kinetics for formation of CO2hydrates in natural silica sands,Chin.J.Chem.Eng.18(2010)61–65.

    [5]L.Chen,C.Sun,G.Chen,Y.Nie,Z.Sun,Y.Liu,Measurements of hydrate equilibrium conditions for CH4,CO2,and CH4+C2H6+C3H8in various systems by step-heating method,Chin.J.Chem.Eng.17(2009)635–641.

    [6]X.Sen Li,Y.J.Liu,Z.Y.Zeng,Z.Y.Chen,G.Li,H.J.Wu,Equilibrium hydrate formation conditions for the mixtures of methane+ionic liquids+water,J.Chem.Eng.Data 56(2011)119–123.

    [7]M.Tariq,D.Rooney,E.Othman,S.Aparicio,M.Atilhan,M.Khraisheh,Gas hydrate inhibition:A review of the role of ionic liquids,Ind.Eng.Chem.Res.53(2014)17855–17868.

    [8]J.Carroll,Natural gas hydrates a guide for engineers,Elsevier,Third edit,2014.

    [9]C.Xiao,H.Adidharma,Dual function inhibitors for methane hydrate,Chem.Eng.Sci.64(2009)1522–1527.

    [10]C.Xiao,N.Wibisono,H.Adidharma,Dialkyl imidazolium halide ionic liquids as dual function inhibitors for methane hydrate,Chem.Eng.Sci.65(2010)3080–3087.

    [11]M.Zare,A.Haghtalab,A.N.Ahmadi,K.Nazari,Experiment and thermodynamic modeling of methane hydrate equilibria in the presence of aqueous imidazoliumbased ionic liquid solutions using electrolyte cubic square well equation of state,Fluid Phase Equilib.341(2013)61–69.

    [12]K.M.Sabil,O.Nashed,B.Lal,L.Ismail,A.Japper-jaafar,Experimental investigation on the dissociation conditions of methane hydrate in the presence of imidazoliumbased ionic liquids,Thermodyn.J.Chem.84(2015)7–13.

    [13]B.Partoon,N.M.S.Wong,K.M.Sabil,K.Nasrifar,M.R.Ahmad,A study on thermodynamics effect of[EMIM]-Cl and[OH-C2MIM]-Cl on methane hydrate equilibrium line,Fluid Phase Equilib.337(2013)26–31.

    [14]K.Nazari,A.N.Ahmadi,A thermodynamic study of methane hydrate formation in the presence of[Bmim][Bf 4]and[Bmim][Ms]ionic liquids,I7th Intenational Confrence Gas Hydrates 2011,Edinbrugh,Scotland,United Kingdom 2011,p.9.

    [15]T.Makino,Y.Matsumoto,T.Sugahara,K.Ohgaki,H.Masuda,Effect of ionic liquid on hydrate formation rate in carbon dioxide hydrates,Proc.7th Int.Conf.Gas Hydrates(ICGH),Edinburgh,Scotland,United Kingdom 2011,pp.2–5.

    [16]K.Tumba,P.Reddy,P.Naidoo,D.Ramjugernath,A.Eslamimanesh,A.H.Mohammadi,et al.,Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid,J.Chem.Eng.Data 56(2011)3620–3629.

    [17]T.Kitajima,N.Ohtsubo,S.Hashimoto,T.Makino,D.Kodama,K.Ohgaki,Study on prompt methane hydrate formation derived by addition of ionic liquid,Am.Chem.Sci.J.2(2012)100–110.

    [18]K.Kim,S.-P.Kang,Investigation of pyrrolidinium-and morpholinium-based ionic liquids into kinetic hydrate inhibitors on structure i methane hydrate,7th Intenational Confrence Gas Hydrates 2011,Edinbrugh,Scotland,United Kingdom 2011,p.6.

    [19]B.Lal,M.Sahin,E.Ayranci,Volumetric studies to examine the interactions of imidazolium based ionic liquids with water by means of density and speed of sound measurements,J.Chem.Thermodyn.54(2012)142–147.

    [20]H.Jiang,H.Adidharma,Thermodynamic modeling of aqueous ionic liquid solutions and prediction of methane hydrate dissociation conditions in the presence of ionic liquid,Chem.Eng.Sci.102(2013)24–31.

    [21]M.Ebrahim,H.Nasrollah,B.Abareshi,C.Ghotbi,V.Taghikhani,A.H.Jalili,et al.,Investigation of six imidazolium-based ionic liquids as thermo-kinetic inhibitors for methane hydrate by molecular dynamics simulation,Proc.2nd Natl.Iran.Conf.Gas Hydrate 2013,p.12.

    [22]A.Klamt,F.Eckert,COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids,Fluid Phase Equilib.172(2000)43–72.

    [23]A.Klamt,The COSMO and COSMO-RS solvation models,Wiley Interdiscip.Rev.Comput.Mol.Sci.1(2011)699–709.

    [24]U.Guide,A graphical user interface to the COSMOtherm,Program(2012)1–77.

    [25]L.S.Ferreira,J.O.Trierweiler,Modeling and simulation of the polymeric nanocapsule formation process,IFAC Proc.7(2009)405–410.

    [26]A.R.Ferreira,M.G.Freire,J.C.Ribeiro,F.M.Lopes,G.Crespo,Overview of the liquid–liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons,and their modeling by COSMO-RS,Ind.Eng.Chem.Res.51(2012)3483–3507.

    [27]D.I.W.Edward,M.Ishiyama,W.R.Paterson,Modeling and simulation of the polymeric nanocapsule formation process,AIChE J.57(2011)3199–3209.

    [28]Z.Lei,B.Zhang,J.Zhu,W.Gong,J.Lü,Y.Li,Solubility of CO2in methanol,1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide,and their mixtures,Chin.J.Chem.Eng.21(2013)310–317.

    [29]R.Kato,J.Gmehling,Systems with ionic liquids:measurement of VLE and γ∞ data and prediction of their thermodynamic behavior using original UNIFAC,mod.UNIFAC(Do)and COSMO-RS(Ol),J.Chem.Thermodyn.37(2005)603–619.

    [30]K.Z.Sumon,A.Henni,Ionic liquids for CO2capture using COSMO-RS:effect of structure,properties and molecular interactions on solubility and selectivity,Fluid Phase Equilib.310(2011)39–55.

    [31]J.Palomar,V.R.Ferro,J.S.Torrecilla,F.Rodríguez,Density and molar volume predictions using COSMO-RS for ionic liquids.An approach to solvent design,Ind.Eng.Chem.Res.46(2007)6041–6048.

    [32]G.Gonfa,M.A.Bustam,A.M.Sharif,N.Mohamad,S.Ullah,Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology,J.Nat.Gas Sci.Eng.(2015).

    [33]A.F.M.Cláudio,L.Swift,J.P.Hallett,T.Welton,J.a.P.Coutinho,M.G.Freire,Extended scale for the hydrogen-bond basicity of ionic liquids,Phys.Chem.Chem.Phys.16(2014)6593–6601.

    [34]M.H.Hao,Theoretical calculation of hydrogen-bonding strength for drug molecules,J.Chem.Theory Comput.2(2006)863–872.

    [35]M.H.Abraham,P.L.Grellier,R.M.Doherty,R.W.Taft,The use of scales of hydrogenbond acidity and basicity in organic,Rev.Port.Quim.31(1989).

    [36]A.Klamt,COSMO-RS for aqueous solvation and interfaces, fluid phase equilib,2015.

    [37]H.Ohno,K.Fukumoto,Amino acid ionic liquids,Acc.Chem.Res.40(2007)1122–1129.

    看黄色毛片网站| 精品国产三级普通话版| 中文字幕久久专区| 高清在线国产一区| 校园春色视频在线观看| 法律面前人人平等表现在哪些方面| 美女扒开内裤让男人捅视频| 中文在线观看免费www的网站| 久久热在线av| 国产成人精品久久二区二区免费| 99国产精品一区二区三区| 国产精品98久久久久久宅男小说| 激情在线观看视频在线高清| 两性午夜刺激爽爽歪歪视频在线观看| 搡老熟女国产l中国老女人| 又黄又爽又免费观看的视频| 免费av不卡在线播放| 岛国在线观看网站| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 国产精品一区二区三区四区免费观看 | 女人高潮潮喷娇喘18禁视频| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 国产三级中文精品| 听说在线观看完整版免费高清| 免费人成视频x8x8入口观看| 亚洲五月婷婷丁香| 99在线视频只有这里精品首页| 久久午夜亚洲精品久久| 久久性视频一级片| 操出白浆在线播放| 一进一出抽搐动态| 成年女人毛片免费观看观看9| 国产精品久久电影中文字幕| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| 这个男人来自地球电影免费观看| 露出奶头的视频| 日韩欧美 国产精品| а√天堂www在线а√下载| 露出奶头的视频| а√天堂www在线а√下载| 久久久久久久精品吃奶| 亚洲国产精品成人综合色| 久久久久久久精品吃奶| 欧美成人一区二区免费高清观看 | 又黄又粗又硬又大视频| av天堂中文字幕网| 国产乱人伦免费视频| h日本视频在线播放| 亚洲avbb在线观看| 人妻久久中文字幕网| 黑人操中国人逼视频| 91字幕亚洲| 亚洲av免费在线观看| 高清毛片免费观看视频网站| 国产探花在线观看一区二区| 嫩草影视91久久| 成年女人永久免费观看视频| 欧美丝袜亚洲另类 | 99国产综合亚洲精品| 亚洲人成伊人成综合网2020| 亚洲无线观看免费| 少妇丰满av| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 曰老女人黄片| 国产主播在线观看一区二区| 久久九九热精品免费| 成人18禁在线播放| 亚洲中文字幕一区二区三区有码在线看 | x7x7x7水蜜桃| 天天一区二区日本电影三级| av国产免费在线观看| 日本a在线网址| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久99热这里只有精品18| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 免费在线观看日本一区| 熟妇人妻久久中文字幕3abv| 亚洲乱码一区二区免费版| 国产一区在线观看成人免费| 亚洲黑人精品在线| 日韩欧美国产在线观看| 久久久久久人人人人人| 长腿黑丝高跟| e午夜精品久久久久久久| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 久久精品国产99精品国产亚洲性色| 亚洲自偷自拍图片 自拍| 亚洲国产精品sss在线观看| 久久久久免费精品人妻一区二区| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 九九在线视频观看精品| 麻豆国产97在线/欧美| 成人性生交大片免费视频hd| 久久精品亚洲精品国产色婷小说| 国产不卡一卡二| 嫩草影院入口| 国产aⅴ精品一区二区三区波| 九九在线视频观看精品| 亚洲av日韩精品久久久久久密| 免费在线观看亚洲国产| 成人国产综合亚洲| 国产精品,欧美在线| 毛片女人毛片| 国产成人精品久久二区二区免费| 国产精品香港三级国产av潘金莲| 国产精华一区二区三区| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 麻豆av在线久日| 亚洲人成网站高清观看| 国产精品久久久久久久电影 | 国产亚洲av嫩草精品影院| 脱女人内裤的视频| 日韩欧美精品v在线| 成人午夜高清在线视频| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 黄频高清免费视频| 国产又黄又爽又无遮挡在线| 伊人久久大香线蕉亚洲五| 亚洲性夜色夜夜综合| 欧美黄色淫秽网站| 欧美日韩精品网址| 变态另类丝袜制服| 欧美色欧美亚洲另类二区| 日韩国内少妇激情av| 国产不卡一卡二| 成人无遮挡网站| 国产成人av激情在线播放| 日韩欧美 国产精品| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 国内精品一区二区在线观看| 日韩免费av在线播放| 精品国产美女av久久久久小说| 宅男免费午夜| 久久精品aⅴ一区二区三区四区| 免费电影在线观看免费观看| 综合色av麻豆| 俺也久久电影网| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 欧美最黄视频在线播放免费| 婷婷亚洲欧美| 午夜福利高清视频| 国产免费av片在线观看野外av| 极品教师在线免费播放| 俺也久久电影网| 欧美日韩亚洲国产一区二区在线观看| 一级毛片高清免费大全| 国产伦在线观看视频一区| 欧美一级a爱片免费观看看| 久久香蕉精品热| 欧美成人免费av一区二区三区| 久久久水蜜桃国产精品网| 19禁男女啪啪无遮挡网站| 99riav亚洲国产免费| 校园春色视频在线观看| 成人高潮视频无遮挡免费网站| 久久久久久人人人人人| 精品乱码久久久久久99久播| 性色avwww在线观看| 国产精品久久电影中文字幕| 不卡av一区二区三区| 好男人电影高清在线观看| 国产午夜精品久久久久久| 亚洲国产色片| 一级毛片高清免费大全| av在线蜜桃| 岛国视频午夜一区免费看| 男女视频在线观看网站免费| 国产精品永久免费网站| 国产黄片美女视频| 五月伊人婷婷丁香| 黄频高清免费视频| 国产成人一区二区三区免费视频网站| 观看免费一级毛片| 成人特级黄色片久久久久久久| 午夜福利欧美成人| 叶爱在线成人免费视频播放| 欧美色欧美亚洲另类二区| 亚洲中文日韩欧美视频| av在线蜜桃| АⅤ资源中文在线天堂| 亚洲欧美日韩卡通动漫| bbb黄色大片| 久久人妻av系列| 国产乱人伦免费视频| 亚洲欧美日韩无卡精品| 色综合站精品国产| 后天国语完整版免费观看| 99久国产av精品| 一区二区三区国产精品乱码| 91字幕亚洲| 美女黄网站色视频| 亚洲精品久久国产高清桃花| 成人鲁丝片一二三区免费| 在线国产一区二区在线| 精品电影一区二区在线| 亚洲av日韩精品久久久久久密| 可以在线观看的亚洲视频| 欧美一级毛片孕妇| 亚洲无线观看免费| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 亚洲最大成人中文| or卡值多少钱| 91老司机精品| 国产主播在线观看一区二区| 久久这里只有精品19| 国产免费男女视频| 国产一区二区激情短视频| 精品日产1卡2卡| 精品一区二区三区视频在线观看免费| 精品午夜福利视频在线观看一区| 三级国产精品欧美在线观看 | 久久国产精品人妻蜜桃| 国产不卡一卡二| 国模一区二区三区四区视频 | 在线观看美女被高潮喷水网站 | 成人一区二区视频在线观看| 成人国产一区最新在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲色图 男人天堂 中文字幕| 婷婷丁香在线五月| 婷婷亚洲欧美| 黄色女人牲交| www.www免费av| 国产精品一区二区免费欧美| 岛国在线观看网站| 亚洲美女视频黄频| 十八禁人妻一区二区| 国产在线精品亚洲第一网站| 亚洲国产高清在线一区二区三| 国内揄拍国产精品人妻在线| 日日干狠狠操夜夜爽| 麻豆成人午夜福利视频| 色av中文字幕| 九九在线视频观看精品| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av香蕉五月| 久久香蕉国产精品| 最新美女视频免费是黄的| 后天国语完整版免费观看| 国产亚洲精品综合一区在线观看| 日本五十路高清| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 国产精品影院久久| 亚洲七黄色美女视频| 久久人妻av系列| www.自偷自拍.com| cao死你这个sao货| 级片在线观看| 亚洲自偷自拍图片 自拍| 美女大奶头视频| 国产精华一区二区三区| 国产欧美日韩精品一区二区| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 欧美极品一区二区三区四区| av天堂中文字幕网| 国产黄a三级三级三级人| 三级毛片av免费| 亚洲无线观看免费| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 欧洲精品卡2卡3卡4卡5卡区| 丁香六月欧美| 五月伊人婷婷丁香| 高清毛片免费观看视频网站| 特大巨黑吊av在线直播| 超碰成人久久| 老汉色av国产亚洲站长工具| 久久草成人影院| h日本视频在线播放| 久久久久久久午夜电影| 欧美黄色淫秽网站| 亚洲最大成人中文| 美女黄网站色视频| 很黄的视频免费| 亚洲国产精品合色在线| 97超视频在线观看视频| 午夜激情欧美在线| 老司机在亚洲福利影院| 国产成人福利小说| 色综合欧美亚洲国产小说| 国产极品精品免费视频能看的| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品精品国产色婷婷| 亚洲精品乱码久久久v下载方式 | 在线观看日韩欧美| 国产激情欧美一区二区| 成人国产一区最新在线观看| av视频在线观看入口| 在线免费观看不下载黄p国产 | 一本综合久久免费| 亚洲精品色激情综合| 欧美色视频一区免费| 老司机深夜福利视频在线观看| 精品久久久久久久人妻蜜臀av| 国产野战对白在线观看| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 一进一出好大好爽视频| 免费在线观看亚洲国产| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 很黄的视频免费| 国产黄片美女视频| 亚洲中文av在线| 法律面前人人平等表现在哪些方面| 亚洲熟女毛片儿| 18禁美女被吸乳视频| 日日摸夜夜添夜夜添小说| 中文资源天堂在线| 日韩精品青青久久久久久| 我要搜黄色片| 午夜精品一区二区三区免费看| 日韩成人在线观看一区二区三区| 淫秽高清视频在线观看| 人妻久久中文字幕网| 麻豆久久精品国产亚洲av| 制服丝袜大香蕉在线| 国产 一区 欧美 日韩| 欧美av亚洲av综合av国产av| 在线观看午夜福利视频| 天天一区二区日本电影三级| 长腿黑丝高跟| aaaaa片日本免费| 国语自产精品视频在线第100页| 国产黄a三级三级三级人| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 国产真人三级小视频在线观看| 精品一区二区三区视频在线 | 天堂动漫精品| 熟女人妻精品中文字幕| 亚洲av成人一区二区三| 色在线成人网| www.www免费av| 欧美高清成人免费视频www| 亚洲美女视频黄频| 久久这里只有精品19| 国产亚洲精品久久久久久毛片| 亚洲九九香蕉| 国产成人av激情在线播放| 99久久精品热视频| 国产精品亚洲av一区麻豆| 午夜视频精品福利| 黄频高清免费视频| 一级毛片高清免费大全| 深夜精品福利| 国产高清videossex| 少妇丰满av| 欧美中文日本在线观看视频| 97碰自拍视频| av女优亚洲男人天堂 | 丝袜人妻中文字幕| 不卡av一区二区三区| 黄色视频,在线免费观看| 一级毛片女人18水好多| 在线永久观看黄色视频| 色综合欧美亚洲国产小说| 最好的美女福利视频网| 亚洲人成电影免费在线| 小说图片视频综合网站| 日韩av在线大香蕉| 一本综合久久免费| 久久久久久久午夜电影| 黑人欧美特级aaaaaa片| 丰满的人妻完整版| 中出人妻视频一区二区| 人人妻,人人澡人人爽秒播| 日韩有码中文字幕| 国产极品精品免费视频能看的| 日本 欧美在线| 日韩国内少妇激情av| 欧美性猛交黑人性爽| 亚洲 欧美一区二区三区| 亚洲精品色激情综合| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| 1024手机看黄色片| 黄色日韩在线| 免费观看人在逋| 可以在线观看毛片的网站| 丰满的人妻完整版| 狂野欧美激情性xxxx| 日韩免费av在线播放| 久久九九热精品免费| 欧美日韩精品网址| 免费看美女性在线毛片视频| 免费一级毛片在线播放高清视频| 国产私拍福利视频在线观看| 91麻豆av在线| 久久久久亚洲av毛片大全| 一本一本综合久久| 久久国产精品影院| 欧美激情在线99| 中文资源天堂在线| 国产午夜精品久久久久久| 99久久成人亚洲精品观看| 无遮挡黄片免费观看| 成人av在线播放网站| 久久久久久久久免费视频了| 国产v大片淫在线免费观看| 国产v大片淫在线免费观看| 嫁个100分男人电影在线观看| 欧美高清成人免费视频www| 久久精品影院6| 制服人妻中文乱码| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 精品不卡国产一区二区三区| 在线观看美女被高潮喷水网站 | 在线观看66精品国产| 亚洲熟妇中文字幕五十中出| 老司机福利观看| 日韩欧美 国产精品| 亚洲aⅴ乱码一区二区在线播放| 午夜精品一区二区三区免费看| 无遮挡黄片免费观看| 国产亚洲精品久久久com| 老司机深夜福利视频在线观看| 亚洲av成人av| 亚洲avbb在线观看| 大型黄色视频在线免费观看| 性色av乱码一区二区三区2| 久久久久精品国产欧美久久久| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 噜噜噜噜噜久久久久久91| 一级毛片女人18水好多| 久久久水蜜桃国产精品网| 欧美最黄视频在线播放免费| 九色成人免费人妻av| 国产探花在线观看一区二区| 亚洲熟妇熟女久久| 国产伦精品一区二区三区四那| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 亚洲,欧美精品.| xxx96com| 亚洲熟妇中文字幕五十中出| 免费观看精品视频网站| www.999成人在线观看| 国产精品一区二区免费欧美| 久久中文看片网| 亚洲人成网站高清观看| 香蕉av资源在线| 最近最新中文字幕大全电影3| 99久久精品热视频| 亚洲欧洲精品一区二区精品久久久| 久久这里只有精品中国| 国产av一区在线观看免费| 国产精品久久久久久精品电影| 99热这里只有精品一区 | 男女做爰动态图高潮gif福利片| 性欧美人与动物交配| 国产成人系列免费观看| 人妻久久中文字幕网| avwww免费| 亚洲精品乱码久久久v下载方式 | 亚洲乱码一区二区免费版| 毛片女人毛片| 日韩中文字幕欧美一区二区| 18禁美女被吸乳视频| 国内精品一区二区在线观看| 91在线精品国自产拍蜜月 | 欧美日韩黄片免| 欧美色视频一区免费| 免费在线观看影片大全网站| 欧美日韩一级在线毛片| 国内精品美女久久久久久| 男人的好看免费观看在线视频| 成人特级黄色片久久久久久久| 国模一区二区三区四区视频 | tocl精华| 一二三四在线观看免费中文在| 99久久无色码亚洲精品果冻| 亚洲精品一卡2卡三卡4卡5卡| 日韩高清综合在线| 午夜两性在线视频| 国产精华一区二区三区| 日本黄色视频三级网站网址| 两性夫妻黄色片| 两个人的视频大全免费| 高清毛片免费观看视频网站| 999久久久精品免费观看国产| 欧美色视频一区免费| 日韩免费av在线播放| 可以在线观看的亚洲视频| 久久久久亚洲av毛片大全| 首页视频小说图片口味搜索| 搡老岳熟女国产| 精品午夜福利视频在线观看一区| 国产精品av视频在线免费观看| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产| 国产aⅴ精品一区二区三区波| 国产私拍福利视频在线观看| 天堂网av新在线| 成年女人永久免费观看视频| 亚洲一区二区三区不卡视频| 欧美激情在线99| 亚洲专区国产一区二区| 给我免费播放毛片高清在线观看| 日本免费一区二区三区高清不卡| 99久久国产精品久久久| 亚洲成人久久性| 99热6这里只有精品| 又粗又爽又猛毛片免费看| 毛片女人毛片| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 国产熟女xx| av视频在线观看入口| av天堂中文字幕网| 真人一进一出gif抽搐免费| www.自偷自拍.com| 99热6这里只有精品| 少妇人妻一区二区三区视频| 亚洲avbb在线观看| 日本 av在线| 亚洲人成网站高清观看| 19禁男女啪啪无遮挡网站| 天堂av国产一区二区熟女人妻| 黄色视频,在线免费观看| 超碰成人久久| 18美女黄网站色大片免费观看| 亚洲中文字幕一区二区三区有码在线看 | 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 国产v大片淫在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 99久久成人亚洲精品观看| 五月玫瑰六月丁香| 色综合婷婷激情| 亚洲欧美日韩卡通动漫| 成年版毛片免费区| 国产黄色小视频在线观看| 99久久99久久久精品蜜桃| 香蕉丝袜av| 黄色成人免费大全| 欧美成狂野欧美在线观看| 久久精品人妻少妇| 亚洲精品456在线播放app | 国产成人精品无人区| 婷婷亚洲欧美| 桃红色精品国产亚洲av| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 麻豆久久精品国产亚洲av| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 黄色丝袜av网址大全| 久久精品国产清高在天天线| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 手机成人av网站| 国产精华一区二区三区| 神马国产精品三级电影在线观看| 欧美极品一区二区三区四区| 久久久久久久久久黄片| 窝窝影院91人妻| 91av网站免费观看| 波多野结衣巨乳人妻| а√天堂www在线а√下载| 国产视频一区二区在线看| 日韩有码中文字幕| 村上凉子中文字幕在线| www.熟女人妻精品国产| 变态另类丝袜制服| 久久精品国产综合久久久| 亚洲aⅴ乱码一区二区在线播放| 精品国产超薄肉色丝袜足j| 国产真实乱freesex| 亚洲乱码一区二区免费版| 高清在线国产一区| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 性色avwww在线观看| 此物有八面人人有两片| 精品久久久久久成人av| 波多野结衣高清作品| 国产探花在线观看一区二区| 国产成人福利小说| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一小说| 亚洲自偷自拍图片 自拍| 嫁个100分男人电影在线观看| 国内少妇人妻偷人精品xxx网站 | 日本与韩国留学比较| 少妇的丰满在线观看| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看| 天堂动漫精品| 麻豆一二三区av精品|