• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Behavior of Spatial Evolutionary Game with Altruistic to Spiteful Preferences on Two-Dimensional Lattices?

    2016-05-10 07:38:08BoYang楊波XiaoTengLi李曉騰WeiChen陳衛(wèi)JianLiu劉劍andXiaoSongChen陳曉松
    Communications in Theoretical Physics 2016年10期
    關鍵詞:楊波劉劍

    Bo Yang(楊波)Xiao-Teng Li(李曉騰)Wei Chen(陳衛(wèi))Jian Liu(劉劍)and Xiao-Song Chen(陳曉松)?

    1Institute of Theoretical Physics,Key Laboratory of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3Supercomputing Center of Chinese Academy of Sciences,Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    4School of Science,Beijing Technology and Business University,Beijing 100048,China

    1 Introduction

    The spatial evolutionary game has been minutely studied to explain the emergence and maintenance of cooperation among selfish individuals during the past few years[1?4]in economics,biology and social sciences.

    The structure of social networks and the evolutionary rules are two important research fields of evolutionary game.[5]Many interesting results have been obtained on different spatial structures,such as two-dimensional regular lattices,[6?7]small world networks[8]and scale-free networks.[9]Learning mechanism has been widely adopted in evolutionary rules.[5?7,9]Players revise their strategies by learning from their neighbors.Self-questioning mechanism is presented in Ref.[10].Each player adopts its anti-strategy to play a virtual game with all its neighbors,then obtains a virtual payoff.By comparing the real payoffand the virtual payoff,each player can get its optimal strategy corresponding to the highest payoff.[10?12]This evolutionary rule is similar to Ising model’s Metropolis algorithm in statistical physics.

    Traditional economic theory predicts that individuals will not supply goods and services without being compensated.However,individuals do not always pursue selfinterest:people risking their own life to rescue others,soldiers participating in wars voluntarily,many kinds of charity etc.[13]Nowak summarized five possible rules for the evolution of cooperation corresponding to different situations:Kin selection,Direct reciprocity,Indirect reciprocity,Network reciprocity,Group selection.[4]In economics,altruistic and spiteful preferences have been introduced to study evolutionary stability of altruism and spitefulness.[13?16]In this paper,altruism,egoism and spitefulness are considered through a preference parameterp.Whenp>0,player is altruistic,which means a player has a positive regard for his opponents.p=0 represents the player as selfish.p<0 determines the player as spiteful.

    In statistical physics,the internal energy decreases and approaches a minimum value at equilibrium in a closed system with constant external parameters and entropy(Principle of minimum energy).[17]Similarly,in economics,pro fit maximization is an eternal pursuit to the individual and society,so one may expect that the equilibrium probability distribution function of payoff s in a closed system of agents has the Boltzmann–Gibbs form.[18]In analogy to Ising model,spatial evolutionary game model can convert into Ising-like model,the effective Hamiltonian of evolutionary game can be obtained. By analyzing the effective Hamilton of game,game model is divided into three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order)at zero social temperature(the noise introduced to permit irrational choices[6?7]).Two paths(the phase of game model translating from entirely cooperative phase to entirely noncooperative phase)are investigated.Continuous and discontinuous phase transitions are observed at sufficiently low temperature.Fourth-order cumulant is investigated to locate critical points.The critical exponents(ν,β,γ)are obtained by finite-size scaling.

    This paper is organized as follows.In Sec.2,we make a brief review of Ising model with a nonzero field firstly,then we introduce our evolutionary game model and obtain the effective Hamilton of game model.Finally,the ground state of game model is divided into three phases in the condition of perfect rationality;in Sec.3,we present and discuss the results;in Sec.4,we draw a conclusions from the results.

    2 Model

    2.1 A Brief Review of Ising Model

    The Hamiltonian of Ising model with an interactionJijfor any two adjacent sitesiandjand an external magnetic fieldhifor any siteiis given by

    whereSiis the Ising spinat lattice sitei,the first sum is over pairs of adjacent spins(every pair is counted once).The notationindicates that sitesiandjare the nearest neighbors.

    Ising models can be classi fied according to the sign of the interaction:forJij>0 the interaction is ferromagnetic and it is antiferromagnetic ifJij<0;whenJij=0,the spins are noninteracting.Additionally,the spin site wants to line up with the external field,forhi>0 the spin siteidesires to line up in the positive direction and it desires to line up in the negative direction ifhi<0;whenhi=0,there is no external in fluence on the spin site.Forhi=0,the Ising model is symmetric under switching the value of the spin in all the lattice sites,but a non zero field breaks this symmetry.The introduction of nonzero magnetic field destroys the continuous phase transition of the ferromagnetic Ising model,whereas the nonzero uniform field does not destroy the transition of the antiferromagnetic Ising model.The exact solution of antiferromagnetic Ising model in an external field can not be obtained.Instead,the researchers focus on the critical line(N′eel temperature as a function of external field)for the square lattice antiferromagnetic Ising in an external field.[19?23]For critical line,there are different approximations,[20,22,24]for example cosh(h/Tc)=sinh2(2J/Tc).The ends of the(T,h)critical line are(2.269,0)and(0,4|J|),and the antiferromagnetic phase is completely enclosed by transition lines.[25]

    At zero temperature,a critical magnetic fieldhcexist in antiferromagnetic Ising model such ashc=4|J|for a square lattice.When?4J4Jorh

    In order to obtain energy difference?E(iflips its directionEq.(1)can be rewritten as

    wherekis a spin excepti.When the state ofiflips,the new energyE′is

    Thus,the energy differenceis

    2.2 Introduction of Game Model

    For a randomly given agent i,two available strategies cooperation(Si=+1)and non-cooperation(Si=?1)can be adopted to play with its nearest neighbors.Mutual cooperation yields the rewarda,mutual non-cooperation leads to punishmentd,and the mixed choice gives the cooperator the suck’s payo ffband the non-cooperation the temptationc.

    The randomly chosen playerirevises its strategy according to self-questioning mechanism and the stochastic evolutionary rule.That is to say,playeriadopts its antistrategy to play a virtual game with all its neighbors,and calculates the virtual payo ff.By comparing the real payoff and the virtual payo ff,player will find out its optimal strategy.[10?11]In next round,playeriwill revise its current strategy to its anti-strategy with a given probability

    whereandare the real and virtual payo ffof playeri,respectively.The noise can be described viaT.TheGiis defined as

    wheregirepresents the total payo ffof playeri(playeriplays with all its nearest neighbors and accumulates the obtained payoff).represents all its nearest neighbors’s total payoff by playing withi.pis preference parameter,positive denotes altruism,negative stands for spite,and zero characterizes classical own pro fit maximization.

    This evolutionary rule is similar to single spin- flip of Ising model in statistical physics.We will find out the relationship between evolutionary game model and Ising model hereafter.

    For a given agenti,the number of cooperative and non-cooperative neighbors areni+andni?,

    wherejis the neighbors set of agenti,kiis the sum of neighbors.

    By playing the game with all its nearest neighbors,agentiacquires its payo ffgi. At the same time,its neighbors acquirein this process.WhenSi=+1,,andwhenSi=?1,and

    In the process of virtual game(corresponding toiflips its direct in Ising),the payo ff s difference are?giandThey can be calculated as

    In our model,players care not only about their own monetary payoffs,but also about their opponent’s monetary payo ff s.Thus,the playidoes not necessarily maximize pay off itself,but rather weighted sums of own and opponent’s payoffs.The change of payoffs when the state ofiflips:can be written as,

    By substituting Eqs.(9)and(10)into Eq.(11),we obtain

    As the Ising model,the strength of interactionJijand external fieldhican be defined as

    The effective energy can be obtained

    As a special accommodation,we investigate weak Prisoner’s Dilemma.We takea=a,b=0,c=1?a,d=0,and 1/3

    For two-dimensional square lattices,ki=4,the effective energy is

    2.3 Three Phases of Game Model

    The ground state of game model at zero temperature can be divided though three equations:the strength of interactionJ=0,the external fieldh=0,and the critical external fieldh=4|J|.Results of these functions area=1/2 orp=?1 forJ=0;a=1/2(1?p)forh=0;a=1/(2+p)forh=?4J,andp=0 forh=4J,which are shown in Fig.1.Game model is divided into three phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order).The region of cooperative and non-cooperative coexistence is enclosed by the critical lines(p=0 anda=1/(2+p)).In game model,Tis the measure of stochastic uncertainties(noise)allowing the irrational choices.ais an inherent parameter,which belongs the payoffmatrix.Whena>0.5,cooperation will gain much more benefit;whena<0.5,non-cooperation will get more.But cooperation can survive fora<0.5 owing to altruism.pas a preference parameter measures the relationship between spitefulness,egoism and altruism.Non-cooperation can arise only spitefulness existing.

    Fig.1 The ground state at zero temperature on the(a,p)parameter space.Three phases can exist:four small upward arrows denote entirely cooperative phase(ferromagnetic order upward),four small downward arrows denote entirely non-cooperative phase(ferromagnetic order downward)and small arrows upward and downward alternatively denote cooperative and noncooperative coexistence(antiferromagnetic order).The phase transition and critical phenomena are investigated by two special paths(two dashed lines),which cross cooperative and non-cooperative region.

    3 Results and Discussions

    We have preformed Monte Carlo simulations on square lattice with periodic boundary conditions using Metropolis algorithm.The randomly chosen playerirevises its strategy according self-questioning rule.In general,we discarded the first 10000 Monte Carlo Steps(MCS)in order to achieve the stationary regime for all lattices sizes.In order to estimate the quantities of interest,we considered the next 2×105MCS to calculate the averages.To further improve accuracy,the final results are average over 100 independent realization with different initial con figurations.

    For antiferromagnetic Ising model,the staggered magnetization can be defined as

    which is the order parameter for antiferromagnetic systems.[26?27]The corresponding susceptibilities are defined by

    and the fourth-order Binder cumulants is

    wheremcan bemtormsforχ(m)andU(m).

    mt,ms,χ(m)andU(m)obey the following finite size scaling relations in the neighborhood of the stationary critical pointpc:

    whereis the critical preference parameter for a givenT.

    The derivative of fourth-order Binder cumulantsUL(p)is

    We can obtain the critical exponentνfrom a log-log plot ofversusL.

    In this model,the evolution of game model from entirely cooperative phase to entirely non-cooperative phase is an interesting problem,which involves the interaction between game’s parameteraand individual preferencepat low social temperatures.Thus,two special evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4(broken lines in Fig.1)are taken.The patha=1/2p+0.4 passes through the antiferromagnetic region.

    In Fig.2,magnetisation as a function ofpfor several lattice sizesLis shown atT=0.002.The value of the magnetizationmtjumps from+1 to?1 as the preference parameterpis scanned from the positive direction to the negative direction by the patha=1/2p+0.6 of Fig.1.The order parameter of magnetisationmtis discontinuous.Obviously,the critical exponentβ/ν=0,indicate a discontinuous phase transition.

    Theoretically,the phase transition sweeping along patha=1/2p+0.6 is a transition from ferromagnetic order upward to ferromagnetic order downward.This is equivalent to a magnetic material placed in an external fieldh.If the temperature is lower thanTc(critical temperature at the intersection ofh=0 anda=1/2p+0.6),the value of the magnetizationmjumps from positive to negative as the external magnetic fieldhis scanned from the positive direction to the negative direction.Consider the 2D Ising model on a square lattice,the critical temperature isTc=2.269J=0.00225 at transition point(p=?0.1,a=0.55).

    Fig.2 Magnetisation as a function of p for several lattice sizes L along the path a=1/2p+0.6,magnetisation is discontinuous at transition point(p=?0.1,a=0.55).

    Fig.3 Staggered magnetization msfor various system sizes along the path a=1/2p+0.4 at T=0.02.Apparently,two critical points exist,because of the finite-size effects near p=0 and p=0.15 have been observed.

    In Fig.3,the order parameter of antimagnetisationmsas a function ofpfor several lattice sizesLis shown atT=0.02.The staggered magnetization changes with the lattice sizes near critical points.In Fig.4,susceptibility as a function ofpfor various system sizes is shown.The susceptibility has two maxima whose positions shift toward the corresponding critical points and their peaks increase with system sizeL.Those phenomena display remarkable finite-size effects.There are two critical points existing.To see them more clearly,we narrow down the range ofpto redraw the staggered magnetization(Figs.5 and 6)and susceptibility(Figs.7 and 8).

    Theoretically,patha=1/2p+0.4 intersects antiferromagnetic critical line. The antimagnetic phase transition is a second-order transition. In this situation,and the approximate critical line is cosh(2p?0.2/Tc) =sinh2[(p?0.2)(1+p)/(2Tc)].Two intersection can be obtained by solving this equation atTc=0.02,pc=0.01167 andpc=0.131426.

    Fig.4 Susceptibility as a function of p for various system sizes along the path a=1/2p+0.4 at T=0.02.The susceptibility has sharp jump near p=0 and p=0.15.

    Fig.5 The Staggered magnetization of the left critical point in Fig.3 near p=0.

    To locate the two critical points by using Monte Carlo simulations,we plot the reduced fourth-order cumulant,respectively.The fourth-order cumulant of the left phase transition point in Fig.3 is shown in Fig.9 as a function ofpfor several values ofL.The scaling relation for the fourth-order cumulant shows that,at the critical preference parameter,all curves must cross at a common point.From the crossing of these curves,we estimate the critical preference parameterpc=0.01127±0.00014.The fourth-order cumulant of the right phase transition point in Fig.3 is shown in Fig.10 as a function ofpfor several values ofL.The critical preference parameter ispc=0.13156±0.00008.Critical points are in good agreement with the one found from theoretical prediction(pc=0.01167 andpc=0.131426).

    Fig.6 The Staggered magnetization msof the right critical point in Fig.3 for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.7 The susceptibility of the left critical point in Fig.4 for varying lattice size near p=0.

    Fig.8 The susceptibility of the right critical point in Fig.4 as a function of p for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.9 Fourth-order cumulant UL(p)of the left critical point as a function of p.The intersection point is pc=0.01127±0.00014.

    Fig.10 Fourth-order cumulant UL(p)of the right critical point as a function of p for various system sizes and T=0.02.The intersection point is pc=0.13156±0.00008.

    In order to compare the critical phenomena with Ising model,we evaluate the critical exponents via finite size scaling relations in Fig.11.The log-log plots ofmL(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(a)and 11(b),respectively.The best fit to the data points furnishes the valueβ/ν=0.116±0.0093 atpc=0.01127.Whenpc=0.13156,the value isβ/ν=0.1135±0.00702.Figures 11(c)and 11(d)show the log-log plot of susceptibilityχL(pc)vs.Lat the critical pointspc=0.01127 andpc=0.13156,respectively. The slope of the fitting lines areγ/ν=1.749±0.0212 atpc=0.01127,andγ/ν=1.736±0.0405 atpc=0.13156.The loglog plots ofU′L(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(e)and 11(f),respectively.The solid lines are the best fit with slope 1/ν=0.977±0.0391 atpc=0.01127,and 1/ν=0.982±0.0296 atpc=0.13156.

    Fig.11 Log-log plot of staggered magnetization mL(pc)vs.L:(a)pc=0.01127,the slope of fitting line is?β/ν = ?0.116± 0.0093;(b)pc=0.13156,the slope is?β/ν = ?0.1135± 0.00702.Log-log plot of susceptibility χL(pc)vs.L:(c)pc=0.01127,the solid line is the best fit with slop γ/ν =1.749 ± 0.0212;(d)γ/ν=1.736±0.0405 at pc=0.13156.Log-log plot ofvs.L:(e)pc=0.01127,the solid line is the best fit with slop 1/ν=0.977±0.0391;(f)1/ν=0.982±0.0296 at pc=0.13156.

    4 Conclusions

    A general game model about economical and social activities is proposed in this paper.We can relate this game model with Ising model in statistical mechanics.The interaction between spins and external field of the Ising model are determined by the rewardaof cooperation and the preference parameterp,which can be altruistic to spiteful.We have studied weak prisoner’s dilemma on a square lattice with periodic boundary condition.At zero social temperature without noise for irrational decision,there are three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),and mixed phase(anti-ferromagnetic order).In the investigation of evolution from entirely cooperative phase to entirely non-cooperative phase,two evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4 have been taken.For the patha=1/2p+0.6,the sytem undergoes a discontinuous transition under a critical temperature.For the patha=1/2p+0.4,there are two continuous phase transitions at the critical pointspc=0.01127 andpc=0.13156 respectively.The critical exponentsβ/ν,γ/νand 1/νare estimated for the two critical points at a fixed reduced temperatureT=0.02.Within the error range of data,the critical exponents atpc=0.01127 andpc=0.13156 are the same and equal to the results of two-dimensional Ising model.These results indicate that the continuous phase transitions of the game model belong to the same universal class as the two-dimensional Ising model.

    References

    [1]1234 R.Axelrod,The Evolution of Cooperation,Basic Books,New York(1984).

    [2]M.A.Nowak and R.M.May,Nature(London)359(1992)826.

    [3]M.A.Nowak,Evolutionary Dynamics:Exploring theEquations of Life,Harvard University Press,Harvard,MA(2006).

    [4]M.A.Nowak,Science314(2006)1560.

    [5]G.Szab′o and G.F′ath,Phys.Rep.446(2007)97.

    [6]G.Szab′o and C.T?oke,Phys.Rev.E58(1998)69.

    [7]G.Szab′o,J.Vukov,and A.Szolnoki,Phys.Rev.E72(2005)047107.

    [8]J.Vukov,G.Szab′o,and A.Szolnoki,Phys.Rev.E77(2008)026109.

    [9]F.C.Santos and J.M.Pacheco,Phys.Rev.Lett.95(2005)098104.

    [10]W.X.Wang,J.Ren,G.R.Chen,and B.H.Wang,Phys.Rev.E74(2006)056113.

    [11]K.Gao,W.X.Wang,and B.H.Wang,Physica A380(2007)528.

    [12]Y.K.Liu,Z.Li,X.J.Chen,and L.Wang,Chin.Phys.Lett.26(2009)088902.

    [13]H.Bester and W.G¨uth,J.Econ.Behav.Organ.34(1998)193.

    [14]A.Possajennikov,J.Econ.Behav.Organ.42(2000)125.

    [15]D.K.Levine,Rev.Econ.Dynam.1(1998)593.

    [16]F.Bolle and A.Kritikos,Theory Dec.60(2006)371.

    [17]H.B.Callen,Thermodynamics and an Introduction to Thermostatistics,(2nd).,John Wiley&Sons,New York(1985).

    [18]Q.Zhuang,Z.R.Di,and J.S.Wu,PloS ONE9(2014)e105391.

    [19]L.Onsager,Phys.Rev.65(1944)117.

    [20]E.M¨uller-Hartmann and J.Zittartz,Z.Phys.B27(1977)261.

    [21]X.N.Wu and F.Y.Wu,Phys.Lett.A144(1990)123.

    [22]X.Z.Wang and J.S.Kim,Phys.Rev.Lett.78(1997)413.

    [23]S.Y.Kim and J.Korean,Phys.Soc.61(2012)1950.

    [24]S.J.Penney,V.K.Cumyn,and D.D.Betts,Physica A330(2003)507.

    [25]M.E.Fisher,Rep.Prog.Phys.30(1967)615.

    [26]J.P.Neirotti and M.J.de Oliveira,Phys.Rev.B54(1996)6351.

    [27]M.Godoy and W.Figueiredo,Phys.Rev.E65(2002)026111.

    猜你喜歡
    楊波劉劍
    劉劍繪畫作品選
    妞妞學說話
    英語科技文本翻譯在英語教學中的運用
    速讀·中旬(2021年5期)2021-07-28 17:32:05
    某型飛機主起機輪艙改進設計
    燒嘴旋流器優(yōu)化設計計算
    科學家(2021年24期)2021-04-25 13:25:34
    Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body?
    《厲害了,我的國》觀后感
    楊波藏品欣賞
    寶藏(2017年10期)2018-01-03 01:53:45
    分手謊言4年后險釀悲劇
    中外文摘(2014年19期)2014-11-18 12:45:13
    那滴血的分手謊言4年后發(fā)酵
    亚洲色图综合在线观看| 99久久99久久久精品蜜桃| 国产1区2区3区精品| 女人爽到高潮嗷嗷叫在线视频| 欧美人与性动交α欧美软件| 日韩 亚洲 欧美在线| 久久精品久久久久久久性| 国产一级毛片在线| 美女午夜性视频免费| 免费在线观看完整版高清| 国产av码专区亚洲av| 欧美精品人与动牲交sv欧美| 国产麻豆69| 欧美另类一区| 亚洲国产最新在线播放| 日韩一区二区三区影片| 男女无遮挡免费网站观看| 成年人免费黄色播放视频| 亚洲七黄色美女视频| 一区在线观看完整版| 国产男人的电影天堂91| 日日摸夜夜添夜夜爱| 在线 av 中文字幕| 晚上一个人看的免费电影| 亚洲欧美色中文字幕在线| 人人妻人人爽人人添夜夜欢视频| 国产有黄有色有爽视频| 一区在线观看完整版| 中文精品一卡2卡3卡4更新| 香蕉丝袜av| 国产精品无大码| 国产97色在线日韩免费| 精品少妇久久久久久888优播| 免费日韩欧美在线观看| 久久人人97超碰香蕉20202| 欧美变态另类bdsm刘玥| 51午夜福利影视在线观看| 制服诱惑二区| 国产精品一区二区在线不卡| 天天躁日日躁夜夜躁夜夜| 一边摸一边做爽爽视频免费| 国产又爽黄色视频| 亚洲av电影在线进入| 麻豆av在线久日| 免费不卡黄色视频| 久久午夜综合久久蜜桃| av女优亚洲男人天堂| 晚上一个人看的免费电影| 国产淫语在线视频| 美女脱内裤让男人舔精品视频| 一区二区三区精品91| 99久久精品国产亚洲精品| 亚洲av福利一区| 天堂8中文在线网| 久久99热这里只频精品6学生| 在线 av 中文字幕| 少妇精品久久久久久久| 午夜福利在线免费观看网站| 欧美日韩一级在线毛片| 欧美另类一区| 丝袜脚勾引网站| 人人妻,人人澡人人爽秒播 | 精品亚洲成a人片在线观看| 亚洲第一青青草原| 亚洲精品自拍成人| 成人黄色视频免费在线看| 黑人猛操日本美女一级片| 久久精品国产综合久久久| 国产乱来视频区| 涩涩av久久男人的天堂| 90打野战视频偷拍视频| av免费观看日本| 国产亚洲午夜精品一区二区久久| 王馨瑶露胸无遮挡在线观看| 免费黄网站久久成人精品| 热99久久久久精品小说推荐| 伊人亚洲综合成人网| 亚洲欧美成人综合另类久久久| 欧美精品av麻豆av| 最近的中文字幕免费完整| 晚上一个人看的免费电影| 国产淫语在线视频| 伊人亚洲综合成人网| 亚洲一级一片aⅴ在线观看| 精品久久蜜臀av无| 免费在线观看视频国产中文字幕亚洲 | 18在线观看网站| 色网站视频免费| 欧美日韩视频精品一区| 亚洲美女视频黄频| 国产成人啪精品午夜网站| 夫妻午夜视频| av女优亚洲男人天堂| 飞空精品影院首页| 亚洲男人天堂网一区| 精品福利永久在线观看| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 美女中出高潮动态图| 午夜福利在线免费观看网站| 免费不卡黄色视频| 一区二区三区乱码不卡18| 久久久久久人妻| 在线精品无人区一区二区三| 这个男人来自地球电影免费观看 | 晚上一个人看的免费电影| 在线观看免费视频网站a站| 国产av精品麻豆| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 国产亚洲一区二区精品| kizo精华| 日本wwww免费看| 精品久久久精品久久久| 亚洲人成网站在线观看播放| 日本午夜av视频| 一二三四中文在线观看免费高清| 欧美精品高潮呻吟av久久| 午夜福利网站1000一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 成人免费观看视频高清| 最黄视频免费看| √禁漫天堂资源中文www| 美国免费a级毛片| 国产爽快片一区二区三区| 蜜桃在线观看..| 美女大奶头黄色视频| 亚洲国产欧美在线一区| 国产精品久久久久久精品电影小说| 老司机靠b影院| 国产不卡av网站在线观看| 国产福利在线免费观看视频| 国产男人的电影天堂91| 少妇人妻精品综合一区二区| a级片在线免费高清观看视频| 亚洲av欧美aⅴ国产| 女人精品久久久久毛片| 久久影院123| 在现免费观看毛片| 欧美av亚洲av综合av国产av | 国产一区二区 视频在线| 少妇 在线观看| 精品视频人人做人人爽| 亚洲av中文av极速乱| 大码成人一级视频| 不卡av一区二区三区| 国产在线一区二区三区精| videosex国产| 人人妻人人澡人人看| 黄片播放在线免费| 男人舔女人的私密视频| 十八禁网站网址无遮挡| 国产极品天堂在线| 久久精品久久精品一区二区三区| 人人妻,人人澡人人爽秒播 | 蜜桃国产av成人99| 美女高潮到喷水免费观看| 大香蕉久久成人网| 久久青草综合色| 999精品在线视频| 欧美激情 高清一区二区三区| 日韩一本色道免费dvd| svipshipincom国产片| 国产精品熟女久久久久浪| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 亚洲视频免费观看视频| 欧美人与性动交α欧美精品济南到| 大片免费播放器 马上看| 国产又爽黄色视频| 日韩一本色道免费dvd| 男女国产视频网站| 久久久久国产精品人妻一区二区| 搡老岳熟女国产| 欧美黑人欧美精品刺激| 精品国产乱码久久久久久小说| 日日摸夜夜添夜夜爱| 成年av动漫网址| 成人免费观看视频高清| 2018国产大陆天天弄谢| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| 亚洲成av片中文字幕在线观看| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 悠悠久久av| 日韩精品免费视频一区二区三区| 黄频高清免费视频| 亚洲av福利一区| 老司机亚洲免费影院| 波多野结衣av一区二区av| 成年美女黄网站色视频大全免费| 亚洲免费av在线视频| 男女国产视频网站| 久久人人爽人人片av| 极品少妇高潮喷水抽搐| 黄色视频不卡| 国产麻豆69| 亚洲 欧美一区二区三区| 另类精品久久| 色94色欧美一区二区| 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜一区二区 | 最近2019中文字幕mv第一页| 成人午夜精彩视频在线观看| a级毛片在线看网站| 成人影院久久| 韩国高清视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 一区在线观看完整版| av天堂久久9| 亚洲欧美激情在线| 黄片小视频在线播放| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| 久久人人97超碰香蕉20202| 国产精品.久久久| 久久久精品国产亚洲av高清涩受| 国产免费视频播放在线视频| 三上悠亚av全集在线观看| 欧美日本中文国产一区发布| 91aial.com中文字幕在线观看| 久久久久久久久免费视频了| 新久久久久国产一级毛片| 亚洲欧美一区二区三区黑人| 国产亚洲欧美精品永久| 一区二区三区激情视频| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 午夜精品国产一区二区电影| 黄色视频不卡| 成人国产av品久久久| 久久鲁丝午夜福利片| 各种免费的搞黄视频| 一区二区三区激情视频| 观看美女的网站| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看| 丰满乱子伦码专区| 国产xxxxx性猛交| 欧美精品一区二区免费开放| 男人爽女人下面视频在线观看| 啦啦啦 在线观看视频| 2018国产大陆天天弄谢| 无遮挡黄片免费观看| 街头女战士在线观看网站| 国产在视频线精品| 成人免费观看视频高清| 亚洲精品久久午夜乱码| kizo精华| 欧美中文综合在线视频| 97在线人人人人妻| 最黄视频免费看| 一级a爱视频在线免费观看| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 免费少妇av软件| 久久精品久久久久久噜噜老黄| 欧美日韩av久久| 最近中文字幕2019免费版| 精品第一国产精品| 一级爰片在线观看| 国产97色在线日韩免费| 如何舔出高潮| av在线观看视频网站免费| netflix在线观看网站| 欧美黄色片欧美黄色片| 丰满乱子伦码专区| 日韩电影二区| 国产成人欧美在线观看 | 欧美在线黄色| 99久久精品国产亚洲精品| 亚洲成人一二三区av| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| www.精华液| 国产野战对白在线观看| 午夜老司机福利片| 老汉色∧v一级毛片| 伊人亚洲综合成人网| 一级毛片我不卡| 日本黄色日本黄色录像| 精品第一国产精品| 亚洲视频免费观看视频| 欧美另类一区| 一区二区日韩欧美中文字幕| 2018国产大陆天天弄谢| 精品亚洲成国产av| 精品一区二区三区四区五区乱码 | 亚洲国产精品国产精品| 一区在线观看完整版| 免费黄色在线免费观看| 老司机深夜福利视频在线观看 | 新久久久久国产一级毛片| 欧美日韩视频精品一区| 妹子高潮喷水视频| 日韩大码丰满熟妇| 97精品久久久久久久久久精品| 欧美黑人欧美精品刺激| 丰满迷人的少妇在线观看| 国产免费又黄又爽又色| 日韩不卡一区二区三区视频在线| 国产欧美日韩一区二区三区在线| 国产熟女午夜一区二区三区| 国产无遮挡羞羞视频在线观看| 天天操日日干夜夜撸| 好男人视频免费观看在线| 久久精品国产亚洲av涩爱| 久久久久精品国产欧美久久久 | 美女国产高潮福利片在线看| 中文字幕人妻丝袜制服| 日韩成人av中文字幕在线观看| 波多野结衣av一区二区av| 免费高清在线观看视频在线观看| 亚洲熟女精品中文字幕| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 秋霞在线观看毛片| 欧美激情 高清一区二区三区| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| 欧美黄色片欧美黄色片| av片东京热男人的天堂| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| 亚洲国产欧美日韩在线播放| 欧美xxⅹ黑人| 久久99热这里只频精品6学生| 亚洲成人免费av在线播放| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 亚洲欧美色中文字幕在线| 久久99精品国语久久久| 精品少妇内射三级| 美女午夜性视频免费| 69精品国产乱码久久久| 不卡av一区二区三区| 欧美人与善性xxx| 欧美日韩视频精品一区| 丰满少妇做爰视频| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 十八禁网站网址无遮挡| 午夜免费鲁丝| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 精品一品国产午夜福利视频| 免费av中文字幕在线| 高清在线视频一区二区三区| 99久久精品国产亚洲精品| www.自偷自拍.com| 亚洲美女视频黄频| av在线app专区| 日韩精品有码人妻一区| 国产爽快片一区二区三区| 99精品久久久久人妻精品| 免费看av在线观看网站| 日本色播在线视频| 精品国产超薄肉色丝袜足j| 亚洲激情五月婷婷啪啪| 99热全是精品| 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 男女边摸边吃奶| 水蜜桃什么品种好| 亚洲精品视频女| 老司机亚洲免费影院| 黄频高清免费视频| 亚洲精品日本国产第一区| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 日本爱情动作片www.在线观看| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| 国产精品香港三级国产av潘金莲 | 中国国产av一级| 秋霞伦理黄片| 国产亚洲最大av| 欧美黑人精品巨大| 中国国产av一级| 亚洲欧美成人精品一区二区| 91老司机精品| 日本黄色日本黄色录像| 国产免费视频播放在线视频| 国产男女超爽视频在线观看| 免费在线观看视频国产中文字幕亚洲 | 女人被躁到高潮嗷嗷叫费观| 国产精品无大码| 亚洲国产欧美日韩在线播放| 久久久精品国产亚洲av高清涩受| 91成人精品电影| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 国产激情久久老熟女| 80岁老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 深夜精品福利| 午夜免费鲁丝| 色94色欧美一区二区| 99九九在线精品视频| 久久久久久久久久久免费av| 日韩欧美精品免费久久| 免费观看人在逋| 欧美人与性动交α欧美软件| 伊人亚洲综合成人网| 少妇人妻精品综合一区二区| 国产精品无大码| 国产一级毛片在线| 国产一区二区在线观看av| 精品人妻一区二区三区麻豆| av网站在线播放免费| 在线观看一区二区三区激情| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看| 搡老乐熟女国产| 久久久欧美国产精品| 黄片播放在线免费| 日韩熟女老妇一区二区性免费视频| 午夜福利视频精品| 欧美日韩综合久久久久久| 亚洲综合精品二区| 制服丝袜香蕉在线| 国产精品免费视频内射| 街头女战士在线观看网站| 女人被躁到高潮嗷嗷叫费观| 操出白浆在线播放| 亚洲图色成人| 日韩中文字幕视频在线看片| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 国产精品二区激情视频| 91精品伊人久久大香线蕉| 国产精品av久久久久免费| 亚洲自偷自拍图片 自拍| 中文天堂在线官网| 一级黄片播放器| 如日韩欧美国产精品一区二区三区| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 亚洲精品国产色婷婷电影| 日本黄色日本黄色录像| 天天躁日日躁夜夜躁夜夜| 国产成人精品无人区| 免费黄色在线免费观看| 免费观看a级毛片全部| 亚洲av在线观看美女高潮| 日韩大片免费观看网站| 国产又色又爽无遮挡免| 久久97久久精品| 美女视频免费永久观看网站| 精品国产乱码久久久久久男人| 久久久久精品国产欧美久久久 | 亚洲精品成人av观看孕妇| 香蕉国产在线看| 日韩制服丝袜自拍偷拍| 各种免费的搞黄视频| 国产午夜精品一二区理论片| 91老司机精品| 人体艺术视频欧美日本| 少妇人妻精品综合一区二区| 久久久久精品久久久久真实原创| 日韩视频在线欧美| 9色porny在线观看| 99精国产麻豆久久婷婷| 777久久人妻少妇嫩草av网站| 久久性视频一级片| 男女午夜视频在线观看| 伦理电影免费视频| 五月开心婷婷网| 最近手机中文字幕大全| 丝袜人妻中文字幕| 老熟女久久久| 欧美另类一区| 日韩熟女老妇一区二区性免费视频| 不卡av一区二区三区| 免费高清在线观看视频在线观看| 亚洲伊人色综图| 国产精品免费大片| 欧美激情极品国产一区二区三区| 欧美 亚洲 国产 日韩一| 麻豆av在线久日| 亚洲精品国产av蜜桃| 亚洲精品乱久久久久久| 欧美黄色片欧美黄色片| 亚洲综合精品二区| 免费人妻精品一区二区三区视频| 丝瓜视频免费看黄片| 国产成人啪精品午夜网站| 国产一区二区三区综合在线观看| 日本欧美国产在线视频| 如日韩欧美国产精品一区二区三区| 男女午夜视频在线观看| 久久久久人妻精品一区果冻| 色网站视频免费| 在线免费观看不下载黄p国产| 欧美人与性动交α欧美精品济南到| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲情色 制服丝袜| 波野结衣二区三区在线| 免费黄色在线免费观看| 精品久久久久久电影网| 国产成人午夜福利电影在线观看| 高清不卡的av网站| 男女之事视频高清在线观看 | 久久精品国产a三级三级三级| 国产精品三级大全| 大香蕉久久网| 亚洲四区av| 18在线观看网站| 国产又色又爽无遮挡免| 日日摸夜夜添夜夜爱| 交换朋友夫妻互换小说| 亚洲精品国产av成人精品| 日韩大码丰满熟妇| 精品亚洲乱码少妇综合久久| 少妇人妻 视频| 久久精品国产a三级三级三级| 777米奇影视久久| 深夜精品福利| 日本欧美国产在线视频| 一区在线观看完整版| 国产一级毛片在线| 可以免费在线观看a视频的电影网站 | 亚洲国产精品一区二区三区在线| 老司机在亚洲福利影院| 99精品久久久久人妻精品| 国产一级毛片在线| 午夜激情久久久久久久| 午夜福利乱码中文字幕| 亚洲,一卡二卡三卡| 久久人妻熟女aⅴ| 热99国产精品久久久久久7| av免费观看日本| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| 亚洲,欧美精品.| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| a级毛片在线看网站| 18禁动态无遮挡网站| www.精华液| 蜜桃在线观看..| 热re99久久国产66热| 99国产综合亚洲精品| 美女扒开内裤让男人捅视频| 搡老岳熟女国产| 99香蕉大伊视频| 欧美在线黄色| 久久韩国三级中文字幕| 精品酒店卫生间| 久久久久国产精品人妻一区二区| 99热网站在线观看| 成年动漫av网址| 大片免费播放器 马上看| 黑丝袜美女国产一区| 性色av一级| 免费不卡黄色视频| 午夜影院在线不卡| 丁香六月欧美| 精品国产乱码久久久久久男人| 婷婷色av中文字幕| 国产精品秋霞免费鲁丝片| 另类亚洲欧美激情| 丰满乱子伦码专区| 欧美激情高清一区二区三区 | 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 国产一区二区三区av在线| 久久久精品区二区三区| 最近最新中文字幕免费大全7| 晚上一个人看的免费电影| 黑人猛操日本美女一级片| 日韩视频在线欧美| 欧美久久黑人一区二区| 成人亚洲精品一区在线观看| 两个人看的免费小视频| 亚洲精品美女久久av网站| 啦啦啦视频在线资源免费观看| 国产在线免费精品| 中文字幕精品免费在线观看视频| 波多野结衣一区麻豆| 亚洲伊人色综图| 综合色丁香网| 成年人免费黄色播放视频| 97精品久久久久久久久久精品| 国产极品天堂在线| 国产欧美日韩一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 超碰97精品在线观看| 又粗又硬又长又爽又黄的视频| 国产成人系列免费观看| 中文字幕av电影在线播放| 国产极品天堂在线| 国产又爽黄色视频| 久久影院123| 成人毛片60女人毛片免费| 亚洲美女搞黄在线观看| 成人漫画全彩无遮挡| 90打野战视频偷拍视频| 国产无遮挡羞羞视频在线观看| 夫妻午夜视频| 免费女性裸体啪啪无遮挡网站|