• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of Aerial Refueling System withMultibody Dynamics and CFD

    2016-05-12 06:03:08FanLiuGangLiuXiongJiang
    關(guān)鍵詞:空中加油軟式剛體

    Fan Liu , Gang Liu, Xiong Jiang

    (China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China)

    ?

    Simulation of Aerial Refueling System withMultibody Dynamics and CFD

    Fan Liu*, Gang Liu, Xiong Jiang

    (China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China)

    A coupled simulation of multibody dynamics and Computational Fluid Dynamics (CFD) is implemented to investigate the motion of an aerial refueling hose-drogue with a receiver aircraft approaching. The hose is modeled by a chain of one-dimensional absolute nodal coordinate cable elements, with the cable elasticity and bending effects considered. Structured overlapped grids are applied around the receiver aircraft and the rigid drogue attached to the end of the hose. A multibody simulation code is embedded in the RANS solver to analyze the structure dynamics and the fluid dynamics for each coupled iteration loop. Various approaching velocity profiles are tested and the “push-out” effect is observed. Approaching simulations with the receiver aircraft in different initial offsets are performed and analyzed. It is concluded that with certain approaching parameters, a good coupling between the receiver’s probe and the drogue is expected.

    Aerial refueling, Multibody dynamics, Fluid-structure interaction, Overset grid

    0 Introduction

    The in-flight refueling technology has been widely used in long-range air strike/transportation and long-hour reconnaissance operation. The hose-drogue system will remain as an important technique approach in the future aerial refueling engineering. However, some challenges in designing and analyzing this aerial towed system still exist nowadays.

    The hose-drogue assembly, when it has been released, is towed at the centerline of the afterbody or the wing-mount pod of the tanker. It mainly consists of a long flexible hose with circular section and a drogue attached to the free end of the hose. This structure is designed to maintain a steady configuration for coupling under the gravity, aerodynamic drag/lift force and the constraint force. However, the hose-drogue could orbit around the stable state because of the wake field turbulence or other unsteady flows. It may also move away from the original position when a receiver aircraft is approaching. The dynamic behavior of the hose-drogue system in unsteady flow field needs to be investigated effectively for detailed engineering application.

    This paper aims to present a more accurate time-variant method combining the multiple body dynamics (MBD) and the Computational Fluid Dynamics (CFD) to solve the aerial towed problems. Multi-rigidbody theory and the finite element method are used in used in modeling the constrained hose and drogue structure. Overset structured composite grids are applied to adapt the moving body geometries. Component grids are meshed around the drogue and the receiver aircraft. A 3-D parallel RANS solver PMB3D is used to solve each CFD time step on the updated grids.

    Fig.1 F-35 fighters refueled from KC-130.

    The theory, algorithm and modules of the multibody solver are presented. The cable elements based on the absolute nodal coordinate formula for the hose modeling is introduced. The dynamic response of a hose-drogue refueling assembly with a receiver aircraft approaching is obtained. The influence of approaching parameters (velocity profiles/initial offset of the receiver) on the drogue’s motion are investigated to optimize the probe-drogue coupling.

    1 Numerical Method

    1.1 Structure Modeling

    1.1.1 Hose Modeling

    The study of the dynamics of an aerial cable towed system has a long history. Early work by Glauert [1] in the 1930s mainly concentrated on the stability of the towed body and neglected the cable’s physical properties. For the next several decades, people began to use rigorous analytic equations to examine the cables in the towing system [2-5] and obtained a series of design principles and conclusions based on the classic cable theory. However, these partial differential equations are usually problem specified and need certain mathematic skills to solve. Furthermore, the cable theory is developed for high-tension strings and can not deal with the cable with compression, bending and torsion properly. The aerial refueling hose has a typical low tension as the towing cables and needs a different modeling approach.

    Zhu & Meguid [6] gave a nice review about the aerial towed cable modeling technique, they concluded that the approaches based on the beam theory are most appealing. Meanwhile, the classic beam theory uses the nodal incremental displacements on the curvilinear coordinates as the unknown variables, which leads to complicated nonlinear parts in inertia terms of the equations of motion.

    The Absolute Nodal Coordinate Formulation (ANCF) is first proposed by Shabana [7] and is designed to solve the flexible multibody problems with large displacement and large deformation. The ANCF uses the global coordinates and the finite slopes of the element nodes as the generalized variables, which can neglect the infinitesimal slope restriction in the ordinary FEM. The ANCF has been intensively studied and developed by the researchers in the recent years to apply it for varies kinds of engineer structures as beams, plates, membranes and solids, and its efficiency and accuracy has been proven [8]. In this paper, a certain kind of cable/beam element is needed to discrete the long refueling hose, which has the characteristics listed below:

    1) The hose has a large length-diameter ratio and a circular section, and is made up of isotropic material;

    2) The section plane of the hose is rigid, which means it stays perpendicular to the axis before and after the hose’s deformation according to the Euler-Bernoulli beam assumption;

    3) The kinetic energy and the elastic energy of the torsion of the hose section are neglectable considering the large length-diameter ratio and engineering experience.

    Fig.2 2-node ANCF cable/thin beam element.

    ThedynamicequationsofthethinbeamelementisobtainedusingtheSecondLagrangeEquations,whichhasastandardform:

    (1)

    wherethekineticenergyT,strainenergyUandthevirtualworkofexternalforcesδWaredefinedas:

    (2)

    (3)

    (4)

    BysubstitutingEqs.(2)-(4)intoEq. (1),thestructuredynamics(SD)equationsoftheithelementisobtained.

    Themassmatrix,elasticforceandexternalforceoftheelasticsystemareassembledbyNelementaryonesdirectlybasedontheFEMframework.Themassmatrixcanbewrittenwithachainofelementsforthecable.

    WehavethedynamicsequationsoftheflexiblemultibodybasedontheANCFregardlessofconstraints,whereeis the generalized coordinate vector of the flexible parts of the system.

    (5)

    1.1.2 Constraints and System Solving Equations

    In the modeling of the multibody system, the configuration of the system is identified by a set of Cartesian-based generalized coordinatesq[9], which describe the locations and orientations of the bodies. The ideal constraints between rigid or elastic parts can always be written in a series of algebraic constraint equations as:

    C(q,t)=0

    (6)

    Inrefuelingdrogue-hosemodeling,twotypesofconstraintsaremainlyconsidered.Oneisthejointbetweenafixedpointandthecable’srootnode,theotheristhejointbetweenthecable’stipnodeandtherigiddrogue.

    Writteninageneralmatrixform,thedynamicsystemequationswhichcombinesthemultiplerigidbodydynamicsandtheFEMbasedonANCFare

    (7)

    whereqraretherigidbodygeneralizedcoordinatevector.Qrincludestheinertiaforceandexternalforceoftherigidbody.Qeincludestheelasticforcesandexternalforcesoftheflexibleparts.Eq.(6)andEq. (7)arecomposedoftheDifferentialAlgebraicEquations(DAEs)ofthedynamicsystem,withthegeneralizedcoordinatesandtheLagrangemultiplierastheunknownvariables.

    TheBackwardDifferentiationFormulation(BDF)integrationtechniqueisusedtotransformtheDAEsintothenonlinearalgebraicequations,thelattercanbesolvedbytheNewton-Raphsoniterationmethod.

    1.2 MBS /CFD Solver: Algorithm & Validation

    A coupled solver combining the multi-body system (MBS) dynamics and the CFD method has been developed.

    The first step of the analysis is to initialize the multibody system and the flow field computation. The former gives the control parameters and the structure information of the dynamic system, while the latter needs three parts for CFD:

    1) Mesh files and boundary information files.

    2)Control parameters on overlapped grid and CFD echnique.t

    3) Steady flow field files for initializing the unsteady calculation.

    Three major steps are listed in the coupling strategy flowchart shown in Figure 3. The unsteady flow field is solved with the in house code PMB3D with URANS based onk-ωSST model.

    Fig.3 MBD/CFD coupling algorithm.

    2 Coupling Simulation

    The approaching and coupling process between the receiver aircraft and the tanker’s hose-drogue assembly is the crucial step in aerial refueling dynamics. The drogue will swing outward away from the forebody of the receiver when it moves along the route from the probe’s tip to the center of drogue straight forwardly. A numerical simulation of the approaching process is needed to investigate the aerodynamic interaction phenomenon.

    2.1 Model & Parameters

    The refueling coupling system, which is shown in Figure 4, includes a receiver aircraft and a hose-drogue assembly. The tanker is temporarily absent because this article focuses on the two-body interaction between the receiver and drogue, the effect of the tanker’s wake field shall be considered for the future work.

    The parameters of the refueling system, which are based on the hose-drogue structure of KC-10 tanker [11] , are listed in Table 1. The refueling hose is modeled with a chain of one dimensional ANCF beam elements described in section 1.1. The tip node is constraint to a fixed point in space with the SGN joint (sphere joint between ground and cable node), while the end node is constraint to the drogue with the CBN joint (clamped joint between ground and cable node).

    Fig.4 Refueling coupling system: receiver aircraft and hose-drogue.

    HoseTotalLength(Initial)/mInnerDiameter/cmOuterDiameter/cmYoung’sModularE/GPaMassperLength/(kg·m-1)22.865.085.3050.02.381(Dry)4.093(Wet)DrogueMass/kgBottomRadius/mMassMomentofInertia/(kg·m2)IxxIyyIyy29.4840.4082.3932.1492.149

    The receiver aircraft is an advanced fighter with an refueling probe attached to the right side of the body. Deflexed slats are deployed to maintain a larger lift coefficient in a comparatively low speed while coupling. The tip of the refueling probe has a offset distanceZ0=1.62m andY0=1.51m from the center line of the plane.

    The PMB3D solver provides a powerful multi-zonal overlapped grid approach to handle the complex geometries and multibody system.

    The aerial refueling approaching simulation is divided into three steps:

    1)Steady flow field. Calculate the steady flow field of the system in its initial configuration.

    2)Equilibrium state. Obtain the static configuration of the hose and drogue with the presence of the receiver at the starting position by running a time-accurate simulation.

    3)Approaching process. A continuation of the Equilibrium state step simulation is conducted as the receiver moves towards the hose-drogue assembly and the dynamic corresponding of refueling system is obtained.

    2.2 Approaching Parameters: Velocities

    From the starting position to the prescribed coupling point, the receiver aircraft shall move forward by a distance ofL0=6.0m. The time-velocity profile for the approaching process, which is generally controlled by the pilot, may have effect on the dynamic response of the drogue-hose assembly.

    The parameters for the steady flow solution are listed in Table 2. The angle of attack and yawing are 0°. The grid has a total mesh amount of 11.8 million . The parallel calculation is performed by 32 processes with the High Performance Computer (HPC) owned by Computational Aerodynamics Institute (CAI) of CARDC. A multigrid method has been applied to accelerate the converging process.

    Table 2 Flow environment parameters

    The receiver aircraft is driven directly to the drogue with a given closure velocity profile. Each of the velocity profile first performs as a linear increase of approaching speed and then stays at the maximum value of 0.5, 1.0, 2.0, 3.0m/s. The overall distanceL0keeps a constant value for all four velocity profile.

    As the receiver approaches, the drogue gradually swings outward from its original position for all the closure profiles given above. The wall compression effect of the aircraft’s forebody keeps pushing the drogue away from its original steady state. This phenomenon is consistent with the results from Vassberg [11].

    2.3 Approaching Parameters: Initial Offsets

    As stated above, the approaching receiver creates a induced motion for the drogue, which drives it both upward and outward from its starting position and misses the coupling with the refueling probe. An apparent thought is to adjust the initial position of the receiver in they-zplane to compensate for the drogue’s induced motion. The drogue is moved in the opposite direction of the induced offsets (-yand +zdirection).

    A computation table including 3×3 points is listed in Table 3, where 3 offset distances on theydirection and 3 offset distances on thezdirection for the drogue-hose are set. The overall nine cases shall be simulated for the approaching process to investigate the induced motion. The relative position between the probe tip and the mass center of the drogue is checked for the nearest case as the best coupling offset.

    The closure profiles for all cases of this section is based on theVmax=0.5m/s velocity profile in section 2.2. The steady flow field solving, equilibrium state computation and approaching simulation are performed successively for all nine cases.

    After the receiver finishes its closure route, they-zpositions of the refueling probe tip and the mass center of the drogue for each offset case are demonstrated in Fig.5. The “P” point represents probe while “D” stands for drogue. The suffix “-01”, for example, means they0-z1 case. It can be seen that for the refueling system here, they1-z2 offset case results in a minimum coupling distance between drogue center and probe tip, for whichr=0.192m.

    Table 3 Offset distances table in y and z direction

    Fig.5 Positions for the probe tip (P-xy) and drogue mass center (D-xy) at the end of the approach (Vmax=0.5m/s).

    3 Conclusion and Future Work

    A MBD/CFD coupling method for the numerical simulation of the aerial towed system is developed. By simulating the aerial refueling approaching process of an advanced fighter, the system structure dynamics and aerodynamic characteristics are obtained. Approach parameters including various speeds and offset distances, are considered. Future work may include the tanker wake field effect and the study of hose tension control by a reel-drum during coupling process. Pre-contact motion of the hose-drogue shall be analyzed and the risk of the oscillation in coupling process needs to be evaluated.

    [1]Glauert M. The stability of a body towed by a light wire[R]. London: Aeronautical Research Council, T R 1312, 1930.

    [2]Schram J, Reyle S. A three-dimensional dynamic analysis of a towed system[J]. Journal of Hydronautics, 1968, 2(4): 213-220.

    [3]Simonenko, Alexander. Influence of extensibility on tension in a towed cable[J]. Journal of Hydronautics, 1975, 10(1): 26-28.

    [4]Mattis G De. Longitudinal dynamics of a towed sailplane[J]. Journal of Guidance, Control and Dynamics, 1993, 16(5): 822-829.

    [5]Nakagawa N, Obataf A. Longitudinal stability analysis of aerial-towed systems[J]. Journal of Aircraft, 1992, 29(6): 978-985.

    [6]Zhu Z H, Meguid S A. Elastodynamic analysis of aerial refueling hose using curved beam element[J]. AIAA Journal, 2006, 44(6): 1317-1324.

    [7]Shabana, Ahmed A. An absolute nodal coordinate formulation for the large rotation and deformation analysis of flexible bodies[R]. MBS96-1-UIC, Department of Mech. Eng., University of Illinois at Chicago, 1996.

    [8]Yoo W S, Dmitrochenko O, Pogorelov D Y. Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments[C]//The ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, California USA, 2005.

    [9]Shabana A A. Dynamics of multibody systems[M]. UK: Cambridge University Press, 2005.

    [10]Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 wing-mount aerial refueling hose-drogue dynamics with a reel take-up system[C]//The 21st Applied Aero-dynamics Conference. Orlando, Florida, 2003.

    [11]Vassberg J C, Yeh D T, Blair A J, et al. Numerical simulations of KC-10 in-flight refueling hose-drogue dynamics with an approaching F/A-18D receiver aircraft[C]//The 23rd AIAA Applied Aerodynamics Conference. Toronto, Ontario Canada, 2005.

    0258-1825(2016)02-0276-05

    空中加油系統(tǒng)的多體動(dòng)力學(xué)和CFD仿真

    劉 釩*, 劉 剛, 江 雄

    (中國空氣動(dòng)力研究與發(fā)展中心, 四川 綿陽 621000)

    介紹了作者基于Fortran程序開發(fā)的一個(gè)多體動(dòng)力學(xué)求解器。依托多剛體系統(tǒng)理論、基于絕對節(jié)點(diǎn)坐標(biāo)(ANCF)法描述的常質(zhì)量/變質(zhì)量索梁單元和計(jì)算多體動(dòng)力學(xué)方程組求解技術(shù),該求解器可用于分析飛行器拖曳結(jié)構(gòu)中的索-剛體約束系統(tǒng)的動(dòng)力學(xué)問題。本文基于并行CFD求解器PMB3D的動(dòng)態(tài)重疊網(wǎng)格功能,構(gòu)建了多體動(dòng)力學(xué)和計(jì)算流體力學(xué)的非定常耦合計(jì)算程序。以軟式空中加油系統(tǒng)為例,對真實(shí)外形飛行器拖曳系統(tǒng)的氣動(dòng)-動(dòng)力學(xué)特性進(jìn)行了仿真研究。探討了戰(zhàn)斗機(jī)構(gòu)型進(jìn)行軟式加油對接時(shí)產(chǎn)生的氣動(dòng)干擾問題,研究了受油機(jī)的接近速度和初始偏移量對對接效果的影響。

    空中加油;多體動(dòng)力學(xué);流固耦合;重疊網(wǎng)格

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0003

    *Research Assistant , Computational Aerodynamics Institute; cai@cardc.edu

    format: Liu F, Liu G, Jiang X. Simulation of aerial refueling system with Multibody dynamics and CFD[J]. Acta Aerodynamica Sinica, 2016, 34(2): 276-280.

    10.7638/kqdlxxb-2016.0003. 劉釩,劉剛,江雄. 空中加油系統(tǒng)的多體動(dòng)力學(xué)和CFD仿真(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 276-280.

    Received: 2015-12-21; Revised:2016-02-20

    猜你喜歡
    空中加油軟式剛體
    差值法巧求剛體轉(zhuǎn)動(dòng)慣量
    運(yùn)動(dòng)飛揚(yáng),逐夢童年
    ——石家莊市保利啟新小學(xué)軟式棒壘球側(cè)記
    車載冷發(fā)射系統(tǒng)多剛體動(dòng)力學(xué)快速仿真研究
    剛體定點(diǎn)轉(zhuǎn)動(dòng)的瞬軸、極面動(dòng)態(tài)演示教具
    甘肅省西北師范大學(xué)第二附中軟式排球的開展現(xiàn)狀與調(diào)查研究
    科技視界(2015年16期)2015-02-27 10:18:12
    軍人畫軍機(jī)(六)
    航空世界(2014年7期)2014-09-24 19:29:08
    無人機(jī)空中加油自主會(huì)合導(dǎo)引律研究
    無人機(jī)空中加油過程中編隊(duì)飛行控制
    地震作用下承臺(tái)剛體假定的適用性分析
    地震研究(2014年1期)2014-02-27 09:29:47
    軟式排球運(yùn)動(dòng)在天津部分中學(xué)開展現(xiàn)狀的調(diào)查與分析
    一个人看的www免费观看视频| 在线观看人妻少妇| 午夜福利在线观看免费完整高清在| 国产人妻一区二区三区在| 免费观看在线日韩| 国产色爽女视频免费观看| 国产成人a∨麻豆精品| 亚洲av免费在线观看| 国产精品久久久久久久电影| 中国美白少妇内射xxxbb| 免费黄频网站在线观看国产| 国产又色又爽无遮挡免| 国产成人精品福利久久| 永久免费av网站大全| 午夜日本视频在线| 少妇人妻久久综合中文| 成人特级av手机在线观看| 在线观看国产h片| 性色avwww在线观看| 国产成人aa在线观看| 91精品国产九色| 新久久久久国产一级毛片| 中文字幕制服av| 国产成人精品一,二区| 欧美老熟妇乱子伦牲交| 91久久精品电影网| 国产精品av视频在线免费观看| 交换朋友夫妻互换小说| 亚洲欧美日韩无卡精品| 2018国产大陆天天弄谢| eeuss影院久久| 精品午夜福利在线看| 99九九线精品视频在线观看视频| 久久韩国三级中文字幕| 亚洲人与动物交配视频| 亚洲精品乱码久久久v下载方式| 国产久久久一区二区三区| 亚洲三级黄色毛片| 看十八女毛片水多多多| 国产极品天堂在线| 日韩三级伦理在线观看| 国产成人免费无遮挡视频| 乱系列少妇在线播放| 熟妇人妻不卡中文字幕| 亚洲精品一二三| 国产成人freesex在线| 国产熟女欧美一区二区| 日韩中字成人| 日韩强制内射视频| 亚洲高清免费不卡视频| 啦啦啦啦在线视频资源| 欧美潮喷喷水| 全区人妻精品视频| 亚洲欧美成人综合另类久久久| 色吧在线观看| 91精品伊人久久大香线蕉| 简卡轻食公司| 国产精品麻豆人妻色哟哟久久| 日韩一区二区视频免费看| 国产毛片a区久久久久| 精品国产露脸久久av麻豆| 亚洲精品,欧美精品| 最近最新中文字幕免费大全7| 九色成人免费人妻av| 亚洲,一卡二卡三卡| 国产精品一区www在线观看| 午夜精品国产一区二区电影 | 亚洲天堂国产精品一区在线| 伊人久久精品亚洲午夜| 亚洲一区二区三区欧美精品 | 成人鲁丝片一二三区免费| 国产高清三级在线| 成人亚洲欧美一区二区av| 国产精品成人在线| 噜噜噜噜噜久久久久久91| 好男人视频免费观看在线| 亚洲欧美中文字幕日韩二区| 久久久a久久爽久久v久久| 国产精品99久久久久久久久| 男人舔奶头视频| 中国三级夫妇交换| 亚洲va在线va天堂va国产| 少妇 在线观看| 中文字幕人妻熟人妻熟丝袜美| 另类亚洲欧美激情| 午夜福利网站1000一区二区三区| 久久久成人免费电影| 亚洲av电影在线观看一区二区三区 | 少妇被粗大猛烈的视频| 日韩成人av中文字幕在线观看| 春色校园在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 有码 亚洲区| 亚洲婷婷狠狠爱综合网| 内地一区二区视频在线| 麻豆成人av视频| 中文天堂在线官网| 久久久国产一区二区| 亚洲高清免费不卡视频| 国产爽快片一区二区三区| 日韩在线高清观看一区二区三区| 色网站视频免费| 国产 一区精品| 久久久久久国产a免费观看| 亚洲精品影视一区二区三区av| 亚洲人与动物交配视频| 午夜视频国产福利| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 亚洲四区av| 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 欧美性猛交╳xxx乱大交人| 少妇人妻久久综合中文| 22中文网久久字幕| 欧美区成人在线视频| 少妇高潮的动态图| 国产毛片在线视频| 中文资源天堂在线| 80岁老熟妇乱子伦牲交| 亚洲精品一二三| 国产毛片a区久久久久| 日本熟妇午夜| 久久鲁丝午夜福利片| 最近中文字幕2019免费版| 日韩欧美 国产精品| 日本午夜av视频| 七月丁香在线播放| 一本久久精品| av线在线观看网站| av.在线天堂| 国产精品av视频在线免费观看| 国产亚洲最大av| 欧美成人a在线观看| 国产精品秋霞免费鲁丝片| 成人漫画全彩无遮挡| 国产黄片视频在线免费观看| 视频区图区小说| 一区二区av电影网| 亚洲自拍偷在线| 欧美日韩精品成人综合77777| 插逼视频在线观看| 22中文网久久字幕| 亚洲熟女精品中文字幕| 精品久久久久久电影网| 国产成年人精品一区二区| 国产av不卡久久| 嫩草影院精品99| 69av精品久久久久久| 在线观看国产h片| 在线观看免费高清a一片| 狂野欧美激情性xxxx在线观看| 丰满人妻一区二区三区视频av| 日本猛色少妇xxxxx猛交久久| 亚洲综合精品二区| 男人添女人高潮全过程视频| 男的添女的下面高潮视频| 2018国产大陆天天弄谢| 99热6这里只有精品| 午夜视频国产福利| 久久99蜜桃精品久久| 麻豆国产97在线/欧美| 国产精品熟女久久久久浪| tube8黄色片| 国产熟女欧美一区二区| 大片电影免费在线观看免费| 男插女下体视频免费在线播放| 最近手机中文字幕大全| 黄色怎么调成土黄色| 韩国av在线不卡| 亚洲丝袜综合中文字幕| 免费看a级黄色片| 一级a做视频免费观看| 大片免费播放器 马上看| 国内精品宾馆在线| 麻豆成人午夜福利视频| a级毛色黄片| 男女无遮挡免费网站观看| 国产毛片a区久久久久| 婷婷色麻豆天堂久久| 国产黄频视频在线观看| 国产精品福利在线免费观看| 全区人妻精品视频| 亚洲av日韩在线播放| 国产真实伦视频高清在线观看| 免费看a级黄色片| 日韩三级伦理在线观看| 精品少妇久久久久久888优播| 91精品伊人久久大香线蕉| 国内精品宾馆在线| 免费黄网站久久成人精品| 成年女人在线观看亚洲视频 | 91狼人影院| 欧美三级亚洲精品| 神马国产精品三级电影在线观看| 色网站视频免费| 在线a可以看的网站| 精品人妻视频免费看| 午夜激情久久久久久久| 欧美性猛交╳xxx乱大交人| 国精品久久久久久国模美| av卡一久久| 国产成人aa在线观看| 国产爽快片一区二区三区| 联通29元200g的流量卡| h日本视频在线播放| 午夜福利在线在线| 久久久久精品久久久久真实原创| 亚洲精品,欧美精品| 丰满人妻一区二区三区视频av| 777米奇影视久久| 超碰av人人做人人爽久久| 婷婷色综合www| 成人鲁丝片一二三区免费| 青春草视频在线免费观看| 日韩国内少妇激情av| 人妻夜夜爽99麻豆av| 最新中文字幕久久久久| 日本猛色少妇xxxxx猛交久久| 18禁在线播放成人免费| 热re99久久精品国产66热6| 亚洲国产精品999| 大话2 男鬼变身卡| 一级毛片久久久久久久久女| 丝瓜视频免费看黄片| 久久久久久久久久人人人人人人| 97人妻精品一区二区三区麻豆| 最近最新中文字幕免费大全7| 我的女老师完整版在线观看| 色哟哟·www| 大码成人一级视频| 久久久久久久午夜电影| 大片免费播放器 马上看| 亚洲高清免费不卡视频| 国产亚洲一区二区精品| 成人美女网站在线观看视频| 十八禁网站网址无遮挡 | 免费看光身美女| 精品熟女少妇av免费看| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影| 欧美少妇被猛烈插入视频| 美女内射精品一级片tv| 美女被艹到高潮喷水动态| 汤姆久久久久久久影院中文字幕| 亚洲精品乱久久久久久| 精品午夜福利在线看| 少妇裸体淫交视频免费看高清| 久久国产乱子免费精品| 国产精品蜜桃在线观看| 亚洲成人一二三区av| 精品一区二区三卡| 在线播放无遮挡| 久久久欧美国产精品| videossex国产| 秋霞在线观看毛片| 午夜精品一区二区三区免费看| 乱系列少妇在线播放| 国产精品久久久久久精品古装| 免费在线观看成人毛片| 99久久人妻综合| a级一级毛片免费在线观看| 看十八女毛片水多多多| 午夜福利高清视频| 99热网站在线观看| 精品一区在线观看国产| 丰满少妇做爰视频| 国产中年淑女户外野战色| 高清在线视频一区二区三区| 日韩视频在线欧美| 黄色配什么色好看| 亚洲精品aⅴ在线观看| 午夜免费鲁丝| 男女那种视频在线观看| 熟女电影av网| 国产亚洲91精品色在线| 中文乱码字字幕精品一区二区三区| 青春草视频在线免费观看| 亚洲欧美日韩无卡精品| 久久国内精品自在自线图片| 在线精品无人区一区二区三 | av在线老鸭窝| 你懂的网址亚洲精品在线观看| 免费播放大片免费观看视频在线观看| a级毛片免费高清观看在线播放| 久久精品夜色国产| 大香蕉久久网| 欧美少妇被猛烈插入视频| 国产精品久久久久久精品古装| 欧美激情久久久久久爽电影| 一本色道久久久久久精品综合| 在线免费十八禁| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av涩爱| 我的女老师完整版在线观看| 在线 av 中文字幕| 成年版毛片免费区| 听说在线观看完整版免费高清| 婷婷色av中文字幕| 国产成人精品久久久久久| 久久久精品94久久精品| 尤物成人国产欧美一区二区三区| 免费观看av网站的网址| 欧美性感艳星| 中文字幕久久专区| 亚洲美女视频黄频| 久久人人爽人人片av| 观看免费一级毛片| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 美女被艹到高潮喷水动态| av播播在线观看一区| 亚洲综合精品二区| 国产成人一区二区在线| 国产国拍精品亚洲av在线观看| 三级国产精品片| 亚洲成色77777| 国产亚洲午夜精品一区二区久久 | 亚洲av欧美aⅴ国产| 亚洲最大成人av| 高清在线视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 女人十人毛片免费观看3o分钟| 国产日韩欧美亚洲二区| 神马国产精品三级电影在线观看| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 国产精品一及| 男人狂女人下面高潮的视频| 1000部很黄的大片| 午夜老司机福利剧场| 欧美高清成人免费视频www| 国产成人福利小说| 久热这里只有精品99| 高清av免费在线| 免费少妇av软件| 国产精品国产三级国产av玫瑰| 免费看av在线观看网站| 久久国产乱子免费精品| 18禁动态无遮挡网站| 亚洲成人精品中文字幕电影| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 亚洲国产精品专区欧美| 国产v大片淫在线免费观看| 大话2 男鬼变身卡| 亚洲欧美日韩卡通动漫| 国产精品不卡视频一区二区| 一级片'在线观看视频| 欧美成人精品欧美一级黄| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 九九爱精品视频在线观看| 国内少妇人妻偷人精品xxx网站| 国产高清有码在线观看视频| 国产探花在线观看一区二区| 亚洲自拍偷在线| 国产精品久久久久久精品电影小说 | 成年人午夜在线观看视频| 国产精品一区二区三区四区免费观看| 精品一区二区免费观看| 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 午夜老司机福利剧场| 麻豆成人av视频| 中文精品一卡2卡3卡4更新| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 综合色丁香网| 免费看不卡的av| 最近最新中文字幕免费大全7| 99热全是精品| 寂寞人妻少妇视频99o| 国产成人免费无遮挡视频| 国产又色又爽无遮挡免| 亚洲内射少妇av| 亚洲国产精品国产精品| 黄片无遮挡物在线观看| 下体分泌物呈黄色| 精品国产一区二区三区久久久樱花 | 国产亚洲午夜精品一区二区久久 | 免费看不卡的av| 最近最新中文字幕免费大全7| 日本黄色片子视频| 全区人妻精品视频| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 国产精品一区二区在线观看99| 久久人人爽人人爽人人片va| 97在线人人人人妻| 亚洲自拍偷在线| 国产淫片久久久久久久久| 国产成人freesex在线| 男女边吃奶边做爰视频| 亚洲精品乱码久久久v下载方式| 国产精品一区二区性色av| 久久6这里有精品| 在线播放无遮挡| 一边亲一边摸免费视频| 亚洲av在线观看美女高潮| 少妇人妻一区二区三区视频| 少妇人妻精品综合一区二区| 人妻夜夜爽99麻豆av| 97热精品久久久久久| 亚洲欧美日韩东京热| 亚洲最大成人av| 欧美潮喷喷水| 国产精品国产三级国产av玫瑰| 美女高潮的动态| 欧美三级亚洲精品| 国产成人a∨麻豆精品| 国产探花极品一区二区| 男女国产视频网站| 成人午夜精彩视频在线观看| 国产成年人精品一区二区| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 久久久色成人| 最近中文字幕2019免费版| 女人十人毛片免费观看3o分钟| 日韩电影二区| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 在线观看一区二区三区| 色视频www国产| 久久精品人妻少妇| 成年人午夜在线观看视频| 全区人妻精品视频| 性色avwww在线观看| 色5月婷婷丁香| 久久精品综合一区二区三区| 日本一本二区三区精品| 中国三级夫妇交换| 99热这里只有是精品在线观看| 国产探花极品一区二区| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| av国产免费在线观看| 午夜激情福利司机影院| 91午夜精品亚洲一区二区三区| 欧美日韩国产mv在线观看视频 | 久热这里只有精品99| 777米奇影视久久| 老师上课跳d突然被开到最大视频| 亚洲精品乱码久久久久久按摩| 日韩亚洲欧美综合| 熟女电影av网| 高清欧美精品videossex| 老司机影院毛片| 69av精品久久久久久| 久久精品国产亚洲av涩爱| 免费大片18禁| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 国产v大片淫在线免费观看| 成人欧美大片| 久久久久精品性色| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 久久久久久久久久人人人人人人| 两个人的视频大全免费| 中国国产av一级| 久久久色成人| 精品久久久久久久人妻蜜臀av| av网站免费在线观看视频| 最近中文字幕高清免费大全6| 免费观看性生交大片5| 久久久久久久久大av| 一本久久精品| 久热这里只有精品99| 日本午夜av视频| 亚洲欧美成人综合另类久久久| 91久久精品国产一区二区三区| 韩国av在线不卡| 久久久久久久久久人人人人人人| 亚洲av免费在线观看| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 听说在线观看完整版免费高清| 中文字幕免费在线视频6| av.在线天堂| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 亚洲精品,欧美精品| 99久国产av精品国产电影| 国产一区二区三区综合在线观看 | 乱码一卡2卡4卡精品| 欧美亚洲 丝袜 人妻 在线| 国产大屁股一区二区在线视频| 秋霞伦理黄片| 精品久久久久久电影网| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| 午夜免费鲁丝| 青春草视频在线免费观看| 黄片无遮挡物在线观看| 中文乱码字字幕精品一区二区三区| 色5月婷婷丁香| 亚洲国产av新网站| 少妇 在线观看| 肉色欧美久久久久久久蜜桃 | 青春草国产在线视频| 欧美三级亚洲精品| 亚洲高清免费不卡视频| 熟女av电影| 一区二区av电影网| 亚洲av不卡在线观看| 99热国产这里只有精品6| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 青春草国产在线视频| 中文天堂在线官网| 18禁裸乳无遮挡免费网站照片| 在线播放无遮挡| 久久人人爽人人爽人人片va| 成人美女网站在线观看视频| 日本午夜av视频| 久久人人爽人人片av| 亚洲电影在线观看av| 国产av国产精品国产| 91狼人影院| 麻豆国产97在线/欧美| 真实男女啪啪啪动态图| 精品人妻视频免费看| 国产中年淑女户外野战色| 中文天堂在线官网| 最近手机中文字幕大全| .国产精品久久| 午夜免费鲁丝| 日韩成人伦理影院| a级毛片免费高清观看在线播放| 内地一区二区视频在线| 亚洲精品,欧美精品| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 午夜福利视频1000在线观看| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 国产精品人妻久久久久久| 又粗又硬又长又爽又黄的视频| 亚洲精品中文字幕在线视频 | 在线观看一区二区三区| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 18禁在线无遮挡免费观看视频| 欧美一级a爱片免费观看看| 99热网站在线观看| 亚洲久久久久久中文字幕| 日韩中字成人| 亚洲成人一二三区av| 亚洲真实伦在线观看| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 少妇 在线观看| 亚洲精品久久久久久婷婷小说| 国模一区二区三区四区视频| 波野结衣二区三区在线| 国产综合精华液| 久久久精品免费免费高清| 九色成人免费人妻av| 亚洲人成网站高清观看| 美女国产视频在线观看| 18禁动态无遮挡网站| 亚洲熟女精品中文字幕| 性色av一级| 2022亚洲国产成人精品| 午夜激情福利司机影院| 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的 | 寂寞人妻少妇视频99o| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡人人爽人人夜夜| 日本猛色少妇xxxxx猛交久久| 国产 一区 欧美 日韩| 亚洲国产av新网站| 性色av一级| 不卡视频在线观看欧美| 观看美女的网站| 欧美激情国产日韩精品一区| 欧美性猛交╳xxx乱大交人| 赤兔流量卡办理| 青春草亚洲视频在线观看| 欧美高清成人免费视频www| 国产一区二区亚洲精品在线观看| 直男gayav资源| 最新中文字幕久久久久| 亚洲国产精品国产精品| 99热网站在线观看| 极品少妇高潮喷水抽搐| 我的女老师完整版在线观看| 天堂网av新在线| 亚洲av福利一区| 久久精品熟女亚洲av麻豆精品| 中国三级夫妇交换| tube8黄色片| 少妇的逼好多水| 午夜视频国产福利| 18禁在线播放成人免费| 精品少妇黑人巨大在线播放| 少妇裸体淫交视频免费看高清| 人人妻人人爽人人添夜夜欢视频 | 亚洲av免费高清在线观看| 国产成人精品久久久久久| 男人爽女人下面视频在线观看| 大话2 男鬼变身卡| 午夜激情福利司机影院| 2021天堂中文幕一二区在线观| 韩国av在线不卡|