• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Semi-Relativistic Reflection and Transmission Coefficients for Two Spinless Particles Separated by a Rectangular-Shaped Potential Barrier

    2016-05-10 07:37:42ThylweOluwadareandOyewumi
    Communications in Theoretical Physics 2016年10期

    K.E.Thylwe,O.J.Oluwadare,and K.J.Oyewumi

    1KTH-Mechanics,Royal institute of Technology,S-100 44 Stockholm,Sweden

    2Department of Physics,Federal University Oye-Ekiti,P.M.B.373,Ekiti State,Nigeria

    3Theoretical Physics Section,Department of Physics,University of Ilorin,P.M.B.1515,Ilorin,Nigeria

    1 Introduction

    The simplest models used for theoretical predictions of a transmission coefficient are taken from non-relativistic quantum mechanics describing a single mass particle approaching a repulsive potential barrier in one space dimension.

    The non-relativistic quantum theory of relative motion of particles does not take into account two-body phenomena.It predicts the same results for any two particles with the same,common reduced mass.Two-body effects have to do withrelativisticconsiderations;special relativity.Two-body effects may be;energy shifts of resonances and bound states,and even disappearance of exited bound states.Such relativistic effects exist for a single Dirac mass in a potential,described by Dirac theory.[1]In the present study spin is ignored and focus is on the role of different two-body mass combinations.

    A recent analysis of the two-body barrier problem in(1+1)dimensions was treated by the so called spinless Salpeter(SSE)equation.[5]This equation results from a Schr¨odinger-type approximation of the SRQ-equation due to Ikhdair&Sever,[2]primarily for obtaining discrete energy spectra.The method has been applied to several bound-state problems[6]and some of its results have been discussed and questioned by Lucha&Sch¨oberl.[3]In the present scattering context the same approximation will be referred to as the generalized Schr¨odinger(GS)approximation.

    The present study is limited to scattering in(1+1)relativistic dimension of two spinless particle masses.Exact results for the rectangular potential model are compared to results based on the generalized Schr¨odinger(GS-)approximation and those of the non-relativistic Schr¨odinger approximation.The non-relativistic Schr¨odinger theory depends only on the reduced mass of the particles.Therefore,it is instructive to present two-body results with a given reduced mass.

    The potential is given by

    A limit for the potential strengthV0is introduced,having to do with the physical understanding of the scattering results.The potential rangeais varied,as it appears to be particularly important for the occurrence of oscillations in the transmission coefficient as function of the scattering energy.

    Section 2 formulates the semi-relativistic two-body problem.Section 3 presents an analytic solution of the non-relativistic and the generalized Schr¨odinger problems for the potential model used.Illustrations and results are presented in Sec.4.Conclusions are given in Sec.5.

    2 Quantum-Mechanical Two-Particle Equations with Relativistic Corrections

    The total linear momentum is conserved and the centre-of-mass relative momenta are related by the classical vector equationp2=?p1.Therefore,a single operator symbol?p=?i~d/dxis introduced,~being the reduced Planck’s constant.This operator describes the relative motion of two particles with massesm1andm2along anx-axis in a center-of-mass reference system.The SRQ-wave functionψfor the relative motion satisfies the equation[3]

    whereis the total energy,and?is the(non-rest)scattering energy.

    In regions of no interaction potential,the free wave(a plane waveψk=eikx)satisfies

    wherekis the “free” wave number away from the barrier.This implies,by expanding the square-root operators in Eq.(2),that

    wherem=m1+m2is the total mass.

    In the asymptotic(potential-free)regions,the relation between the wave number and the energy is or equivalently

    obtained by standard algebraic manipulations.

    By solving Eq.(5)(or Eq.(6))for the asymptotic wave number,one obtains

    which reduces to the non-relativistic(NR)expression(asc→+∞)

    whereμis the reduced mass

    The wave numberskandkNRare positive for all?>0.

    In the barrier region of the rectangular potential(1)the wave number of a plane wave is denotedkB,and is given by

    The wave numberkBis either real or imaginary.It is positive forV0??<0.It may also turn real at a second energy range for which physical intuition is not obvious.More specifically,kBis positive also forwherem2is the smaller mass of the particles.For equal masses this second positive branch ofkBdoes not exist.Note that,if masses are different,there is also a singular value ofkBin the second energy branch,since

    This odd behavior of the barrier wave number does not affect the off-barrier wave numberk.To avoid questionable behaviors ofkBthe present study restricts the potential maximum and the scattering energy to be sufficiently small.Hence,ifm1>m2,implying the reduced mass satisfyingμ

    2.1 Scattering Boundary Conditions

    A plane wave of relative motion may be assumed propagating in the positivex-direction and then being re flected by a potential barrier,so that the stationary behavior asbecomes

    whereris the reflection amplitude andkthe asymptotic wave number.Part of the incoming wave penetrates the barrier region,and becoming the transmitted wave

    wheretis the transmission amplitude.The reflection coefficientRand the transmission coefficientTare defined by[7]

    NoteWhen considering the wave function describing the motion of both particles,sayψ1+ψ2,one needs a superposition of two waves traveling in opposite directions.Then one wave function,sayψ1,would be defined above and the other one,ψ2,defined by space-reflected boundary conditions.In this case interference effects occur,and the phases of the amplitudesrandtbecome important.Such considerations are ignored in the present study.

    The plane-wave solutions of the SRQ equations,and their derivatives,are fitted at the two boundary positionsx=±aof the rectangular barrier,yielding the transmission coefficient

    which is valid at all energies?>0.Note in Eq.(14)that sin2for energies?>V0turns into a sinh2-behavior for?

    3 Generalized Schr¨odinger Method

    The generalized Schr¨odinger(GS)equation for the two-body problem is given by:[2,4?5]

    where the variable coefficientis

    containing a two-body mass index

    This indexηGSappears only in the approximate theory and having numerical values in the range 1/4≤ηGS≤1,attaining the minimum value for equal masses;see Ref.[4].

    Equation(15)is equivalent to the spinless Salpeter equation(SSE)introduced by Ikhdair in Ref.[2],and in earlier references therein.It has been applied by others;to scattering transmission[5]and to bound-state spectra.[6]It can for exponential-type potentials often be treated by transforming it to a standard differential equation of the hyper-geometric type.For the rectangular barrier case such transformations are not needed.The non-relativistic problem is covered by Eq.(16),where in(and inκBbelow in Eq.(19))one putsηGS=0.

    The generalized Schr¨odinger formula for the transmission(and reflection)coefficient would be similar to Eq.(14),but with different wave numbers.For notational simplicity the approximate wave numbers are denoted byκ(instead of e.g.kGS).Hence,the o ff-barrier GS-wave number is

    while in the barrier region one has

    The approximate transmission coefficient is given by

    The non-relativistic transition coefficient would be obtained from Eqs.(19)and(20)withηGS=0.The nonrelativistic transition coefficient does not show two-body effects and is not illustrated in the subsequent section.

    4 Results and Illustrations

    Results are presented in units such that1,wheremuis a mass unit.The length unit(xu=1)corresponds to the Compton wave lengthThe individual particle masses are denotedm1andm2in such mass units.One of the masses,m2,is determined in this study bym1and the reduced massμ.This choice of keeping the reduced mass as a primary mass parameter is motivated by the fact that non-relativistic results only depend on the reduced mass.The massm1is chosen to be the“l(fā)arge” mass so thatm1≥2μ.

    The two-body effects in this study have to do with the different mass combinations for the same reduced massμ.Equal masses are represented bym1=2μin the computations,and unequal masses are represented bym1=100μ.

    Transmission and reflection coefficients depend on the wave numbers in and off the barrier region.It is relevant to understand the approximate and exact wave numbers before a comparison of the transmission coefficients.

    4.1 Wave Numbers

    The wave numberskBandκBseem analytically different.With the restricted conditiona numerical investigation of their squares shows that the approximate wave numberis a reasonably good approximation ofin a large range of realistic potential parameters.

    Fig.1 (Color online)Approximation errors in(blue curves)as function of ?/V0for V0= μ with μ =5,2,1,and 0.5 mass units.Solid lines represent unequal masses with m1=100μand dashed lines represent equal masses where m1=2μ.Hence,for equal massesRed lines correspond to errors of the non-relativistic wave numbers,for which ηGS=0 in the GS approximation.Hence,for equal masses the non-relativistic wave numbers are in best agreement with those of the semi-relativistic theory.For ?=V0all barrier wave numbers are in agreement.

    A potential barrier withV0=1μandμof the order of the relativistic mass unit(mu=1)shows good agreement betweenandTheir difference is plotted in Fig.1,against?/V0.Dashed curves in Fig.1 represent equal masses and solid curves represent unequal masses for the same reduced mass.Red curves represent nonrelativistic wave numbers,obtained by puttingηGS=0 in the GS formulas.

    Errors in the GS barrier wave numbers increase significantly for unequal masses andV0(orμ)increasing beyond the unit mass.The GS approximation seems to be excellent for the equal-mass case(blue,dashed curves).The non-relativistic approximation is only valid for scattering energies close to the barrier top energy.

    For the same barriers as in Fig.1,the o ff-barrier wave numbers are studied in Fig.2.The non-relativistic(red curves)are accurate only near?≈0 unless the reduced mass is much smaller than the relativistic mass unit.The GS-approximation improves the non-relativistic off barrier wave numbers significantly,although not as much as it improves the barrier wave numbers.The equal-mass cases(blue,dashed curves)in Fig.2 show no errors in the GS approximation.

    Fig.2 Approximation error in κ2(blue curves)as function of ?/V0for V0= μ with μ =5,2,1,and 0.5 mass units.Solid lines represent unequal masses with m1=100μ and dashed lines represent equal masses where m1=2μ.Red lines,tending to negative values as ? increases,correspond to errors of the non-relativistic wave numbers for which ηGS=0 in the GS formulas.

    4.2 Transmission Coefficient

    Because of the relation between the transmission and reflection coefficients,T+R=1,it is sufficient to analyze just the transmission coefficientT.The formulas(14)and(20)indicate that the wave numbers play an important role.The over-barrier case of scattering energies allow oscillations depending on the barrier wave numbers and the barrier sizea.The o ff-barrier wave numbers affect the magnitudes of the amplitudes of the oscillations only,not the frequencies of the oscillations.For wide barriers,small errors in the barrier wave numbers may still be significant for the oscillation phases at energies??V0.

    The error in the oscillation pre-factoris more difficult to understand.In Fig.3 the absolute error is denoted

    The parameters and energies used in Fig.3 are those taken as those in Figs.1 and 2.The error?γfor the case of unequal masses(solid curves)changes sign and seems to be almost independent of potential and mass parameters,despite the significant differences due to parameters of the wave numbers in Figs.1 and 2.This error is singular in a transition region where the scattering energy is near the barrier top energy,and also close to the threshold limit?=0.Well inside the over-barrier and the under-barrier energy regions the errors are small.The singularities are cancelled by the fact thatκagrees withkasandagrees withasIn the barrier transition region there is a sign change inand in the oscillation pre-factorIn the same region one has

    which cancelsin the pre-factor and the over-all sign change.As a result of the apparent independence of?γas potential parameters are changed,the main source of error in the transmission coefficient seems to be the argument of the sine function,4κBa,when this is real valued(overbarrier case).The spatial range of the potential magnifies the positive error inκBfora>1.The GS approximation predicts shorter energy periods of the possible oscillations inT,as?(>V0)increases.For scattering energies belowV0,Tis non-oscillatory and usually vanishing as?→0.The sine function has turned exponentially increasing as?approaches zero,whileV0being not too small.Errors inTare then less likely to be observed for the parameters used in Figs.1–3.

    Fig.3 Absolute GS-approximation error, in the oscillation pre-factor(Eq.(21))as function of ?/V0with V0=μandμ=5,2,1,and 0.5 mass units.The equal mass case(dashed line)does not show any significant numerical error.

    Fig.4 Transmission coefficients for a barrier range a=1,and other parameters being as in Figs.1–3.The equal mass cases are represented by dashed curves and the unequal mass cases represented by solid curves.

    Figure 4 shows the transmission coefficient for a barrier rangea=1 and for other parameters as in Figs.1–3.Two-body effects are signi ficant in all four subplots of Fig.4,although not for?≈V0.The GS-approximation results(surprisingly)agree with those of exact calculations(see Table 1),and results are represented by common curves.The dashed curves(m1=2μ)and solid curves(m1=100μ)differ slightly in their wavy behaviors.This is the two-body effect seen in Fig.4,which is well predicted by the GS-approximation.

    Figure 5 considers a three times wider barrier witha=3.Again,the results of the GS-approximation are in-distinguishable from the exact results on the scale of the figures.The two-body effects here,predictable by the GS-approximation,appear as shifts of transmission peaks for over-barrier energies.These shifts gradually increase as the energy increases.

    Table 1 shows numerical results for the transmission coefficient related to Fig.5 forμ=5,and selected values of the scattering energy.In this table results are compared with those of the GS-approximation.In the equal mass case(m1=2μ)in Table 1 both entries are identical.It can be con firmed(not included in the present work)that the transmission coefficientsTandTGSare analytically the same in the equal-mass case.For “l(fā)ight-heavy”masses the differences betweenTandTGSare still small on the graphical scales in Figs.4 and 5.

    The table,as well as Figs.4 and 5,show significant two-body effects for all system parameters,unless the transmission coefficient is exponentially small.

    Fig.5 Transmission coefficients for a barrier range a=3 and other parameters are as in Figs.1–3.The equal mass cases are represented by dashed curves and the unequal mass cases represented by solid curves.

    Table 1 Two-body transmission coefficients T and TGSare compared for selected scattering energies(?/V0).The potential parameters are V0=1μ and a=3,and the results correspond to Fig.5,forμ=5.

    5 Conclusions

    The rectangular potential allows exact numerical semirelativistic calculations,involving linear plane waves only and their matching at the barrier discontinuities.The generalized Schr¨odinger(GS)approximation seems to predict accurate energy behavior of the transmission coefficient in a reasonably realistic energy range.With the scales of the illustrations,the GS results are indistinguishable from those of the exact computations of the transmission coefficient and significant two-body effects are accurately obtained.

    Two-body effects in the present illustrations appear mainly as energy shifts of total transmission in the overbarrier energy region.These effects may seem more striking in numerical tables,like in Table 1,where in the overbarrier case oscillations may be dense on the energy scale and of quite large amplitudes;see Figs.4–5.In the underbarrier case two-body effects appear stronger for smaller values of the reduced mass(compare Figs.4 and 5).

    The observed accuracy of the GS approximation does not apply to the local wave numbers,but errors appear to cancel in the final formula for the transmission coefficient.In a more rigorous study on two-body interference effects,discussed in the final paragraphs of Sec.2,this situation may no longer prevail if the barrier energyV0is of the order ofm2c2or much larger.

    References

    [1]K.E.Thylwe,Phys.Scr.85(2012)065009;K.E.Thylwe,Eur.Phys.J.D66(2012)7.

    [2]S.M.Ikhdair and R.Sever Int.J.Mod.Phys.E17(2008)1107;Int.J.Mod.Phys.A20(2005)16509.

    [3]W.Lucha and F.F.Sch¨oberl,Int.J.Mod.Phys.A17(2002)2233;Int.J.Mod.Phys.A15(2000)3221,arXiv:hep-ph/9909451;Int.J.Mod.Phys.A14(1999)2309;Fizika B8(1999)193;Phys.Rev.A60(1999)5091,arXiv:hep-ph/9904391;Phys.Rev.A54(1996)3790;Phys.Rev.D50(1994)5443;Phys.Rev.D50(1994)5443.

    [4]K.E.Thylwe and S.Belov,arXiv:quant-ph/1508.02067.

    [5]S.Hassanabadi,M.Ghominejad,and K.E.Thylwe,Commun.Theor.Phys.63(2015)423.

    [6]S.Hassanabadi and A.A.Rajabi,Mod.Phys.Lett.A27(2012)1250057;S.Zarrinkamar,A.A.Rajabi,H.Hassanabadi,and H.Rahimov,Phys.Scr.84(2011)065008;S.Zarrinkamar,A.A.Rajabi,and H.Hassanabadi,Few-Body Sys.52(2011)165.

    [7]K.E.Thylwe,J.Phys.A:Math.Gen.38(2005)235.

    哪里可以看免费的av片| 欧美日韩亚洲国产一区二区在线观看| 久久中文字幕人妻熟女| 一a级毛片在线观看| 国产精品久久久久久久电影 | xxxwww97欧美| 哪里可以看免费的av片| 国产精品,欧美在线| 看片在线看免费视频| 老汉色av国产亚洲站长工具| 国内精品久久久久精免费| 国产成人一区二区三区免费视频网站| 在线观看美女被高潮喷水网站 | 香蕉av资源在线| 精品一区二区三区视频在线观看免费| 91老司机精品| www.熟女人妻精品国产| e午夜精品久久久久久久| 欧美乱妇无乱码| 亚洲国产精品成人综合色| 久久精品综合一区二区三区| 男人舔女人下体高潮全视频| 成人特级黄色片久久久久久久| 黑人操中国人逼视频| 国产高清三级在线| 人妻久久中文字幕网| 精品一区二区三区四区五区乱码| 色精品久久人妻99蜜桃| 狠狠狠狠99中文字幕| 成人特级av手机在线观看| 午夜福利欧美成人| 国产精品影院久久| 亚洲人成网站在线播放欧美日韩| 午夜福利成人在线免费观看| 色精品久久人妻99蜜桃| 91久久精品国产一区二区成人 | 亚洲午夜精品一区,二区,三区| 在线看三级毛片| 欧美日韩乱码在线| 国产主播在线观看一区二区| 欧美日韩精品网址| 香蕉久久夜色| 国产欧美日韩精品一区二区| 日本在线视频免费播放| 成年女人毛片免费观看观看9| 最近在线观看免费完整版| 欧美在线一区亚洲| 久久香蕉国产精品| 欧美在线黄色| 在线观看一区二区三区| 在线视频色国产色| 亚洲精品在线观看二区| 国产高清视频在线播放一区| 色哟哟哟哟哟哟| 国产精品99久久99久久久不卡| 日本熟妇午夜| 99热精品在线国产| 日韩大尺度精品在线看网址| 成人18禁在线播放| 国内精品久久久久久久电影| 免费观看的影片在线观看| 母亲3免费完整高清在线观看| 免费看美女性在线毛片视频| 99热只有精品国产| 巨乳人妻的诱惑在线观看| 欧美日本亚洲视频在线播放| 两个人的视频大全免费| 国产乱人伦免费视频| 国产精品1区2区在线观看.| 国产亚洲精品av在线| 亚洲在线自拍视频| 国产久久久一区二区三区| 婷婷丁香在线五月| 精品午夜福利视频在线观看一区| 美女cb高潮喷水在线观看 | 中文字幕最新亚洲高清| 欧洲精品卡2卡3卡4卡5卡区| 性欧美人与动物交配| 免费观看的影片在线观看| 69av精品久久久久久| 亚洲精品中文字幕一二三四区| 久久久久久久精品吃奶| 国产精品av久久久久免费| 精品乱码久久久久久99久播| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 成年女人永久免费观看视频| 一个人免费在线观看的高清视频| 变态另类丝袜制服| 亚洲精品美女久久av网站| 亚洲精品国产精品久久久不卡| 久久久水蜜桃国产精品网| 国产欧美日韩精品亚洲av| 国产三级黄色录像| av在线天堂中文字幕| 俄罗斯特黄特色一大片| 亚洲av第一区精品v没综合| 亚洲七黄色美女视频| а√天堂www在线а√下载| 18禁裸乳无遮挡免费网站照片| 久久九九热精品免费| 青草久久国产| 最近在线观看免费完整版| 中文字幕精品亚洲无线码一区| 国产成人一区二区三区免费视频网站| 18禁黄网站禁片免费观看直播| 一级毛片精品| 99国产精品99久久久久| 亚洲午夜理论影院| 韩国av一区二区三区四区| 老司机深夜福利视频在线观看| 欧美日韩国产亚洲二区| 手机成人av网站| 变态另类成人亚洲欧美熟女| 熟女电影av网| 一进一出抽搐gif免费好疼| 一进一出抽搐gif免费好疼| 日本与韩国留学比较| 亚洲片人在线观看| 亚洲国产看品久久| 深夜精品福利| 极品教师在线免费播放| 一个人观看的视频www高清免费观看 | 一级毛片高清免费大全| 亚洲 欧美一区二区三区| 国产午夜精品论理片| 欧美乱色亚洲激情| 国产精品久久久久久久电影 | 免费在线观看影片大全网站| 精品不卡国产一区二区三区| 欧美一区二区精品小视频在线| 欧美日本亚洲视频在线播放| 男人舔女人下体高潮全视频| 男女做爰动态图高潮gif福利片| 国产91精品成人一区二区三区| 欧美黑人欧美精品刺激| 久久久久久国产a免费观看| 听说在线观看完整版免费高清| 一个人观看的视频www高清免费观看 | 亚洲av日韩精品久久久久久密| 欧美性猛交黑人性爽| 嫩草影院精品99| 在线观看美女被高潮喷水网站 | 看免费av毛片| 亚洲男人的天堂狠狠| 亚洲国产精品久久男人天堂| 国产人伦9x9x在线观看| 少妇的逼水好多| 国产乱人伦免费视频| av天堂在线播放| 久久亚洲精品不卡| www.999成人在线观看| 国产精品av久久久久免费| 欧美黑人巨大hd| 一级作爱视频免费观看| 美女高潮的动态| 成人18禁在线播放| 日韩大尺度精品在线看网址| 亚洲国产日韩欧美精品在线观看 | 久久精品国产综合久久久| 999久久久精品免费观看国产| 嫩草影视91久久| 日韩成人在线观看一区二区三区| 在线永久观看黄色视频| 欧美黑人欧美精品刺激| 亚洲中文av在线| cao死你这个sao货| 国产精品久久视频播放| 18禁黄网站禁片午夜丰满| 欧美一级毛片孕妇| 黑人欧美特级aaaaaa片| 日韩大尺度精品在线看网址| 国产免费男女视频| 超碰成人久久| 国产精品1区2区在线观看.| 国内精品美女久久久久久| 大型黄色视频在线免费观看| 此物有八面人人有两片| 免费电影在线观看免费观看| 亚洲五月天丁香| 精品熟女少妇八av免费久了| 俺也久久电影网| 男插女下体视频免费在线播放| 狂野欧美白嫩少妇大欣赏| 成年女人毛片免费观看观看9| 午夜久久久久精精品| 99热精品在线国产| 国产成+人综合+亚洲专区| 亚洲国产高清在线一区二区三| 亚洲 国产 在线| 在线观看一区二区三区| 99精品欧美一区二区三区四区| 一个人免费在线观看的高清视频| 香蕉丝袜av| 18禁裸乳无遮挡免费网站照片| 亚洲人与动物交配视频| 日本在线视频免费播放| 天堂av国产一区二区熟女人妻| 又紧又爽又黄一区二区| 亚洲 国产 在线| 一进一出好大好爽视频| 国产高清视频在线观看网站| 九色成人免费人妻av| 日本免费a在线| 国产精华一区二区三区| x7x7x7水蜜桃| 亚洲av成人av| 国产亚洲欧美在线一区二区| 成人午夜高清在线视频| 这个男人来自地球电影免费观看| 99久久国产精品久久久| 国产精品永久免费网站| 精品国产乱子伦一区二区三区| 欧美绝顶高潮抽搐喷水| 国产一级毛片七仙女欲春2| 女人高潮潮喷娇喘18禁视频| 丰满人妻一区二区三区视频av | 天天一区二区日本电影三级| 亚洲 欧美 日韩 在线 免费| 又粗又爽又猛毛片免费看| 1024香蕉在线观看| 亚洲性夜色夜夜综合| 欧美乱妇无乱码| 欧美3d第一页| 免费在线观看日本一区| 国产乱人伦免费视频| 一区二区三区高清视频在线| avwww免费| 久久精品影院6| 麻豆av在线久日| 美女 人体艺术 gogo| 亚洲国产精品久久男人天堂| 久久久久久久久中文| 日韩中文字幕欧美一区二区| 18禁黄网站禁片免费观看直播| 麻豆国产97在线/欧美| 亚洲精品中文字幕一二三四区| 成人av在线播放网站| 美女高潮的动态| 国产又黄又爽又无遮挡在线| 亚洲av片天天在线观看| 99久久久亚洲精品蜜臀av| 久久中文看片网| 狠狠狠狠99中文字幕| 久久这里只有精品19| 国内久久婷婷六月综合欲色啪| 香蕉久久夜色| 日韩欧美国产一区二区入口| 国产高清视频在线观看网站| 成在线人永久免费视频| 丝袜人妻中文字幕| 一本精品99久久精品77| 一本综合久久免费| 亚洲中文字幕一区二区三区有码在线看 | 巨乳人妻的诱惑在线观看| 久久中文看片网| 国产成人精品久久二区二区91| 99久久精品国产亚洲精品| 国产av一区在线观看免费| 日本熟妇午夜| 一进一出抽搐gif免费好疼| 国产精品免费一区二区三区在线| 亚洲av熟女| 99久国产av精品| 看片在线看免费视频| 成年版毛片免费区| 亚洲欧美日韩无卡精品| 麻豆国产97在线/欧美| 男插女下体视频免费在线播放| 亚洲欧洲精品一区二区精品久久久| 国产1区2区3区精品| 小说图片视频综合网站| 在线永久观看黄色视频| 久久久久久久精品吃奶| 欧美3d第一页| 国产激情欧美一区二区| 成年女人看的毛片在线观看| 国产精品免费一区二区三区在线| а√天堂www在线а√下载| 国产麻豆成人av免费视频| 免费一级毛片在线播放高清视频| 成年女人看的毛片在线观看| 国产精品一及| 色精品久久人妻99蜜桃| 国产激情久久老熟女| 国产精品一区二区三区四区免费观看 | 久久久国产欧美日韩av| 亚洲精品国产精品久久久不卡| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 一进一出抽搐gif免费好疼| 一进一出好大好爽视频| 男女之事视频高清在线观看| 国内精品久久久久久久电影| 色综合婷婷激情| 神马国产精品三级电影在线观看| 日韩三级视频一区二区三区| 男插女下体视频免费在线播放| 成人亚洲精品av一区二区| 日韩精品中文字幕看吧| 国产一区二区在线观看日韩 | 久久精品人妻少妇| 亚洲精品国产精品久久久不卡| 亚洲成人久久爱视频| 看片在线看免费视频| 18禁观看日本| 他把我摸到了高潮在线观看| 久久久久久久精品吃奶| 日韩欧美在线二视频| 欧美日韩精品网址| 亚洲国产看品久久| 夜夜爽天天搞| 99久久成人亚洲精品观看| 亚洲av五月六月丁香网| 色噜噜av男人的天堂激情| 国产伦人伦偷精品视频| 免费看日本二区| 欧美绝顶高潮抽搐喷水| 婷婷亚洲欧美| 国产一区二区三区视频了| 欧美午夜高清在线| 欧美成人一区二区免费高清观看 | 神马国产精品三级电影在线观看| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产 | 亚洲专区字幕在线| 久久国产乱子伦精品免费另类| 观看美女的网站| 成年女人毛片免费观看观看9| 岛国在线观看网站| 国产免费av片在线观看野外av| 日韩高清综合在线| 日本一本二区三区精品| 999精品在线视频| 日本精品一区二区三区蜜桃| 后天国语完整版免费观看| 少妇的逼水好多| 亚洲乱码一区二区免费版| 免费大片18禁| 99热这里只有精品一区 | 精品久久久久久,| 亚洲欧美日韩卡通动漫| 国产精品 欧美亚洲| 国内精品美女久久久久久| 成年女人永久免费观看视频| 在线免费观看不下载黄p国产 | 亚洲av成人av| 日本黄色片子视频| 91麻豆精品激情在线观看国产| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 久久天堂一区二区三区四区| 两性夫妻黄色片| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 日韩av在线大香蕉| 欧洲精品卡2卡3卡4卡5卡区| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 亚洲五月天丁香| 国产精品野战在线观看| av中文乱码字幕在线| av在线天堂中文字幕| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 一进一出抽搐动态| 亚洲国产日韩欧美精品在线观看 | 精品电影一区二区在线| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 少妇熟女aⅴ在线视频| 婷婷六月久久综合丁香| 一本一本综合久久| 国产免费男女视频| 午夜a级毛片| 久久久色成人| 91九色精品人成在线观看| 他把我摸到了高潮在线观看| 亚洲成av人片免费观看| 久久久久久久久中文| 日韩 欧美 亚洲 中文字幕| 免费看十八禁软件| 国产在线精品亚洲第一网站| 欧美日韩黄片免| 亚洲av电影在线进入| 亚洲精品乱码久久久v下载方式 | 精品国产超薄肉色丝袜足j| 露出奶头的视频| 亚洲欧美精品综合久久99| 精品国产亚洲在线| 听说在线观看完整版免费高清| 亚洲精品乱码久久久v下载方式 | 麻豆久久精品国产亚洲av| 日韩欧美免费精品| 九色国产91popny在线| 神马国产精品三级电影在线观看| 日韩av在线大香蕉| 国产激情欧美一区二区| 搡老岳熟女国产| 国产亚洲精品久久久com| 少妇的逼水好多| 亚洲美女视频黄频| 精品欧美国产一区二区三| 757午夜福利合集在线观看| 精品乱码久久久久久99久播| 在线看三级毛片| 亚洲精品在线美女| a级毛片在线看网站| 又爽又黄无遮挡网站| 黄色 视频免费看| 国产伦人伦偷精品视频| 久久热在线av| 村上凉子中文字幕在线| 午夜精品在线福利| 亚洲一区二区三区不卡视频| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 国产黄片美女视频| 哪里可以看免费的av片| 精品日产1卡2卡| 国内少妇人妻偷人精品xxx网站 | 欧美高清成人免费视频www| 国产精品av视频在线免费观看| 99在线视频只有这里精品首页| 一个人看视频在线观看www免费 | 91麻豆精品激情在线观看国产| 无遮挡黄片免费观看| 黄色 视频免费看| 久久久精品欧美日韩精品| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 亚洲精品中文字幕一二三四区| 黑人欧美特级aaaaaa片| 少妇人妻一区二区三区视频| 99riav亚洲国产免费| 9191精品国产免费久久| 国产高清激情床上av| 99热6这里只有精品| 亚洲专区国产一区二区| 成人特级av手机在线观看| 天堂影院成人在线观看| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 国产精品一区二区三区四区久久| 性欧美人与动物交配| 国产精品1区2区在线观看.| or卡值多少钱| 国产 一区 欧美 日韩| 久久久国产欧美日韩av| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点| 一二三四社区在线视频社区8| 99热这里只有精品一区 | 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 亚洲午夜精品一区,二区,三区| 日韩欧美免费精品| 看免费av毛片| 他把我摸到了高潮在线观看| 色视频www国产| 国产高潮美女av| 久久久久国内视频| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 国产 一区 欧美 日韩| 五月伊人婷婷丁香| 亚洲欧美激情综合另类| 欧美不卡视频在线免费观看| 1024香蕉在线观看| 精品日产1卡2卡| av在线蜜桃| 九九热线精品视视频播放| 欧美大码av| 男女下面进入的视频免费午夜| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华精| 超碰成人久久| 一个人免费在线观看的高清视频| 亚洲人成网站高清观看| 在线视频色国产色| 国产成人一区二区三区免费视频网站| 中文亚洲av片在线观看爽| 啪啪无遮挡十八禁网站| 欧美乱色亚洲激情| 亚洲av电影在线进入| 夜夜躁狠狠躁天天躁| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 日韩人妻高清精品专区| 毛片女人毛片| 国产精品久久久久久久电影 | 欧美zozozo另类| 久久精品国产综合久久久| 国产精品日韩av在线免费观看| 天堂影院成人在线观看| 国产不卡一卡二| 久久精品国产99精品国产亚洲性色| 亚洲 国产 在线| 午夜激情欧美在线| 悠悠久久av| 一本久久中文字幕| 国产精品一区二区精品视频观看| 日韩欧美免费精品| 中文字幕av在线有码专区| 麻豆国产97在线/欧美| 级片在线观看| 国产伦精品一区二区三区视频9 | 欧美成人一区二区免费高清观看 | 制服丝袜大香蕉在线| 一区二区三区国产精品乱码| 十八禁网站免费在线| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产| 一本综合久久免费| 久久久久亚洲av毛片大全| 国产美女午夜福利| 嫩草影视91久久| 欧美日韩福利视频一区二区| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| 波多野结衣巨乳人妻| 天堂动漫精品| 最新美女视频免费是黄的| 久久精品国产亚洲av香蕉五月| 国产激情久久老熟女| 18禁黄网站禁片免费观看直播| 97超级碰碰碰精品色视频在线观看| 久久精品人妻少妇| 在线免费观看不下载黄p国产 | 麻豆久久精品国产亚洲av| 一个人免费在线观看电影 | 亚洲九九香蕉| 一本综合久久免费| 亚洲九九香蕉| 超碰成人久久| 啪啪无遮挡十八禁网站| 亚洲欧美日韩东京热| 亚洲av电影在线进入| 香蕉久久夜色| 最近视频中文字幕2019在线8| 制服人妻中文乱码| 91麻豆精品激情在线观看国产| 国产av一区在线观看免费| 国产一区二区在线观看日韩 | 男女之事视频高清在线观看| 欧美日本视频| 亚洲精品国产精品久久久不卡| 国产激情欧美一区二区| 九色成人免费人妻av| 看免费av毛片| 久久久水蜜桃国产精品网| 成人一区二区视频在线观看| 国产黄a三级三级三级人| 成人一区二区视频在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av成人一区二区三| 中文字幕熟女人妻在线| 精品国内亚洲2022精品成人| 五月玫瑰六月丁香| 日本在线视频免费播放| 国产精品av视频在线免费观看| 国产成人啪精品午夜网站| avwww免费| 99久久成人亚洲精品观看| 九九久久精品国产亚洲av麻豆 | 亚洲va日本ⅴa欧美va伊人久久| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| 久久亚洲真实| 三级男女做爰猛烈吃奶摸视频| 性色avwww在线观看| 午夜福利在线观看免费完整高清在 | 最新中文字幕久久久久 | 女同久久另类99精品国产91| 日本一二三区视频观看| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线 | 嫩草影视91久久| aaaaa片日本免费| 亚洲乱码一区二区免费版| 熟女少妇亚洲综合色aaa.| 色综合亚洲欧美另类图片| 久久午夜综合久久蜜桃| 色吧在线观看| 日韩大尺度精品在线看网址| 一二三四社区在线视频社区8| 99久久精品一区二区三区| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 老熟妇乱子伦视频在线观看| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 香蕉国产在线看| 每晚都被弄得嗷嗷叫到高潮| 日韩有码中文字幕| 人人妻人人澡欧美一区二区| 午夜福利成人在线免费观看| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 久久精品影院6| 一区二区三区国产精品乱码| 中文字幕熟女人妻在线| 两性午夜刺激爽爽歪歪视频在线观看| 啪啪无遮挡十八禁网站| 全区人妻精品视频| 国产成人aa在线观看| 日韩欧美精品v在线| 亚洲精品乱码久久久v下载方式 |