• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes

    2016-06-07 05:44:12EhsanSalehiLeilaBakhtiariMahdiAskari
    Chinese Journal of Chemical Engineering 2016年11期

    Ehsan Salehi*,Leila Bakhtiari,Mahdi Askari

    1 Department of Chemical Engineering,Faculty of Engineering,Arak University,Arak 38156-8-8349,Iran

    2 Membrane Research Center,Department of Chemical Engineering,Razi University,Kermanshah,Iran

    1.Introduction

    In recent years,membrane technology has attracted increased attention among researchers due to conspicuous advantages such as low energy consumption,high separation efficiency,small footprint,ease of scale up and comfortable monitoring and control[1–2].Membrane adsorption i.e.,integration of membrane and adsorption concepts,has also emerged as an effective technique for the removal of a wide range of pollutants such as dyes,macromolecules,humic substances and heavy metals from aqueous environments[3–8].Chitosan(a natural polysaccharide biopolymer)and its blends with other hydrophilic polymers like polyvinyl alcohol and cellulose acetate are potential materials for fabricating membrane adsorbents[9–13].Thermodynamic and kinetic study of membrane adsorption processes is also of great importance,especially for detailed characterization of adsorbents,better process design,optimization and scale up[14–16].Moreover,thermodynamic studies reveal a good deal of information on heat sensitivity,favorability and isothermal nature of adsorption.Kinetic models however,provide useful insight of mechanisms incorporated in adsorption as well as the time required for completion of adsorption capacity[7,17].

    Mathematical modeling is regarded as an important part of process development studies especially in progressive separation fields like membrane adsorption.Mathematical modeling of membrane adsorption as an immature separation technology has recently attracted specialist researchers'attention[18–23].Rapid prototyping and presenting efficient scale-up strategies(from lab to full scale)are some major benefits of modeling projects.Comprehensive knowledge of the adsorption/transport mechanisms is also another possible outcome.Mathematical modeling is rather a state of the art approach for efficient analysis of dialysis permeation using affinity membranes.In other words,lack of accurate and straightforward transport models for the simulation,optimization and data prediction is obvious in dialysis process using membrane adsorbents.

    In few works,adsorptive transport through affinity membranes has been mathematically investigated[20,21].These types of models take advantages of convection,diffusion and adsorption mechanisms in combination.Some drawbacks are mainly resulted from rough assumptions of the proposed models that are commonly employed for simplicity and ease of application.Model extensions generally do revise rough hypotheses/assumptions accompanied by the pristine models.This may result in development of the models and also improvement of their agreement with the experimental results.In some extended models,effects of systems non-idealities such as dead regions,delay times,porosity variation and simultaneous transport of several solutes have been taken into account[21–24].

    A large number of the adsorption-transport models are supported by the results of the thermodynamic and/or kinetic analyses of batch adsorption.For example,Langmuir–Freundlich isotherm has been used to describe adsorption equilibrium in a convection/diffusion/adsorption combined model developed for predicting Ni(II)ion transport through an ion-imprinted affinity membrane[23].Thermokinetic analysis of papain adsorption on ligand-immobilized chitosan-coated nylon membranes revealed an endothermic and spontaneous adsorption[25].In addition,rapid protein uptake was recognized on the basis of superior adjustment of the pseudo-second-order kinetic model to the experimental data.Freundlich isotherm could appropriately represent the equilibrium adsorption of the enzyme on the chitosan-coated membranes.Thin(12–15 μm thick)membrane adsorbents have been fabricated from chitosan/poly(vinyl)alcohol blend containing different values of aminated multi-walled carbon nanotubes and investigated for adsorption of Cu(II)by the current authors[5,16].To our knowledge,transport aspects of thin membrane adsorbents have not been adequately tackled in literature.In addition,effects of time-dependency of model components like diffusivity coefficient have not been addressed elsewhere.

    This study is oriented to provide a mathematical model and computer-aided framework for the simulation of Cu(II)diffusive transport through thin membrane adsorbents applied in dialysis permeation.As a novel approach,effects of feed-side concentration and diffusivity variation during dialysis transport are investigated in the model extensions.Different polynomial and exponential functions are employed and validated using the model solver program to attain appropriate representation of time-dependency of the inlet-concentration and diffusivity.The most important advantage of the current study is to disclose the transient nature of diffusivity and inlet concentration during dialysis transport through the membranes.

    2.Experimental

    Chitosan/polyvinyl alcohol nanocomposite membrane adsorbents,prepared via the solvent evaporation technique,have been fully studied in our previous publications[5,16].Some important properties of the synthesized membranes are listed in Table 1.Batch adsorption experiments and isothermal,thermodynamics and kinetics have been also investigated and discussed in the above-mentioned works from the current authors.We utilized thermokinetic study results obtained in our prior projects for the purpose of model development in the current study.

    Permeability of Cu(II)ions through the membranes was monitored using a long-time batch permeation dialysis setup at room temperature and pH=5.5.The experimental procedure has been explained with full details elsewhere[26].Brie fly,a two-section dialysis setup was applied for this purpose.Membrane samples were placed and sealed(using proper O-rings)between the two half-cells of the setup.Feed-side and receive-side half-cells were filled with 100 ml of 20 mg·L?1copper nitrate solution and double-distilled water,respectively.Three hours once,3 ml samples were taken from the receive solution and then,immediately compensated with the same amount of distilled water.Copper concentration in the samples was analyzed by a flame atomic absorption spectrophotometer(AA-6300 Shimadzu).

    3.Mathematical Framework

    Adsorption-transport model,in unsteady state mode,has been applied to describe the transport behavior of copper ions through the membrane adsorbents.This model has been frequently applied and validated in transport modeling of affinity membranes in literature[20,21,24].Some hypotheses and assumptions have been employed to adapt the adsorption-transport model for the dialysis permeation system:

    1-Ion transfer through the membrane adsorbent is assumed to be one dimensional(perpendicular to the membrane surface),with negligible dispersion in the direction of the ions transport.

    2-Mechanism of transport through the membrane is controlled by adsorption and diffusion simultaneously.It is assumed that the convective transport mechanism plays no significant role in this stationary system from hydrodynamic viewpoint.

    3-Freundlich isotherm is the best- fitted model for describing equilibrium adsorption of Cu(II)ions on the membrane surface and pore walls according to the results obtained in our prior works[5,16,26].Beside adsorption,physical attachment phenomena such as sieving,pore filling and inertia(drag)retardation can act as retarding mechanisms.These mechanisms are essential components of unsteady state term in the governing equation( final PDE)obtained through the modeling.

    3.1.Pristine model

    Concentration variation versus time and distance(measured from the membrane inlet)can be obtained based on basic mass balance concepts.The resultant governing equation is obtained as follows:

    where ε is the membrane bulk porosity,ρsis the density of the copper ions(~8.96 g·cm?3),C is equilibrium concentration in the aqueous phase equilibrated with the adsorbed phase,Q is the equilibrium adsorbed phase concentration,Diis the diffusion coefficient of copper ions(D0=2.5 × 10?6cm2·s?1in pristine model)and x represents the transport direction perpendicular to the membrane surface.

    Chitosan polymer interacts with the cations through its amino(?NH2)and hydroxyl(?OH)functional groups as reactive sites.The Freundlich isotherm model offers the best interpretation of the adsorption equilibrium based on the isothermal investigations performed in our previous work[16].The isotherm equation is as follows:

    k and m are Freundlich isotherm constants which have been obtained elsewhere[5].One can combine Eqs.(1)and(2)by using simplechain role differentiation technique and obtain the following governing equation:

    Table 1 Characteristics of nanocomposite membrane adsorbents[5]

    Eq.(3)is the pristine model structure in which constant diffusivity coefficient(Di=Do)and inlet concentration(Ci=Co)are applied.In next section,we try to modify some uncertain hypotheses of this model.The model includes one dependent variable(C)and couple of independent variables(t and x)and thus,requires two boundary conditions and one initial condition as follows:

    At feed inlet(x=0),the inlet(feed-side)concentration is Ci.Concentration of the ions in the vicinity of the membrane surface in the feed part of the dialysis setup is called inlet-concentration from now on.Eqs.(5)and(6)are frequently used for indicating the minimum concentration of the ions at the membrane outlet and the absence of solute in the receive solution at the permeation commencement,correspondingly[18,19,21,23].

    3.2.Model extensions

    Inlet concentration(Ci)can be increased with time as a result of the concentration polarization in the feed side compartment at the vicinity of the membrane surface.Initial concentration was assumed to be constant during permeation time in the pristine model.In the Co-extended model,we examine several wellbehaved time-dependent functions including polynomials(from 1°to 3°)and combined polynomials/exponentials for representing inlet-concentration variation during permeation process.All the functions satisfy the initial condition at the start of the permeation process.The most important reason for selecting these types of functions is simplicity and well-behaved nature of these math functions.In addition,polynomial and exponential functionalities widely appear in formulating molecular phenomena in engineering science.Concentration polarization near membrane surface,concentration distribution inside boundary layer and diffusivity in porous media are obvious examples of the phenomena which are mathematically correlated by the exponential and/or polynomial functions.Table 2 indicates the applied functions.

    Diffusivity of solutes through the membranes is affected by many factors such as porosity,concentration gradient,surface and internal morphology and retardation mechanisms including chemical and physical attachment phenomena[21,23].Predominance of retardation mechanisms may gradually change during permeation period.As aresult,diffusivity may be a function of time.Finally,Co-D extended model was proposed as the final generation of the model extension.Both inlet concentration and diffusivity coefficient were correlated using similar types of transient functions as indicated in Table 2.An advanced MATLAB?(R2009a,License no.:161051)code was prepared to solve the governing equation with different transient function alternatives.The best transient functions for the inlet concentration and diffusivity were obtained according to the highest agreement between the experimental results and model predictions.The agreement accuracy of the models was also analyzed by exact statistical functions.

    Table 2 Applied functions for transient inlet-concentration and diffusivity

    3.3.Statistical error functions

    The presented models were carefully validated with the experimental dialysis data according to the statistical error analyses including APRE,AAPRE,STD,R-square and RMSE[27-29].Brief definitions of these functions are as follows:

    A.Average percent relative error(APRE,%):

    4.Results and Discussion

    By solving the governing equations,the permeate concentration of the ions at the membrane outlet(receive phase)was obtained.A software analyzer code was developed to measure the fitting adjustment of the modeling results with the experimental data on the basis of the nonlinear regression(NLR)method[28,29].

    4.1.Pristine model

    Fig.1.Models versus experimental data for dialysis permeation of copper ions through the plain membrane(M0).

    Fig.2.Models versus experimental data for dialysis permeation of copper ions through 0.5 wt%MWCNT contained membrane(M0.5).

    Pristine model is not successful in predicting permeate concentration as it is obvious from Figs.1 to 4.Statistical parameters(Table 3)also indicate similar results.This outcome motivated us to modify the model by revising some doubtful assumptions of the model.Accumulation of the ions near the surface of the membrane(so-called ‘concentration polarization’)causes the feed side concentration to vary during permeation.This phenomenon has been ignored in the pristine model.Furthermore,diffusivity of the ions through the membranes may be affected by various retardation mechanisms such as adsorption,pore-clogging and sieving.Domination(strength and weakness)of the retardation mechanisms against ion transfer may vary with time.Accordingly,diffusivity can be also defined as a function of time as obtained by other researchers[30–32].Transiency of diffusion coefficient is not considered in the pristine model.

    Fig.3.Models versus experimental data for dialysis permeation of copper ions through 1 wt%MWCNT contained membrane(M1).

    Fig.4.Models versus experimental data for dialysis permeation of copper ions through 2 wt%MWCNT contained membrane(M2).

    4.2.Influence of transient feed-side concentration

    Some simple and straightforward mathematical functions(see Table 2)have been applied to represent the transiency of feed-side concentration in the adsorption/diffusion model.The code solver can optimize the parameters of the transient functions for the best agreement of the model with the experimental results.Figs.1 to 4 show the results for different membranes.Statistical analyse results are also reported in Table 3.It is clear from both the figures and the statistical analyses results that the predictions of the extended model are in better agreement with the experimental data.This indicates the impact of time-dependency of inletconcentration in transport of ions through the membranes.Models for M0 and M2 show higher agreement elevation compared to M0.5 and M1.Structure of M0 and M2 is rather denser than M0.5 and M1.Accordingly,the impact of concentration polarization in altering the inlet-concentration may be more significant for the dense membranes.This may be connected to the difficulties in ion transport through dense structures compared to porous ones.This idea also motivated us to examine the time-dependency of the diffusivity coefficient for permeation through the membranes.The optimized functions for inlet-concentration are depicted in Table 4.

    Table 3 Statistical parameters for optimized models fitted to the experimental data for different membranes

    Table 4 Optimized functions for diffusivity and inlet-concentration in dialysis permeation through nanocomposite membranes

    4.3.Combined effect of transient diffusivity and initial concentration

    The transport model has been further modified by using similar mathematical relations for interpreting diffusivity(Table 2)in combination with the optimized inlet-concentration functions.Simultaneous effect of Diand Civariation has been taken into account in the final extension of the model.The optimized diffusivity functions are shown in Table 4.

    Figs.1 to 4 illustrate the agreement of the model with the experimental data.Statistical parameters(Table 3)con firm better agreement of the second extended model with the empirical data compared to the pristine one.In addition,the results indicate an elevation in the agreement accuracy of the model in comparison to the first extension.

    As inferred from Table 3,the agreement accuracy of the models is elevated step by step during our modeling strategy.Accommodation accuracy of the plain model is some what elevated in the first extension;however,it is not still satisfactory.The observed elevation is due to consideration of transiency of the inlet-concentration in the model.The second generation of the model however,offers more acceptable agreement with the experimental results.This model takes simultaneous advantages of time-dependent diffusivity and inlet-concentration.It is concluded from the modeling outcome that time-dependency of diffusivity and inlet-concentration is conspicuously important for simulating transport behavior of the membranes.

    4.4.Three dimensional plots

    Fig.5.3D plots of permeate concentration versus time and distance from the membrane inlet for the plain membrane(M0).

    Fig.6.3D plots of permeate concentration versus time and distance from the membrane inlet for 0.5 wt%MWCNT contained membrane(M0.5).

    Fig.7.3D plots of permeate concentration versus time and distance from the membrane inlet for 1 wt%MWCNT contained membrane(M1).

    Figs.5 to 8 are three-dimensional plots of permeate concentration versus time and location(distance from the membrane inlet).The graphs are obtained from the final extended(Co-D extention)model with the optimized functions adjusted for diffusivity and inlet-concentration.It is inferred from 3D plots that the concentration gradient(versus time and distance)are almost fully developed at early permeation times and in the vicinity of the membrane surface.Concentration variation is not so significant for remaining times of permeation and at locations far from the membrane inlet.It is also obvious from the Figs.5 to 8 that the concentration gradient is further developed(along with the transport direction through the membrane)for M0.5 and M1 membranes with larger porosity(Table 1),compared to the dense membranes(M0 and M2).This may be attributed to the lower hindrances acting against mass transport in porous rather than dense structures.In other words,concentration gradient can be further developed in porous structures because of facilitated transport of the ions[21,22].On the other hand,porous membranes offer higher void-capacity and larger specific surface area for adsorption.The observed effects are in contrast with each other.Accordingly,the effect of porosity on transport mechanism is not still so clear.As future perspective,transport models would be further ext ended by application of time-dependent functions for describing porosity variation to better investigate the effect of porosity in transport mechanism.

    Fig.8.3D plots of permeate concentration versus time and distance from the membrane inlet 2 wt%MWCNT contained membrane(M2).

    5.Conclusions

    Application of pristine and extended adsorption/transport models could result in better insight into the dialysis permeation.Pristine model with constant diffusivity and feed-side concentration was not well fitted to the experimental results.Accuracy of predictions was improved from near 10%up to 60%considering time-dependency of feedside concentration in the first extension of the model.Increased agreement(up to 90%)was also achieved considering time-functionality of feed-side concentration and diffusivity simultaneously in the final extension of the model.As inferred from the modeling results,membranes with larger porosity could support better concentration gradient development through the membrane due to reduced mass transfer hindrances against ion transport.Developed adsorption/diffusion models could not only be used to reduce the volume of the experimental efforts but also elevate our understanding about the mechanisms of ion transport through the chitosan-based composite membranes.In addition,this work revealed the importance of time-dependency of diffusivity as well as inlet concentration on the transport mechanism through the membranes.

    [1]T.S.Koseoglu,E.Kir,S.Ozkorucuklu,P.E.Karam?zrak,Preparation and characterization of P2FAn/PVDF composite cation-exchange membranes for the removal of Cr(III)and Cu(II)by Donnan dialysis,React.Funct.Polym.38(2010)900–907.

    [2]R.A.Bartsch,W.J.Douglas,Chemical separations with liquid membranes,American Chemical Society,Washington,1996 19–56(Chapter 3).

    [3]F.Cattoli,C.Boi,M.Sorci,G.C.Sarti,Adsorption of pure recombinant MBP-fusion proteins on amylose affinity membranes,J.Membr.Sci.273(2006)2–11.

    [4]C.Liu,R.Bai,Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes,J.Membr.Sci.284(2006)313–322.

    [5]E.Salehi,S.S.Madaeni,L.Rajabi,V.Vatanpour,A.A.Derakhshan,S.Zinadini,S.Ghorabi,H.Ahmadi Monfared,Novel chitosan/poly(vinyl)alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II)removal from water:Preparation,characterization,adsorption kinetics and thermodynamics,Sep.Purif.Technol.89(2012)309–319.

    [6]G.Bayramoglu,M.Yilmaz,M.Yakup Arica,Affinity dye–ligand poly(hydroxyethyl methacrylate)/chitosan composite membrane for adsorption lysozyme and kinetic properties,Biochem.Eng.J.13(2003)35–42.

    [7]Z.Cheng,X.Liu,M.Han,W.Ma,Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution,J.Hazard.Mater.182(2010)408–415.

    [8]A.Denizli,R.Say,Y.Arica,Removal of heavy metal ions from aquatic solutions by membrane chromatography,Sep.Purif.Technol.21(2000)181–190.

    [9]M.F.Zeng,Z.P.Fang,Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN,J.Membr.Sci.245(2004)95–102.

    [10]C.K.S.Pillai,W.Paul,C.P.Sharma,Chitin and chitosan polymers:Chemistry,solubility and fiber forming,Prog.Polym.Sci.34(2009)641–678.

    [11]A.Svang–Ariyaskul,R.Y.M.Huang,P.L.Douglas,R.Pal,X.Feng,P.Chen,L.Liu,Blended chitosan and polyvinyl alcohol membranes for the pervaporation dehydration of isopropanol,J.Membr.Sci.280(2006)815–823.

    [12]A.G.Boricha,Z.V.P.Murthy,Acrylonitrile butadiene styrene/chitosan blend membranes:Preparation,characterization and performance for the separation of heavy metals,J.Membr.Sci.339(2009)239–249.

    [13]M.Rinaudo,Chitin and chitosan:Properties and applications,Prog.Polym.Sci.31(2006)603–632.

    [14]A.R.Cestari,E.F.S.Vieira,C.R.S.Mattos,Thermodynamics of the Cu(II)adsorption on thin vanillin–modified chitosan membranes,J.Chem.Thermodyn.38(2006)1092–1099.

    [15]E.Salehi,S.S.Madaeni,F.Heidary,Dynamic adsorption of Ni(II)and Cd(II)ions from water using 8-hydroxyquinoline ligand immobilized PVDF membrane:Isotherms,thermodynamics and kinetics,Sep.Purif.Technol.94(2012)1–8.

    [16]E.Salehi,S.S.Madaeni,L.Rajabi,A.A.Derakhshan,S.Daraei,V.Vatanpour,Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes:Combined effect of polyethylene glycol and functionalized multiwalled carbon nanotubes,Chem.Eng.J.215-216(2013)791–801.

    [17]A.R.Cestari,E.F.S.Vieira,J.D.S.Matos,D.S.C.dos Anjos,Determination of kinetic parameters ofCu(II)interaction with chemically modified thin chitosan membranes,J.Colloid Interface Sci.285(2005)288–295.

    [18]C.Boi,S.Dimartino,G.C.Sarti,Modeling and simulation of affinity membrane adsorption,J.Chromatogr.A 1162(2007)24–33.

    [19]W.Shi,F.Zhang,G.Zhang,Mathematical analysis of affinity membrane chromatography,J.Chromatogr.A 1081(2005)156–162.

    [20]S.S.Madaeni,E.Salehi,Adsorption-transport modeling for transmission of anions through PVD membrane in the presence of screen phenomenon,Appl.Surf.Sci.255(2009)3523–3529.

    [21]S.S.Madaeni,E.Salehi,A new adsorption-transport and porosity combined model for passage of cations through nanofiltration membrane,J.Membr.Sci.333(2009)100–109.

    [22]E.Salehi,S.S.Madaeni,A new adsorption based correlation for estimation of membrane bulk porosity,Sep.Sci.Technol.46(2011)950–958.

    [23]E.Salehi,S.S.Madaeni,V.Vatanpour,Thermodynamic investigation and mathematical modeling of ion-imprinted membrane adsorption,J.Membr.Sci.389(2012)334–342.

    [24]A.A.Belkova,A.I.Sergeeva,P.Y.Apel,M.K.Beklemishev,Diffusion of aniline through a polyethylene terephthalate track-etched membrane,J.Membr.Sci.330(2009)145–155.

    [25]H.L.Nie,L.M.Zhu,Adsorption of papain with Cibacron Blue F3GA carrying chitosancoated nylon affinity membrane,Int.J.Biol.Macromol.40(2007)261–267.

    [26]E.Salehi,S.S.Madaeni,In fluence of poly(ethylene glycol)as pore-generator on morphology and performance of chitosan/poly(vinyl alcohol)membrane adsorbents,Appl.Surf.Sci.288(2014)537–541.

    [27]D.Karadag,Y.Koc,M.Turan,M.Ozturk,A comparative study of linear and nonlinear regression analysis for ammonium exchange by clinoptilolite zeolite,J.Hazard.Mater.144(2007)432–437.

    [28]K.V.Kumar,S.Sivanesan,Isotherm parameters for basic dyes onto activated carbon:Comparison of linear and non-linear method,J.Hazard.Mater.129(2006)147–150.

    [29]E.Salehi,J.Abdi,M.H.Aliei,Assessment of Cu(II)adsorption on modified membrane adsorbents using LS-SVM intelligent approach,J.Saudi Chem.Soc.94(2)(2014)213–219.

    [30]W.Hundsdorfer,J.Verwer,Numerical solution of time-dependent advection–diffusion–reaction equations,Springer Series in Computational Mathematics,vol.33,Springer,Berlin,2003.

    [31]K.Y.Foo,B.H.Hameed,Insights into the modeling of adsorption isotherm systems,Chem.Eng.J.156(2010)2–10.

    [32]F.Logist,P.Saucez,J.Van Impe,A.Vande Wouwer,Simulation of(bio)chemical processes with distributed parameters using Matlab?,Chem.Eng.J.155(2009)603–616.

    国产精品久久久久久精品古装| 超碰成人久久| 老熟妇乱子伦视频在线观看 | 悠悠久久av| 亚洲精品一区蜜桃| 亚洲,欧美精品.| 俄罗斯特黄特色一大片| 国产极品粉嫩免费观看在线| 久久久久久久精品精品| 狂野欧美激情性bbbbbb| 国产精品久久久久久精品古装| 亚洲成人免费av在线播放| 国产不卡av网站在线观看| 黄色视频,在线免费观看| av网站免费在线观看视频| 性少妇av在线| 亚洲av电影在线观看一区二区三区| 精品国产国语对白av| 黄色视频在线播放观看不卡| 亚洲国产毛片av蜜桃av| 国产av精品麻豆| 国产熟女午夜一区二区三区| 久久国产精品人妻蜜桃| 国产亚洲av高清不卡| 天天躁狠狠躁夜夜躁狠狠躁| 女性生殖器流出的白浆| 欧美人与性动交α欧美精品济南到| 亚洲精品国产一区二区精华液| 高潮久久久久久久久久久不卡| www日本在线高清视频| 亚洲精品国产av蜜桃| 欧美变态另类bdsm刘玥| 亚洲激情五月婷婷啪啪| 各种免费的搞黄视频| 日日夜夜操网爽| 日韩 亚洲 欧美在线| 十八禁高潮呻吟视频| 亚洲成av片中文字幕在线观看| 亚洲av欧美aⅴ国产| 99久久精品国产亚洲精品| 国产精品一区二区免费欧美 | 电影成人av| 日韩一卡2卡3卡4卡2021年| 久久人人爽av亚洲精品天堂| 亚洲三区欧美一区| tube8黄色片| 在线永久观看黄色视频| 纵有疾风起免费观看全集完整版| 国产97色在线日韩免费| 黑人操中国人逼视频| 丝袜在线中文字幕| kizo精华| 99国产精品一区二区蜜桃av | 久久国产精品男人的天堂亚洲| 秋霞在线观看毛片| 俄罗斯特黄特色一大片| www.av在线官网国产| 亚洲国产日韩一区二区| 亚洲精品粉嫩美女一区| 久久久国产精品麻豆| 少妇裸体淫交视频免费看高清 | 一本久久精品| 亚洲一区中文字幕在线| 亚洲精品第二区| 飞空精品影院首页| 精品视频人人做人人爽| 亚洲一码二码三码区别大吗| 老司机福利观看| 男男h啪啪无遮挡| 天堂俺去俺来也www色官网| 久久亚洲精品不卡| 欧美精品人与动牲交sv欧美| 搡老乐熟女国产| 女人爽到高潮嗷嗷叫在线视频| 黄色 视频免费看| 国产精品国产av在线观看| 免费观看人在逋| 一本综合久久免费| 男女无遮挡免费网站观看| 精品亚洲乱码少妇综合久久| 免费黄频网站在线观看国产| 日韩欧美一区视频在线观看| 久久久国产欧美日韩av| 亚洲一区中文字幕在线| 国产成人欧美| 97在线人人人人妻| 极品人妻少妇av视频| 日本欧美视频一区| 99久久综合免费| 交换朋友夫妻互换小说| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9 | 亚洲五月色婷婷综合| 午夜精品久久久久久毛片777| 91成人精品电影| av网站在线播放免费| 他把我摸到了高潮在线观看 | 久久天躁狠狠躁夜夜2o2o| 欧美激情 高清一区二区三区| 建设人人有责人人尽责人人享有的| 中文字幕av电影在线播放| 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线| av超薄肉色丝袜交足视频| 啦啦啦啦在线视频资源| 国产区一区二久久| 爱豆传媒免费全集在线观看| 国产亚洲精品一区二区www | 亚洲色图 男人天堂 中文字幕| 成人国产av品久久久| 99国产精品一区二区蜜桃av | 国产精品偷伦视频观看了| 久久精品国产亚洲av香蕉五月 | 欧美人与性动交α欧美软件| 亚洲精品中文字幕一二三四区 | 国产精品99久久99久久久不卡| 欧美精品一区二区免费开放| 一本大道久久a久久精品| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 日韩制服丝袜自拍偷拍| 亚洲欧洲精品一区二区精品久久久| h视频一区二区三区| 最近最新中文字幕大全免费视频| 美国免费a级毛片| 亚洲人成电影免费在线| 亚洲欧美色中文字幕在线| 国产av又大| 一区二区av电影网| 咕卡用的链子| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区 | 99热网站在线观看| 亚洲av片天天在线观看| 日本五十路高清| 90打野战视频偷拍视频| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| 国产精品久久久久久人妻精品电影 | 秋霞在线观看毛片| 免费在线观看影片大全网站| videos熟女内射| 日韩欧美一区视频在线观看| www.999成人在线观看| 在线精品无人区一区二区三| 欧美黄色片欧美黄色片| 国产三级黄色录像| 一级片免费观看大全| 国产一区二区三区av在线| 女人精品久久久久毛片| svipshipincom国产片| 精品一区二区三区av网在线观看 | 桃花免费在线播放| 极品人妻少妇av视频| 大码成人一级视频| 日韩大片免费观看网站| 日韩人妻精品一区2区三区| 91av网站免费观看| 久久99一区二区三区| 国产精品 国内视频| 伊人亚洲综合成人网| 成年女人毛片免费观看观看9 | 日韩中文字幕视频在线看片| 一二三四在线观看免费中文在| 国产精品久久久人人做人人爽| 久久天躁狠狠躁夜夜2o2o| 制服人妻中文乱码| 亚洲专区中文字幕在线| 伊人亚洲综合成人网| 青春草亚洲视频在线观看| 亚洲精品在线美女| 久久人妻熟女aⅴ| 免费久久久久久久精品成人欧美视频| 另类精品久久| 香蕉丝袜av| 午夜激情久久久久久久| 亚洲国产欧美日韩在线播放| 在线看a的网站| 在线看a的网站| 一区在线观看完整版| 丝袜人妻中文字幕| 大香蕉久久成人网| 99热国产这里只有精品6| 老司机午夜十八禁免费视频| 中文精品一卡2卡3卡4更新| 多毛熟女@视频| 熟女少妇亚洲综合色aaa.| 高清在线国产一区| 中国国产av一级| 桃花免费在线播放| 丰满人妻熟妇乱又伦精品不卡| 9色porny在线观看| 热re99久久国产66热| 一边摸一边做爽爽视频免费| 女性生殖器流出的白浆| 中文精品一卡2卡3卡4更新| av免费在线观看网站| 亚洲精品一二三| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 久久精品aⅴ一区二区三区四区| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 人人妻,人人澡人人爽秒播| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| www.自偷自拍.com| 电影成人av| 91老司机精品| 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| 国产片内射在线| 蜜桃国产av成人99| 久久99一区二区三区| 制服人妻中文乱码| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美亚洲日本最大视频资源| 精品免费久久久久久久清纯 | 日韩熟女老妇一区二区性免费视频| www.自偷自拍.com| av片东京热男人的天堂| 99精国产麻豆久久婷婷| 99精国产麻豆久久婷婷| 午夜福利在线观看吧| 亚洲天堂av无毛| 最新在线观看一区二区三区| 色视频在线一区二区三区| 99国产极品粉嫩在线观看| 日本欧美视频一区| 在线观看免费视频网站a站| 久久久国产一区二区| 亚洲伊人久久精品综合| 亚洲国产精品一区二区三区在线| 熟女少妇亚洲综合色aaa.| 免费久久久久久久精品成人欧美视频| 美女视频免费永久观看网站| 免费观看av网站的网址| 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 日本一区二区免费在线视频| 777久久人妻少妇嫩草av网站| 美女高潮喷水抽搐中文字幕| 午夜激情久久久久久久| 伊人久久大香线蕉亚洲五| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久精品精品| h视频一区二区三区| 久久久国产成人免费| 无限看片的www在线观看| 久久毛片免费看一区二区三区| 美女主播在线视频| 精品福利观看| 国产一区二区三区在线臀色熟女 | 国产欧美日韩一区二区三区在线| 一级片免费观看大全| 亚洲 欧美一区二区三区| 国产成人系列免费观看| 一区在线观看完整版| 欧美性长视频在线观看| 国产精品九九99| 亚洲综合色网址| 动漫黄色视频在线观看| 最近最新中文字幕大全免费视频| 男男h啪啪无遮挡| 久热这里只有精品99| 精品熟女少妇八av免费久了| 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃| 91国产中文字幕| 免费日韩欧美在线观看| 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 久久久久久久国产电影| 国产精品偷伦视频观看了| 美国免费a级毛片| 亚洲精品一二三| 在线av久久热| 久久久久久人人人人人| 99国产精品一区二区蜜桃av | 正在播放国产对白刺激| tube8黄色片| 后天国语完整版免费观看| 我要看黄色一级片免费的| 18禁国产床啪视频网站| 婷婷丁香在线五月| 日韩制服丝袜自拍偷拍| 国产av又大| 亚洲国产精品成人久久小说| 久久女婷五月综合色啪小说| 人人澡人人妻人| 欧美日韩亚洲高清精品| 日本av免费视频播放| 午夜激情av网站| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 久久久国产欧美日韩av| 亚洲欧美成人综合另类久久久| 国产精品国产三级国产专区5o| 中文字幕另类日韩欧美亚洲嫩草| 99久久99久久久精品蜜桃| 宅男免费午夜| 2018国产大陆天天弄谢| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区四区五区乱码| 成人av一区二区三区在线看 | 日韩中文字幕欧美一区二区| 麻豆av在线久日| 我要看黄色一级片免费的| 大香蕉久久网| 啦啦啦在线免费观看视频4| 两个人免费观看高清视频| 亚洲av男天堂| 亚洲少妇的诱惑av| 老司机午夜十八禁免费视频| 国产欧美日韩一区二区三区在线| 青草久久国产| 精品福利观看| 男女之事视频高清在线观看| 午夜日韩欧美国产| 久久久水蜜桃国产精品网| 丰满人妻熟妇乱又伦精品不卡| 丁香六月天网| 欧美日韩一级在线毛片| 国产亚洲一区二区精品| 这个男人来自地球电影免费观看| 亚洲av片天天在线观看| 五月开心婷婷网| 正在播放国产对白刺激| 人妻 亚洲 视频| 色婷婷av一区二区三区视频| 老熟妇仑乱视频hdxx| 交换朋友夫妻互换小说| 亚洲国产av新网站| 黄色a级毛片大全视频| 国产av国产精品国产| 精品少妇一区二区三区视频日本电影| 每晚都被弄得嗷嗷叫到高潮| 成年动漫av网址| 中国美女看黄片| 一本综合久久免费| 黄色视频不卡| 日日夜夜操网爽| 国产伦理片在线播放av一区| 一级毛片电影观看| 久久久精品免费免费高清| 国产区一区二久久| 91成人精品电影| 少妇人妻久久综合中文| 新久久久久国产一级毛片| 欧美日韩一级在线毛片| 亚洲 国产 在线| 又大又爽又粗| 黄色视频在线播放观看不卡| 成在线人永久免费视频| 免费一级毛片在线播放高清视频 | 男女下面插进去视频免费观看| 咕卡用的链子| 国产精品av久久久久免费| 国产成人a∨麻豆精品| 国产欧美日韩精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 国产精品一区二区免费欧美 | 高清欧美精品videossex| 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 精品久久蜜臀av无| a级毛片黄视频| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕| 一级毛片精品| 天天躁狠狠躁夜夜躁狠狠躁| 久9热在线精品视频| 国产精品久久久久久精品电影小说| 女人久久www免费人成看片| 亚洲av男天堂| 亚洲av日韩精品久久久久久密| 别揉我奶头~嗯~啊~动态视频 | 精品亚洲成国产av| 免费在线观看日本一区| 女警被强在线播放| 精品欧美一区二区三区在线| 一区二区三区激情视频| 久久国产精品大桥未久av| 丰满迷人的少妇在线观看| 无遮挡黄片免费观看| 黄片大片在线免费观看| 超碰成人久久| 久久久欧美国产精品| 成在线人永久免费视频| 国产一区二区三区av在线| 欧美久久黑人一区二区| 动漫黄色视频在线观看| 久久精品国产亚洲av香蕉五月 | 国产日韩欧美视频二区| 高清视频免费观看一区二区| 一区在线观看完整版| 女性被躁到高潮视频| 精品乱码久久久久久99久播| 在线av久久热| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲 | 交换朋友夫妻互换小说| 亚洲国产欧美网| 亚洲成av片中文字幕在线观看| 老司机午夜福利在线观看视频 | 午夜激情av网站| 国产精品香港三级国产av潘金莲| 99香蕉大伊视频| 人人妻人人添人人爽欧美一区卜| 日韩 欧美 亚洲 中文字幕| 成年人黄色毛片网站| 婷婷成人精品国产| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的| 十八禁人妻一区二区| 国产精品国产三级国产专区5o| 欧美成狂野欧美在线观看| 国产成人欧美| 国产成人av教育| 老司机靠b影院| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av蜜桃| 日本wwww免费看| 午夜精品国产一区二区电影| 亚洲免费av在线视频| 久久久国产欧美日韩av| 法律面前人人平等表现在哪些方面 | 老鸭窝网址在线观看| 国产成人a∨麻豆精品| kizo精华| 中文字幕色久视频| 纯流量卡能插随身wifi吗| a级毛片在线看网站| 亚洲欧美清纯卡通| 久久久水蜜桃国产精品网| 少妇人妻久久综合中文| 老汉色∧v一级毛片| 在线十欧美十亚洲十日本专区| 国产精品1区2区在线观看. | 老司机午夜十八禁免费视频| 亚洲av电影在线进入| 免费黄频网站在线观看国产| 免费少妇av软件| 80岁老熟妇乱子伦牲交| 精品一区二区三卡| 精品一品国产午夜福利视频| 国产一区二区激情短视频 | 嫩草影视91久久| 男人舔女人的私密视频| 亚洲伊人色综图| 日韩 欧美 亚洲 中文字幕| 一区二区三区四区激情视频| 美女高潮到喷水免费观看| 美女视频免费永久观看网站| 91九色精品人成在线观看| 精品亚洲乱码少妇综合久久| 亚洲九九香蕉| 啦啦啦免费观看视频1| 在线 av 中文字幕| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 十八禁网站网址无遮挡| 1024香蕉在线观看| 国产精品 国内视频| 日本撒尿小便嘘嘘汇集6| 色老头精品视频在线观看| 国产又色又爽无遮挡免| 国产极品粉嫩免费观看在线| 久久热在线av| 涩涩av久久男人的天堂| 欧美激情高清一区二区三区| 国产高清videossex| 欧美亚洲日本最大视频资源| 国产成人精品久久二区二区91| 久久久久视频综合| 欧美 日韩 精品 国产| 欧美日本中文国产一区发布| 久9热在线精品视频| 法律面前人人平等表现在哪些方面 | a级毛片黄视频| 999久久久国产精品视频| 午夜福利一区二区在线看| 亚洲国产欧美一区二区综合| 亚洲情色 制服丝袜| 动漫黄色视频在线观看| 大陆偷拍与自拍| 免费不卡黄色视频| 在线观看舔阴道视频| 日韩欧美一区二区三区在线观看 | 久久精品亚洲熟妇少妇任你| 999久久久精品免费观看国产| 日韩欧美一区二区三区在线观看 | avwww免费| a级毛片在线看网站| 免费一级毛片在线播放高清视频 | 亚洲av日韩在线播放| 久久久久久久精品精品| 999久久久国产精品视频| 免费在线观看黄色视频的| 成人av一区二区三区在线看 | 亚洲精品久久成人aⅴ小说| 桃花免费在线播放| 91麻豆精品激情在线观看国产 | 国产在线一区二区三区精| 国产成人欧美在线观看 | 欧美成人午夜精品| 免费看十八禁软件| 午夜精品国产一区二区电影| 久久精品久久久久久噜噜老黄| 国产精品影院久久| 亚洲国产中文字幕在线视频| 日韩视频在线欧美| 亚洲国产精品一区三区| 国产一区二区三区在线臀色熟女 | 18禁国产床啪视频网站| 黄色怎么调成土黄色| 另类亚洲欧美激情| 99久久综合免费| 69av精品久久久久久 | 少妇粗大呻吟视频| 大香蕉久久成人网| 日韩欧美国产一区二区入口| 可以免费在线观看a视频的电影网站| 日本91视频免费播放| www.熟女人妻精品国产| 国产欧美亚洲国产| 中文字幕av电影在线播放| 久久人妻福利社区极品人妻图片| 一级黄色大片毛片| 99精国产麻豆久久婷婷| 黑人巨大精品欧美一区二区mp4| 操出白浆在线播放| 精品亚洲乱码少妇综合久久| 亚洲精品国产色婷婷电影| 国产在线免费精品| 丁香六月欧美| 男女下面插进去视频免费观看| 老司机靠b影院| 十八禁人妻一区二区| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 乱人伦中国视频| www.精华液| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频 | 黄网站色视频无遮挡免费观看| 欧美人与性动交α欧美精品济南到| 老司机亚洲免费影院| 悠悠久久av| 精品国产乱码久久久久久小说| 亚洲专区字幕在线| 热re99久久精品国产66热6| 国产精品久久久av美女十八| 日韩大码丰满熟妇| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 欧美大码av| 精品人妻一区二区三区麻豆| 久9热在线精品视频| 曰老女人黄片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 国产又色又爽无遮挡免| 精品国产一区二区久久| 欧美日韩精品网址| 国产精品影院久久| 亚洲av日韩精品久久久久久密| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 久久综合国产亚洲精品| 国产精品久久久av美女十八| 在线观看免费午夜福利视频| 国产高清videossex| 久久久久精品国产欧美久久久 | 精品熟女少妇八av免费久了| 国产亚洲精品一区二区www | 国产欧美亚洲国产| 久久午夜综合久久蜜桃| 极品少妇高潮喷水抽搐| 久久这里只有精品19| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o| 久久久久精品国产欧美久久久 | 老汉色av国产亚洲站长工具| 亚洲国产精品一区三区| 在线观看一区二区三区激情| 性少妇av在线| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 欧美少妇被猛烈插入视频| av在线老鸭窝| 日本一区二区免费在线视频| 久久精品aⅴ一区二区三区四区| 久久ye,这里只有精品| 俄罗斯特黄特色一大片| 老汉色∧v一级毛片| 日韩一卡2卡3卡4卡2021年| 高清视频免费观看一区二区| av不卡在线播放| 一级片免费观看大全| 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 人妻一区二区av| 免费日韩欧美在线观看| 亚洲欧美成人综合另类久久久| 久久天堂一区二区三区四区| 亚洲精品av麻豆狂野|