• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulations of Transonic Flows withFriction and Heat Addition

    2016-05-12 06:03:08WilliamTavernettiMohamedHafez
    關(guān)鍵詞:歐拉聲速摩擦力

    William E. Tavernetti, Mohamed M. Hafez

    (University of California Davis, USA)

    ?

    Simulations of Transonic Flows withFriction and Heat Addition

    William E. Tavernetti*, Mohamed M. Hafez

    (University of California Davis, USA)

    The reactive fluid dynamics of transonic flows in nozzles is an important area of experimental and theoretical research. This paper consists of two parts. In the first part an algorithm for the solution of the Euler Equations in conservative form is discussed which simplifies a generalization of Murman Scheme [1] that is presented in Reference [2]. Chattot’s work is discussed and calculations for flows with shocks are presented. In the second part, transonic flows with friction, heat addition and dissipation is considered. Specific attention is given to detonations with one-step Arrhenius chemistry. A part of this study is to understand the interaction between friction and transonic flow with combustion. The details of the numerical algorithms will be presented along with validation examples from the literature.

    Numerical algorithms, Computational fluid dynamics, Combustion, Euler equations, Friction, Heat, Compressible

    0 Introduction

    Numerical solution of Euler equations in conservative form is discussed in Reference [2] using a generalization of Murman Scheme [1]. In [3], Chattot constructed four operators for subsonic, supersonic, sonic and shock points using eigenvalues and eigenvectors of the Jacobian matrix and the compatibility relations to solve the conservation laws of a perfect gas in a convergent divergent nozzle. In this paper, a simplified scheme is introduced and the calculations for flows with shocks are presented. In the second part of the paper, compressible flow with friction and heat addition is considered followed by steady and unsteady detonation.

    1 Numerical Method

    (1)

    Thepresentnumericalschemeisatwo-stepmethod.Centraldifferenceschemeisusedinthesubsonicregionsandatthesonicpoints,backwarddifferenceisusedinthesupersonicregions,withaspecialshockpointoperatoratshockpoints.Theschemeisconservativealmosteverywhereand,unlike

    Chattot’s calculations, no special sonic point operator is used in this work. The finite difference formulas and their stencils are shown in Figs.1-3.

    1.1 Transonic Flow Examples and Comparison with Lax-Wendroff Method

    A first validation test case shows the sharpness of

    the shock, correct location (x=0.82) and flow through the sonic point, see Fig. 4.

    Examples in 2D for transonic flow over a thin parabolic arc at incidentM= 0.675 andM= 1.4 are in good agreement with Ni’s, who used second order accurate Lax-Wendroff scheme [4]. In Fig. 5 an Oswatitsch-Zeirep singularity at the root of the shock is observed. The present method shows better resolution of this feature and a sharper shock with higher peak than Lax-Wendroff scheme.

    Fig.1 Subsonic/sonic stencil and scheme.

    Fig.2 Supersonic stencil and scheme.

    Fig.3 Shock point stencil and scheme.

    Fig.4 Compressible nozzle flow 1D validation test case.

    In Fig.6, a grid refinement study is shown in the case of flow over a thin parabolic arc.

    Numerical cases for 2D transonic flow over a circular cylinder are also considered. Comparison with the results of 2-step Lax-Wendroff is shown in Fig.7. The numerical results are in good agreement with the literature [5].

    It should be remarked that in the two dimensional calculations, the present scheme is used only in the flow direction, while centered differences, augmented with artificial viscosity, are used for the lateral direction.

    Fig.5 (M∞=0.675) Present vs. 2-step Lax-Wendroff method over thin parabolic arc at different grids.

    Fig.6 Grid refinement study for present method showing representative grids of (121×40), (241×80) and (301×100).

    Fig.7 (M∞=0.5) 2D flow over cylinder, comparison of Lax-Wendroff 2-step to present scheme.

    1.2 Hypersonic Flow

    For a hypersonic flow over a rectangular block is computed for Mach numberM=10. This flow is comparable with the example problem and results published in [6]. In this calculationγ=1.17,the numerical mesh is 88×136 in thexandydirections respectively. Uniform far field boundary conditions are applied , as well as symmetry conditions on the centerline axis. The computational domain is 0≤y≤34. The rectangular body starts atx=18 and the top of the body is aty=12,see Fig.8.

    Fig.8 Hypersonic flow over a rectangular block is computed for M=10, present vs. 2-step Lax-Wendroff method.

    2 Compressible Flows with Friction and Heat Addition

    The Quasi-1D Euler equations with friction and heat addition are given by the conservation laws for mass, momentum and energy respectively:

    (Aρ)t+(Aρu)x=0

    (2)

    (Aρu)+(Aρu2+Ap)x=Axp-f

    (3)

    (AρE)t+(AρuH)x=q

    (4)

    Togetherwiththedefinitions:

    Asteadycompressibleperfectgasinaductofconstantcrosssectionalareaisconsidered.Therearetwopossibilitiestogetfromtheinitiallysupersonicconditiontothefinalsonicflow:byintroductionoftheheatsourceqor the friction sourcef. For compressible duct flows with friction and heat addition, several formulas are available in terms of Mach number, the friction factor and heat addition, see Reference [7]. Examples of choking due to friction and heat addition are calculated with the present scheme, see Fig.9 and the results are in good agreement with those in Reference [7]. Although the calculation is very sensitive to the amount of heat and the shock moves to the right or the left with slight variation of the critical amount, the shock is very sharp, especially when compared with other artificial viscosity methods, for example Lax-Wendroff scheme.

    Fig.9 Compressible duct flow 1D with heat addition (up) and friction (down).

    3 Steady and Unsteady Detonation

    An ordinary differential equation for the species, together with algebraic relations derived from the shock jump conditions gives the steady Zeldovich-Von Nuemann-Doring (ZND) family of solutions to the Euler equations. Although detonations are funda-mentally unstable, the ZND solutions are suitable, in an averaged sense, for many cases. It is shown however by several authors, see for example [8-11], that when solving the Euler equations, the solutions are predicted to be oscillatory and even chaotic for many examples. In general, as the parameterEa, governing the activation energy for the chemical species, is increased, instability increases and the ZND solution becomes less predictive. However, for sufficiently smallEa, the true solution is nearly steady and the correspondence with the ZND solution agrees very well. Detonation in one dimension is governed by the reactive unsteady Euler equations:

    (5)

    (6)

    (7)

    (8)

    (9)

    Wherem,f,qare source terms for mass, friction and heat respectively. The parameterkis a constant factor that relates the reaction and convection rates. The following non-dimensional variables are used:

    (10)

    Hereudenotes axial velocity component andCf,Mis the coefficient of friction and Mach number respectively. In our calculations:

    Q∈[0,50],γ=Cp/Cυ=1.4,Rgas=Cp-Cυ

    Incharacteristiccoordinates,intheabsenceofsourceterms,wearesolvingthesystem:

    (11)

    (12)

    (13)

    (14)

    whereξ=x-st. Initially the shock speedsis given from the ZND theory. Thereafter, the shock speeds=s(t), is corrected for unsteady flow in the characteristic coordinatesξby requiringY=0.5 remain atx=0. LettingLbe a linear operator andNbe the nonlinear reaction operator,w=[ρ,ρu,ρE,ρY],thereactiveEulerEquationscanbewrittencompactlyas:

    (15)

    Inourcomputationanarticialviscositywithε=O(Δx)isaddedtostabilizethesolutionneartheshock.Weuseanimplicitthirdorderupwindingschemeforconservationofmass,momentumandEnergy

    (16)

    Tosolvethisstiffsystem,anIMEXoperatorsplittingmethodforthelinearandnonlineartermsinthespeciesequationisused,byupdatingYfirst implicitly with third order upwinding, then explicitly updating the nonlinear terms.

    (17)

    Severalvalidationcomputationsareperformed,forexamplethesteadystateZNDsolutionwhichisderivedfromthenon-dimensionalizedshock-jumpconditions.Attheshockfrontthefollowingrelationshold:

    (ρu)=1

    (18)

    (19)

    (20)

    DownstreamoftheshockwethensolveanordinarydifferentialequationforthechemicalspeciesY,

    (21)

    (22)

    TheZNDmodelsetupisshowninFig.10.

    HugoniotcurvesforZNDTheoryareshowninFig.11.Asheatisreleased,supersonicflowdeceleratescontinuouslytothesoniccondition,orwecangoalongtheRayleighlinetotheVon-NeumannspikeandthengobackalongthesameRayleighlinetothesoniccondition.

    Fig.10 Sketch of ZND solution.

    SeveralverificationcomputationsareperformedusingthesteadystateZNDsolutionandareinagreementwithresultsreportedin[12].AnexampleshowingseveralZNDtemperatureprofilesforarangeofEavalues is shown in Fig.12.

    Fig.11 Sketch showing C-J detonation as well as strong and weak detonations.

    Fig.12 Several ZND temperature profiles for a range of Ea values.

    The third order upwinding method is compared with several ZND solutions for verification. A representative comparison is shown in Fig.13. The ZND solution is computed starting from the shock front while the Euler equations are integrated across the shock starting upstream with unreacted flow.

    A Chapman-Jouquet detonation following [13] is computed in Fig.14. We compute the shock speed to bes=5.4419 which exactly matches the CJ-shock speed given in [13]. Additional comparisons with steady state computations are in good agreement with the results reported in [12-14].

    The case of friction losses dominating heat transfer effects can sometimes occur when a detonation wave passes through a porous media [14]. In such a case, momentum loss due to friction can be much more influential than heat transfer effects. Following the work of [8] and [11], Fig.15 shows that a source of friction in the momentum equation causes qualitatively the same effect as higherEa.

    Our computations show that friction causes a momentum loss which decreases the peak temperature and local velocity, as shown in Fig.16. Increase in the friction causing reduction in temperature was also reported in [8] and [11].

    The effect of friction on detonation stability is also considered. TreatingEaas a bifurcation parameter, the peak pressure at the Von-Nuemann state is stored for several simulations as a time

    series. The attractor space is then constructed from the local maxima and minima of each time series. Representative examples are shown in Fig.17. In our results, increasing friction causes period doubling for lower values ofEa, this trend is also reported in [8] and [11].

    Fig.13 ZND solution by Algebraic/ODE formulation vs.reactive Euler equations. Notice the scale difference between the upper and lower figures to emphasize the difference between the two solutions.

    Fig.14 Comparison with C-J detonation.

    Fig.15 Ea = 25 (top), Ea = 28 (bottom), γ=1.2 showing a range of Cf coeffcients and transition to instability.

    Fig.16 Ea = 23, γ=1.2, comparing Cf = 0 with Cf=0.004, lower temperature, T, and velocity, u, are observed.

    Fig.17 Von-Neumann peak pressure for Cf = 0 (left), Cf=0.002 (center), Cf = 0.004 (right),γ= 1.2, showing translation and compression of period doubling regions for variable Ea.

    4 Conclusions

    In the present work we have demonstrated a simple scheme for computing transonic flows which can be considered as a generalization of Murman’s four point operator to solve the Euler equations. We have examined several transonic steady compressible 1D flows with friction and heat addition. Unsteady flows with weak dissipation and friction have been considered in the context of detonation theory for several reactive compressible cases. Computations with higher order IMEX schemes is also of interest [15].

    [1]Murman E M. Analysis of embedded shock waves calculated by relaxation methods[J]. AIAA Journal, 1974, 12(5).

    [2]Chattot J J. Computational aerodynamics and fluid dynamics[M]. Springer-Verlag Berlin Heidelberg, New York, 2002.

    [3]Chattot J J. A conservative Box-scheme for the Euler equations[J]. International Journal of Numerical Methods in Fluids, 1999, 31: 149-158.

    [4]Ni R H. A Multiple grid scheme for solving the Euler equations[J]. AIAA Journal, 1982, 20: 1565-1571.

    [5]Hafez Mohamed, Wahba Essam. Inviscid flows over a cylinder

    [J]. Comput. Methods Appl. Mech. Engrg., 2004, 193: 1981-1995.

    [6]Burnstein S Z. Finite-difference calculations for hydrodynamic flows containing discontinuities[J]. Journal of Computational Physics, 1967,2:198-222.

    [7]White F. Fluid mechanics[M]. 6th Edition. McGraw Hill, New York, 2008.

    [8]Dionne J P, Ng H D, Lee J H S. Transient development of friction-induced low-velocity detonations[C]//Proceedings of the Combustion Institute, 2000, 28: 645-651.

    [9]Romick C M, Aslam T D, Powers J M. The effect of diffusion on the dynamics of unsteady detonations[J]. J. Fluid Mech., 2012, 699: 453-464.

    [10]Sow A, Chinnayya A, Hadjadj A. Mean structure of one- dimensional unstable detonations with friction[J]. J. Fluid Mech. 2014, 743: 503-533.

    [11]Zhang F, Lee J H S. Friction-induced oscillatory behaviour of one-dimensional detonations[J]//Proc. R. Soc. Lond. A, 1994, 446: 1926: 87-105.

    [12]Lee J. The detonation phenomenon[M]. Cambridge University Press, New York, 2008.

    [13]Berkenbosch A C. Capturing detonation waves for the reactive Euler Equations[D]. Eindhoven University of Technology, 1995.

    [14]Higgins A. Steady one-dimensional detonations[M]//Zhang F. Shock waves science and technology library, Vol.6, Springer, 2012.

    [15]Ascher U M, Ruuth S J, Wetton B T R. Implicit-explicit methods for time-dependent partial differential equations[J]. SIAM J. Num. Anal. 1995, 32: 797-823.

    0258-1825(2016)02-0175-07

    含摩擦和加熱的跨聲速流動(dòng)數(shù)值模擬研究

    William E. Tavernetti*, Mohamed M. Hafez

    (University of California Davis, USA)

    噴管中跨聲速流動(dòng)的反應(yīng)流體動(dòng)力學(xué)是實(shí)驗(yàn)和理論研究的一個(gè)重要領(lǐng)域。本文主要由兩部分構(gòu)成,在第一部分中對(duì)文獻(xiàn)[2]中的Murman格式[1]的一般形式進(jìn)行了簡(jiǎn)化,得到了守恒形式的歐拉方程,并對(duì)其求解方法進(jìn)行了討論,同時(shí)針對(duì)Chattot等的工作展開(kāi)了分析,并給出了帶激波的流動(dòng)計(jì)算結(jié)果;而文章的第二部分則研究了包含摩擦、加熱以及耗散的跨聲速流動(dòng),并重點(diǎn)關(guān)注了一步Arrhenius化學(xué)反應(yīng)模型下的爆震現(xiàn)象。本文還探究了摩擦力和帶燃燒的跨聲速流動(dòng)之間的相互作用,同時(shí)詳細(xì)給出了新的歐拉方程數(shù)值求解算法并同已有文獻(xiàn)算例進(jìn)行了對(duì)比驗(yàn)證。

    數(shù)值算法;計(jì)算流體力學(xué);燃燒;歐拉方程;摩擦力;加熱;可壓縮

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0008

    *lecturer, Departmant of Mathmatics; etavernetti@ucdavis.edu

    format: Tavernetti W E, Hafez M M. Simulations of transonic flows with friction and heat addition[J]. Acta Aerodynamica Sinica, 2016, 34(2): 175-181.

    10.7638/kqdlxxb-2016.0008. Tavernetti W E, Hafez M M. 含摩擦和加熱的跨聲速流動(dòng)數(shù)值模擬研究(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 175-181.

    Received: 2015-12-15; Revised:2016-01-10

    猜你喜歡
    歐拉聲速摩擦力
    歐拉閃電貓
    汽車觀察(2022年12期)2023-01-17 02:20:42
    歐拉魔盒
    精致背后的野性 歐拉好貓GT
    車迷(2022年1期)2022-03-29 00:50:26
    『摩擦力』知識(shí)鞏固
    理順摩擦力
    透析摩擦力
    歐拉的疑惑
    聲速是如何測(cè)定的
    神奇的摩擦力
    跨聲速風(fēng)洞全模顫振試驗(yàn)技術(shù)
    在线天堂最新版资源| 国产成人aa在线观看| 蜜桃国产av成人99| 日本黄色日本黄色录像| 美女主播在线视频| 啦啦啦中文免费视频观看日本| 麻豆精品久久久久久蜜桃| 秋霞伦理黄片| 男的添女的下面高潮视频| 爱豆传媒免费全集在线观看| 午夜av观看不卡| 啦啦啦在线观看免费高清www| 黄色毛片三级朝国网站| 自线自在国产av| 91精品三级在线观看| 亚洲一区二区三区欧美精品| 国产高清国产精品国产三级| 青春草国产在线视频| 国产精品国产av在线观看| 精品国产露脸久久av麻豆| 国产国语露脸激情在线看| 久久久久人妻精品一区果冻| 久久久久久免费高清国产稀缺| 久久国产精品男人的天堂亚洲| 成人亚洲欧美一区二区av| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜爱| 丝袜在线中文字幕| 五月开心婷婷网| 波多野结衣一区麻豆| 国产精品女同一区二区软件| 亚洲国产欧美日韩在线播放| 精品酒店卫生间| 日本色播在线视频| 亚洲成人手机| 十八禁高潮呻吟视频| 亚洲成色77777| 亚洲美女视频黄频| 人妻人人澡人人爽人人| 久久久国产欧美日韩av| 国产成人精品久久久久久| 成人国产av品久久久| 一级a爱视频在线免费观看| 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 性少妇av在线| 亚洲欧美清纯卡通| 美女中出高潮动态图| 亚洲欧美精品自产自拍| 国产精品欧美亚洲77777| 亚洲精品日本国产第一区| 午夜福利视频在线观看免费| 狠狠婷婷综合久久久久久88av| 99热网站在线观看| 美女国产高潮福利片在线看| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| 色视频在线一区二区三区| 亚洲精品中文字幕在线视频| 精品酒店卫生间| 少妇人妻 视频| 91精品伊人久久大香线蕉| 亚洲美女搞黄在线观看| 午夜福利在线观看免费完整高清在| 国产97色在线日韩免费| 亚洲国产色片| 99re6热这里在线精品视频| 日本av免费视频播放| 人人妻人人添人人爽欧美一区卜| 免费黄网站久久成人精品| 五月开心婷婷网| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 一区二区三区精品91| av天堂久久9| 国产乱来视频区| 久久亚洲国产成人精品v| 日产精品乱码卡一卡2卡三| 亚洲情色 制服丝袜| 性色av一级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 嫩草影院入口| 天天影视国产精品| 日韩av在线免费看完整版不卡| 激情五月婷婷亚洲| 欧美 日韩 精品 国产| 免费大片黄手机在线观看| 视频区图区小说| 色播在线永久视频| 精品一品国产午夜福利视频| 制服诱惑二区| 王馨瑶露胸无遮挡在线观看| 日韩一区二区视频免费看| videosex国产| 满18在线观看网站| 国产精品一国产av| 啦啦啦在线免费观看视频4| 午夜精品国产一区二区电影| 日本-黄色视频高清免费观看| 美女国产视频在线观看| 在线 av 中文字幕| 十八禁网站网址无遮挡| 精品久久蜜臀av无| 亚洲三区欧美一区| 久久久久久久久久人人人人人人| 日本猛色少妇xxxxx猛交久久| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 免费在线观看黄色视频的| 嫩草影院入口| 日本欧美视频一区| 一区二区三区精品91| 国产av国产精品国产| 女人被躁到高潮嗷嗷叫费观| 免费观看在线日韩| 久久久久人妻精品一区果冻| 亚洲国产精品国产精品| 午夜福利在线观看免费完整高清在| 日本猛色少妇xxxxx猛交久久| 一边摸一边做爽爽视频免费| videosex国产| 国产精品 欧美亚洲| 麻豆乱淫一区二区| 99精国产麻豆久久婷婷| √禁漫天堂资源中文www| 一级黄片播放器| 亚洲久久久国产精品| 99热国产这里只有精品6| 午夜老司机福利剧场| 国产xxxxx性猛交| 国产黄色免费在线视频| 在线观看免费高清a一片| 日本91视频免费播放| 国产福利在线免费观看视频| 久久精品久久精品一区二区三区| 一个人免费看片子| 久久精品亚洲av国产电影网| 亚洲欧美一区二区三区久久| 久久久精品免费免费高清| 亚洲精品,欧美精品| 久久精品久久精品一区二区三区| 精品视频人人做人人爽| 看非洲黑人一级黄片| 99九九在线精品视频| 久久国产精品男人的天堂亚洲| 亚洲精品日韩在线中文字幕| 好男人视频免费观看在线| 国产免费一区二区三区四区乱码| 两个人免费观看高清视频| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 91成人精品电影| 久久久亚洲精品成人影院| 综合色丁香网| 精品一区二区三卡| 欧美bdsm另类| 日韩 亚洲 欧美在线| 亚洲精品美女久久久久99蜜臀 | 街头女战士在线观看网站| av在线播放精品| 日本91视频免费播放| 男女啪啪激烈高潮av片| 久久精品久久精品一区二区三区| 在线观看免费视频网站a站| 制服诱惑二区| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 国产精品久久久久久久久免| 男女下面插进去视频免费观看| 人人澡人人妻人| av在线app专区| 伊人亚洲综合成人网| 久久精品久久精品一区二区三区| 午夜免费观看性视频| 午夜av观看不卡| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 又大又黄又爽视频免费| 亚洲欧美精品综合一区二区三区 | 亚洲av成人精品一二三区| 国产一区二区 视频在线| 一级a爱视频在线免费观看| 欧美人与善性xxx| 亚洲伊人久久精品综合| 三级国产精品片| 午夜福利在线免费观看网站| 午夜久久久在线观看| 超碰97精品在线观看| 国产av精品麻豆| 久久ye,这里只有精品| 久久精品国产亚洲av天美| 老鸭窝网址在线观看| 最近中文字幕高清免费大全6| 国产亚洲精品第一综合不卡| 欧美人与性动交α欧美精品济南到 | 日韩制服丝袜自拍偷拍| 亚洲av国产av综合av卡| 中文字幕精品免费在线观看视频| 老汉色av国产亚洲站长工具| 久久久精品94久久精品| 午夜影院在线不卡| 久久久精品国产亚洲av高清涩受| 亚洲欧美一区二区三区国产| 狠狠婷婷综合久久久久久88av| 美女xxoo啪啪120秒动态图| 亚洲精品一区蜜桃| 美女主播在线视频| 国产乱来视频区| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线不卡| 日韩电影二区| 国产成人91sexporn| 一级黄片播放器| 在线天堂最新版资源| 人人澡人人妻人| 午夜影院在线不卡| 国产麻豆69| 九色亚洲精品在线播放| 成人亚洲精品一区在线观看| 午夜免费鲁丝| 1024香蕉在线观看| 一边亲一边摸免费视频| 天天躁夜夜躁狠狠躁躁| 久久99蜜桃精品久久| 国语对白做爰xxxⅹ性视频网站| 18禁国产床啪视频网站| 国产精品免费大片| av在线老鸭窝| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区国产| 大话2 男鬼变身卡| 99九九在线精品视频| 亚洲,欧美精品.| 中文字幕色久视频| 国产在线一区二区三区精| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 天天影视国产精品| 桃花免费在线播放| 晚上一个人看的免费电影| 人成视频在线观看免费观看| 国产精品久久久久成人av| 99re6热这里在线精品视频| av免费在线看不卡| 我要看黄色一级片免费的| 久久久久久久大尺度免费视频| 99re6热这里在线精品视频| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 精品国产一区二区三区久久久樱花| 黑人欧美特级aaaaaa片| 久久久欧美国产精品| 18禁裸乳无遮挡动漫免费视频| 欧美成人精品欧美一级黄| 久久久亚洲精品成人影院| 精品久久久精品久久久| 国产免费现黄频在线看| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 亚洲综合色惰| 老熟女久久久| 视频区图区小说| 韩国高清视频一区二区三区| 老鸭窝网址在线观看| 美国免费a级毛片| 国产一区二区三区综合在线观看| 成人漫画全彩无遮挡| 日本欧美视频一区| 少妇的丰满在线观看| 精品99又大又爽又粗少妇毛片| 婷婷色麻豆天堂久久| 中文字幕精品免费在线观看视频| 黄色一级大片看看| 午夜免费鲁丝| 欧美人与善性xxx| 国产精品 欧美亚洲| 波多野结衣av一区二区av| 美女主播在线视频| 美女视频免费永久观看网站| 久久99精品国语久久久| 一边摸一边做爽爽视频免费| 亚洲精品视频女| www日本在线高清视频| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 一区二区日韩欧美中文字幕| av又黄又爽大尺度在线免费看| 老熟女久久久| 美女主播在线视频| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 亚洲av综合色区一区| 国产精品 国内视频| av不卡在线播放| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 赤兔流量卡办理| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 精品一区二区免费观看| 九九爱精品视频在线观看| 中文欧美无线码| 水蜜桃什么品种好| 久久免费观看电影| 国产黄色视频一区二区在线观看| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 国产黄频视频在线观看| 免费观看性生交大片5| 亚洲三级黄色毛片| 熟女少妇亚洲综合色aaa.| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 在线观看人妻少妇| 国产精品亚洲av一区麻豆 | 波野结衣二区三区在线| 9191精品国产免费久久| 亚洲经典国产精华液单| 亚洲国产欧美网| 大香蕉久久网| 少妇猛男粗大的猛烈进出视频| 亚洲在久久综合| 亚洲欧洲日产国产| 精品人妻在线不人妻| 大片电影免费在线观看免费| 国产精品香港三级国产av潘金莲 | 亚洲国产av影院在线观看| 国产精品久久久久久久久免| av福利片在线| 久久久久久人妻| 欧美日韩精品成人综合77777| 建设人人有责人人尽责人人享有的| 精品福利永久在线观看| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| a级毛片在线看网站| 中文乱码字字幕精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 国语对白做爰xxxⅹ性视频网站| 国产成人精品在线电影| 99九九在线精品视频| 久久女婷五月综合色啪小说| av卡一久久| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 国产精品二区激情视频| av在线播放精品| 在线天堂中文资源库| 免费观看性生交大片5| 老汉色av国产亚洲站长工具| 日日摸夜夜添夜夜爱| 国产一区二区三区综合在线观看| 国产1区2区3区精品| 女性生殖器流出的白浆| 啦啦啦中文免费视频观看日本| 不卡视频在线观看欧美| 国产1区2区3区精品| av有码第一页| 久久韩国三级中文字幕| 人体艺术视频欧美日本| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 国精品久久久久久国模美| www.自偷自拍.com| 久久久久久久国产电影| 久久久久久久久久人人人人人人| 可以免费在线观看a视频的电影网站 | 建设人人有责人人尽责人人享有的| 欧美日韩成人在线一区二区| 激情视频va一区二区三区| 国产精品成人在线| 中文字幕亚洲精品专区| 国产一区二区在线观看av| 久久精品国产a三级三级三级| 国产一区二区在线观看av| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆 | 人成视频在线观看免费观看| 亚洲精品第二区| 欧美亚洲 丝袜 人妻 在线| 国产亚洲一区二区精品| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 免费在线观看黄色视频的| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| 男女无遮挡免费网站观看| 夫妻午夜视频| 国产精品二区激情视频| 午夜福利视频精品| 欧美激情高清一区二区三区 | h视频一区二区三区| www.精华液| 精品人妻在线不人妻| 国产亚洲最大av| 国产成人一区二区在线| 黄色毛片三级朝国网站| 一级毛片黄色毛片免费观看视频| a级毛片黄视频| 亚洲精品视频女| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 国产97色在线日韩免费| 秋霞伦理黄片| 国产成人av激情在线播放| 亚洲国产日韩一区二区| 丰满少妇做爰视频| 中文天堂在线官网| 啦啦啦啦在线视频资源| 国产极品粉嫩免费观看在线| 天天躁狠狠躁夜夜躁狠狠躁| 欧美少妇被猛烈插入视频| 国产又色又爽无遮挡免| 亚洲精品av麻豆狂野| 色网站视频免费| 又黄又粗又硬又大视频| 伊人亚洲综合成人网| 国产乱来视频区| 69精品国产乱码久久久| 涩涩av久久男人的天堂| 国产精品三级大全| 亚洲精品美女久久久久99蜜臀 | 免费观看性生交大片5| 亚洲男人天堂网一区| 高清av免费在线| 国产精品一区二区在线不卡| 香蕉精品网在线| 久久精品国产亚洲av高清一级| 亚洲色图综合在线观看| 波野结衣二区三区在线| 亚洲国产精品成人久久小说| 香蕉国产在线看| 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 精品一品国产午夜福利视频| 我的亚洲天堂| 亚洲av电影在线进入| 一本大道久久a久久精品| 国产成人精品久久二区二区91 | 97精品久久久久久久久久精品| 香蕉国产在线看| 日韩制服丝袜自拍偷拍| 午夜激情久久久久久久| a级片在线免费高清观看视频| 亚洲精品aⅴ在线观看| 最近2019中文字幕mv第一页| 69精品国产乱码久久久| 波多野结衣av一区二区av| 男女边吃奶边做爰视频| 久久鲁丝午夜福利片| 精品久久久精品久久久| 伊人亚洲综合成人网| 五月天丁香电影| 啦啦啦啦在线视频资源| 美女午夜性视频免费| 大香蕉久久网| 亚洲精品久久午夜乱码| 日韩精品免费视频一区二区三区| 最新中文字幕久久久久| 激情视频va一区二区三区| 精品国产乱码久久久久久小说| 老女人水多毛片| 日韩av免费高清视频| 一级爰片在线观看| 日本vs欧美在线观看视频| 一级毛片我不卡| 激情视频va一区二区三区| 交换朋友夫妻互换小说| 午夜日韩欧美国产| 伦理电影大哥的女人| 丝袜美足系列| 一级毛片黄色毛片免费观看视频| 又黄又粗又硬又大视频| 在线天堂最新版资源| 久久久久网色| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 在线天堂最新版资源| 久久韩国三级中文字幕| 亚洲在久久综合| 我的亚洲天堂| 久久精品国产亚洲av涩爱| 好男人视频免费观看在线| 欧美精品一区二区大全| 不卡av一区二区三区| 日韩人妻精品一区2区三区| 飞空精品影院首页| xxx大片免费视频| 欧美黄色片欧美黄色片| 人妻人人澡人人爽人人| 久久99精品国语久久久| 女人高潮潮喷娇喘18禁视频| 91久久精品国产一区二区三区| 美女高潮到喷水免费观看| 女性被躁到高潮视频| 成人手机av| 亚洲国产精品国产精品| 国产片内射在线| 五月开心婷婷网| 国产老妇伦熟女老妇高清| 亚洲色图 男人天堂 中文字幕| 极品少妇高潮喷水抽搐| av一本久久久久| 成人免费观看视频高清| 97人妻天天添夜夜摸| 免费在线观看黄色视频的| 国产不卡一卡二| 精品国内亚洲2022精品成人| 国产成人精品无人区| 热re99久久精品国产66热6| 最新在线观看一区二区三区| 在线免费观看的www视频| 咕卡用的链子| 视频在线观看一区二区三区| 自线自在国产av| 夫妻午夜视频| 午夜福利在线免费观看网站| 在线观看免费视频日本深夜| 97超级碰碰碰精品色视频在线观看| 他把我摸到了高潮在线观看| 午夜91福利影院| 国产精品久久视频播放| 亚洲精品在线观看二区| 91大片在线观看| 亚洲九九香蕉| 妹子高潮喷水视频| 少妇的丰满在线观看| 亚洲成av片中文字幕在线观看| 高清欧美精品videossex| 久久九九热精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产乱子伦一区二区三区| 少妇裸体淫交视频免费看高清 | 亚洲av日韩精品久久久久久密| 午夜激情av网站| 亚洲人成电影免费在线| 婷婷六月久久综合丁香| 91精品国产国语对白视频| av超薄肉色丝袜交足视频| 国产深夜福利视频在线观看| 国产高清国产精品国产三级| 久久中文字幕一级| 欧美日韩黄片免| 精品欧美一区二区三区在线| 久久久水蜜桃国产精品网| 手机成人av网站| 99久久国产精品久久久| 亚洲视频免费观看视频| 无限看片的www在线观看| 亚洲色图 男人天堂 中文字幕| 国产xxxxx性猛交| 国产精品野战在线观看 | 日韩免费av在线播放| 久久伊人香网站| 久久久国产精品麻豆| 在线观看免费视频日本深夜| 在线av久久热| 久久久水蜜桃国产精品网| 老司机在亚洲福利影院| 亚洲人成伊人成综合网2020| 亚洲第一青青草原| 亚洲va日本ⅴa欧美va伊人久久| 国产熟女午夜一区二区三区| 日本 av在线| netflix在线观看网站| 久久性视频一级片| 亚洲国产看品久久| 中文字幕高清在线视频| 大香蕉久久成人网| 精品一区二区三卡| 色播在线永久视频| 中文欧美无线码| 一a级毛片在线观看| 看黄色毛片网站| 18禁裸乳无遮挡免费网站照片 | 亚洲av五月六月丁香网| 18禁黄网站禁片午夜丰满| 1024香蕉在线观看| 欧美国产精品va在线观看不卡| 久久香蕉激情| 国产精品国产av在线观看| 无限看片的www在线观看| 在线观看日韩欧美| 久久天堂一区二区三区四区| 国产免费男女视频| 国产精品美女特级片免费视频播放器 | 长腿黑丝高跟| 九色亚洲精品在线播放| 久久久久久亚洲精品国产蜜桃av| 日本精品一区二区三区蜜桃| 欧美日韩av久久| e午夜精品久久久久久久| 久久精品影院6| 侵犯人妻中文字幕一二三四区| 夜夜夜夜夜久久久久| 亚洲精品美女久久av网站| 久久国产精品影院| 在线av久久热| 琪琪午夜伦伦电影理论片6080| 亚洲五月色婷婷综合| 91麻豆av在线| 亚洲人成77777在线视频| 在线观看www视频免费| 老司机福利观看| 黄色视频,在线免费观看| 国产一区二区三区视频了| 色尼玛亚洲综合影院|