• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Behavior of Spatial Evolutionary Game with Altruistic to Spiteful Preferences on Two-Dimensional Lattices?

    2016-05-10 07:38:08BoYang楊波XiaoTengLi李曉騰WeiChen陳衛(wèi)JianLiu劉劍andXiaoSongChen陳曉松
    Communications in Theoretical Physics 2016年10期
    關鍵詞:楊波劉劍

    Bo Yang(楊波)Xiao-Teng Li(李曉騰)Wei Chen(陳衛(wèi))Jian Liu(劉劍)and Xiao-Song Chen(陳曉松)?

    1Institute of Theoretical Physics,Key Laboratory of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3Supercomputing Center of Chinese Academy of Sciences,Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    4School of Science,Beijing Technology and Business University,Beijing 100048,China

    1 Introduction

    The spatial evolutionary game has been minutely studied to explain the emergence and maintenance of cooperation among selfish individuals during the past few years[1?4]in economics,biology and social sciences.

    The structure of social networks and the evolutionary rules are two important research fields of evolutionary game.[5]Many interesting results have been obtained on different spatial structures,such as two-dimensional regular lattices,[6?7]small world networks[8]and scale-free networks.[9]Learning mechanism has been widely adopted in evolutionary rules.[5?7,9]Players revise their strategies by learning from their neighbors.Self-questioning mechanism is presented in Ref.[10].Each player adopts its anti-strategy to play a virtual game with all its neighbors,then obtains a virtual payoff.By comparing the real payoffand the virtual payoff,each player can get its optimal strategy corresponding to the highest payoff.[10?12]This evolutionary rule is similar to Ising model’s Metropolis algorithm in statistical physics.

    Traditional economic theory predicts that individuals will not supply goods and services without being compensated.However,individuals do not always pursue selfinterest:people risking their own life to rescue others,soldiers participating in wars voluntarily,many kinds of charity etc.[13]Nowak summarized five possible rules for the evolution of cooperation corresponding to different situations:Kin selection,Direct reciprocity,Indirect reciprocity,Network reciprocity,Group selection.[4]In economics,altruistic and spiteful preferences have been introduced to study evolutionary stability of altruism and spitefulness.[13?16]In this paper,altruism,egoism and spitefulness are considered through a preference parameterp.Whenp>0,player is altruistic,which means a player has a positive regard for his opponents.p=0 represents the player as selfish.p<0 determines the player as spiteful.

    In statistical physics,the internal energy decreases and approaches a minimum value at equilibrium in a closed system with constant external parameters and entropy(Principle of minimum energy).[17]Similarly,in economics,pro fit maximization is an eternal pursuit to the individual and society,so one may expect that the equilibrium probability distribution function of payoff s in a closed system of agents has the Boltzmann–Gibbs form.[18]In analogy to Ising model,spatial evolutionary game model can convert into Ising-like model,the effective Hamiltonian of evolutionary game can be obtained. By analyzing the effective Hamilton of game,game model is divided into three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order)at zero social temperature(the noise introduced to permit irrational choices[6?7]).Two paths(the phase of game model translating from entirely cooperative phase to entirely noncooperative phase)are investigated.Continuous and discontinuous phase transitions are observed at sufficiently low temperature.Fourth-order cumulant is investigated to locate critical points.The critical exponents(ν,β,γ)are obtained by finite-size scaling.

    This paper is organized as follows.In Sec.2,we make a brief review of Ising model with a nonzero field firstly,then we introduce our evolutionary game model and obtain the effective Hamilton of game model.Finally,the ground state of game model is divided into three phases in the condition of perfect rationality;in Sec.3,we present and discuss the results;in Sec.4,we draw a conclusions from the results.

    2 Model

    2.1 A Brief Review of Ising Model

    The Hamiltonian of Ising model with an interactionJijfor any two adjacent sitesiandjand an external magnetic fieldhifor any siteiis given by

    whereSiis the Ising spinat lattice sitei,the first sum is over pairs of adjacent spins(every pair is counted once).The notationindicates that sitesiandjare the nearest neighbors.

    Ising models can be classi fied according to the sign of the interaction:forJij>0 the interaction is ferromagnetic and it is antiferromagnetic ifJij<0;whenJij=0,the spins are noninteracting.Additionally,the spin site wants to line up with the external field,forhi>0 the spin siteidesires to line up in the positive direction and it desires to line up in the negative direction ifhi<0;whenhi=0,there is no external in fluence on the spin site.Forhi=0,the Ising model is symmetric under switching the value of the spin in all the lattice sites,but a non zero field breaks this symmetry.The introduction of nonzero magnetic field destroys the continuous phase transition of the ferromagnetic Ising model,whereas the nonzero uniform field does not destroy the transition of the antiferromagnetic Ising model.The exact solution of antiferromagnetic Ising model in an external field can not be obtained.Instead,the researchers focus on the critical line(N′eel temperature as a function of external field)for the square lattice antiferromagnetic Ising in an external field.[19?23]For critical line,there are different approximations,[20,22,24]for example cosh(h/Tc)=sinh2(2J/Tc).The ends of the(T,h)critical line are(2.269,0)and(0,4|J|),and the antiferromagnetic phase is completely enclosed by transition lines.[25]

    At zero temperature,a critical magnetic fieldhcexist in antiferromagnetic Ising model such ashc=4|J|for a square lattice.When?4J4Jorh

    In order to obtain energy difference?E(iflips its directionEq.(1)can be rewritten as

    wherekis a spin excepti.When the state ofiflips,the new energyE′is

    Thus,the energy differenceis

    2.2 Introduction of Game Model

    For a randomly given agent i,two available strategies cooperation(Si=+1)and non-cooperation(Si=?1)can be adopted to play with its nearest neighbors.Mutual cooperation yields the rewarda,mutual non-cooperation leads to punishmentd,and the mixed choice gives the cooperator the suck’s payo ffband the non-cooperation the temptationc.

    The randomly chosen playerirevises its strategy according to self-questioning mechanism and the stochastic evolutionary rule.That is to say,playeriadopts its antistrategy to play a virtual game with all its neighbors,and calculates the virtual payo ff.By comparing the real payoff and the virtual payo ff,player will find out its optimal strategy.[10?11]In next round,playeriwill revise its current strategy to its anti-strategy with a given probability

    whereandare the real and virtual payo ffof playeri,respectively.The noise can be described viaT.TheGiis defined as

    wheregirepresents the total payo ffof playeri(playeriplays with all its nearest neighbors and accumulates the obtained payoff).represents all its nearest neighbors’s total payoff by playing withi.pis preference parameter,positive denotes altruism,negative stands for spite,and zero characterizes classical own pro fit maximization.

    This evolutionary rule is similar to single spin- flip of Ising model in statistical physics.We will find out the relationship between evolutionary game model and Ising model hereafter.

    For a given agenti,the number of cooperative and non-cooperative neighbors areni+andni?,

    wherejis the neighbors set of agenti,kiis the sum of neighbors.

    By playing the game with all its nearest neighbors,agentiacquires its payo ffgi. At the same time,its neighbors acquirein this process.WhenSi=+1,,andwhenSi=?1,and

    In the process of virtual game(corresponding toiflips its direct in Ising),the payo ff s difference are?giandThey can be calculated as

    In our model,players care not only about their own monetary payoffs,but also about their opponent’s monetary payo ff s.Thus,the playidoes not necessarily maximize pay off itself,but rather weighted sums of own and opponent’s payoffs.The change of payoffs when the state ofiflips:can be written as,

    By substituting Eqs.(9)and(10)into Eq.(11),we obtain

    As the Ising model,the strength of interactionJijand external fieldhican be defined as

    The effective energy can be obtained

    As a special accommodation,we investigate weak Prisoner’s Dilemma.We takea=a,b=0,c=1?a,d=0,and 1/3

    For two-dimensional square lattices,ki=4,the effective energy is

    2.3 Three Phases of Game Model

    The ground state of game model at zero temperature can be divided though three equations:the strength of interactionJ=0,the external fieldh=0,and the critical external fieldh=4|J|.Results of these functions area=1/2 orp=?1 forJ=0;a=1/2(1?p)forh=0;a=1/(2+p)forh=?4J,andp=0 forh=4J,which are shown in Fig.1.Game model is divided into three phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),mixed phase(anti-ferromagnetic order).The region of cooperative and non-cooperative coexistence is enclosed by the critical lines(p=0 anda=1/(2+p)).In game model,Tis the measure of stochastic uncertainties(noise)allowing the irrational choices.ais an inherent parameter,which belongs the payoffmatrix.Whena>0.5,cooperation will gain much more benefit;whena<0.5,non-cooperation will get more.But cooperation can survive fora<0.5 owing to altruism.pas a preference parameter measures the relationship between spitefulness,egoism and altruism.Non-cooperation can arise only spitefulness existing.

    Fig.1 The ground state at zero temperature on the(a,p)parameter space.Three phases can exist:four small upward arrows denote entirely cooperative phase(ferromagnetic order upward),four small downward arrows denote entirely non-cooperative phase(ferromagnetic order downward)and small arrows upward and downward alternatively denote cooperative and noncooperative coexistence(antiferromagnetic order).The phase transition and critical phenomena are investigated by two special paths(two dashed lines),which cross cooperative and non-cooperative region.

    3 Results and Discussions

    We have preformed Monte Carlo simulations on square lattice with periodic boundary conditions using Metropolis algorithm.The randomly chosen playerirevises its strategy according self-questioning rule.In general,we discarded the first 10000 Monte Carlo Steps(MCS)in order to achieve the stationary regime for all lattices sizes.In order to estimate the quantities of interest,we considered the next 2×105MCS to calculate the averages.To further improve accuracy,the final results are average over 100 independent realization with different initial con figurations.

    For antiferromagnetic Ising model,the staggered magnetization can be defined as

    which is the order parameter for antiferromagnetic systems.[26?27]The corresponding susceptibilities are defined by

    and the fourth-order Binder cumulants is

    wheremcan bemtormsforχ(m)andU(m).

    mt,ms,χ(m)andU(m)obey the following finite size scaling relations in the neighborhood of the stationary critical pointpc:

    whereis the critical preference parameter for a givenT.

    The derivative of fourth-order Binder cumulantsUL(p)is

    We can obtain the critical exponentνfrom a log-log plot ofversusL.

    In this model,the evolution of game model from entirely cooperative phase to entirely non-cooperative phase is an interesting problem,which involves the interaction between game’s parameteraand individual preferencepat low social temperatures.Thus,two special evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4(broken lines in Fig.1)are taken.The patha=1/2p+0.4 passes through the antiferromagnetic region.

    In Fig.2,magnetisation as a function ofpfor several lattice sizesLis shown atT=0.002.The value of the magnetizationmtjumps from+1 to?1 as the preference parameterpis scanned from the positive direction to the negative direction by the patha=1/2p+0.6 of Fig.1.The order parameter of magnetisationmtis discontinuous.Obviously,the critical exponentβ/ν=0,indicate a discontinuous phase transition.

    Theoretically,the phase transition sweeping along patha=1/2p+0.6 is a transition from ferromagnetic order upward to ferromagnetic order downward.This is equivalent to a magnetic material placed in an external fieldh.If the temperature is lower thanTc(critical temperature at the intersection ofh=0 anda=1/2p+0.6),the value of the magnetizationmjumps from positive to negative as the external magnetic fieldhis scanned from the positive direction to the negative direction.Consider the 2D Ising model on a square lattice,the critical temperature isTc=2.269J=0.00225 at transition point(p=?0.1,a=0.55).

    Fig.2 Magnetisation as a function of p for several lattice sizes L along the path a=1/2p+0.6,magnetisation is discontinuous at transition point(p=?0.1,a=0.55).

    Fig.3 Staggered magnetization msfor various system sizes along the path a=1/2p+0.4 at T=0.02.Apparently,two critical points exist,because of the finite-size effects near p=0 and p=0.15 have been observed.

    In Fig.3,the order parameter of antimagnetisationmsas a function ofpfor several lattice sizesLis shown atT=0.02.The staggered magnetization changes with the lattice sizes near critical points.In Fig.4,susceptibility as a function ofpfor various system sizes is shown.The susceptibility has two maxima whose positions shift toward the corresponding critical points and their peaks increase with system sizeL.Those phenomena display remarkable finite-size effects.There are two critical points existing.To see them more clearly,we narrow down the range ofpto redraw the staggered magnetization(Figs.5 and 6)and susceptibility(Figs.7 and 8).

    Theoretically,patha=1/2p+0.4 intersects antiferromagnetic critical line. The antimagnetic phase transition is a second-order transition. In this situation,and the approximate critical line is cosh(2p?0.2/Tc) =sinh2[(p?0.2)(1+p)/(2Tc)].Two intersection can be obtained by solving this equation atTc=0.02,pc=0.01167 andpc=0.131426.

    Fig.4 Susceptibility as a function of p for various system sizes along the path a=1/2p+0.4 at T=0.02.The susceptibility has sharp jump near p=0 and p=0.15.

    Fig.5 The Staggered magnetization of the left critical point in Fig.3 near p=0.

    To locate the two critical points by using Monte Carlo simulations,we plot the reduced fourth-order cumulant,respectively.The fourth-order cumulant of the left phase transition point in Fig.3 is shown in Fig.9 as a function ofpfor several values ofL.The scaling relation for the fourth-order cumulant shows that,at the critical preference parameter,all curves must cross at a common point.From the crossing of these curves,we estimate the critical preference parameterpc=0.01127±0.00014.The fourth-order cumulant of the right phase transition point in Fig.3 is shown in Fig.10 as a function ofpfor several values ofL.The critical preference parameter ispc=0.13156±0.00008.Critical points are in good agreement with the one found from theoretical prediction(pc=0.01167 andpc=0.131426).

    Fig.6 The Staggered magnetization msof the right critical point in Fig.3 for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.7 The susceptibility of the left critical point in Fig.4 for varying lattice size near p=0.

    Fig.8 The susceptibility of the right critical point in Fig.4 as a function of p for various system sizes along the path a=1/2p+0.4 near p=0.15.

    Fig.9 Fourth-order cumulant UL(p)of the left critical point as a function of p.The intersection point is pc=0.01127±0.00014.

    Fig.10 Fourth-order cumulant UL(p)of the right critical point as a function of p for various system sizes and T=0.02.The intersection point is pc=0.13156±0.00008.

    In order to compare the critical phenomena with Ising model,we evaluate the critical exponents via finite size scaling relations in Fig.11.The log-log plots ofmL(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(a)and 11(b),respectively.The best fit to the data points furnishes the valueβ/ν=0.116±0.0093 atpc=0.01127.Whenpc=0.13156,the value isβ/ν=0.1135±0.00702.Figures 11(c)and 11(d)show the log-log plot of susceptibilityχL(pc)vs.Lat the critical pointspc=0.01127 andpc=0.13156,respectively. The slope of the fitting lines areγ/ν=1.749±0.0212 atpc=0.01127,andγ/ν=1.736±0.0405 atpc=0.13156.The loglog plots ofU′L(p)as function ofLat the critical pointspc=0.01127 andpc=0.13156 are shown at Figs.11(e)and 11(f),respectively.The solid lines are the best fit with slope 1/ν=0.977±0.0391 atpc=0.01127,and 1/ν=0.982±0.0296 atpc=0.13156.

    Fig.11 Log-log plot of staggered magnetization mL(pc)vs.L:(a)pc=0.01127,the slope of fitting line is?β/ν = ?0.116± 0.0093;(b)pc=0.13156,the slope is?β/ν = ?0.1135± 0.00702.Log-log plot of susceptibility χL(pc)vs.L:(c)pc=0.01127,the solid line is the best fit with slop γ/ν =1.749 ± 0.0212;(d)γ/ν=1.736±0.0405 at pc=0.13156.Log-log plot ofvs.L:(e)pc=0.01127,the solid line is the best fit with slop 1/ν=0.977±0.0391;(f)1/ν=0.982±0.0296 at pc=0.13156.

    4 Conclusions

    A general game model about economical and social activities is proposed in this paper.We can relate this game model with Ising model in statistical mechanics.The interaction between spins and external field of the Ising model are determined by the rewardaof cooperation and the preference parameterp,which can be altruistic to spiteful.We have studied weak prisoner’s dilemma on a square lattice with periodic boundary condition.At zero social temperature without noise for irrational decision,there are three different phases:entirely cooperative phase(ferromagnetic order upward),entirely non-cooperative phase(ferromagnetic order downward),and mixed phase(anti-ferromagnetic order).In the investigation of evolution from entirely cooperative phase to entirely non-cooperative phase,two evolutionary pathsa=1/2p+0.6 anda=1/2p+0.4 have been taken.For the patha=1/2p+0.6,the sytem undergoes a discontinuous transition under a critical temperature.For the patha=1/2p+0.4,there are two continuous phase transitions at the critical pointspc=0.01127 andpc=0.13156 respectively.The critical exponentsβ/ν,γ/νand 1/νare estimated for the two critical points at a fixed reduced temperatureT=0.02.Within the error range of data,the critical exponents atpc=0.01127 andpc=0.13156 are the same and equal to the results of two-dimensional Ising model.These results indicate that the continuous phase transitions of the game model belong to the same universal class as the two-dimensional Ising model.

    References

    [1]1234 R.Axelrod,The Evolution of Cooperation,Basic Books,New York(1984).

    [2]M.A.Nowak and R.M.May,Nature(London)359(1992)826.

    [3]M.A.Nowak,Evolutionary Dynamics:Exploring theEquations of Life,Harvard University Press,Harvard,MA(2006).

    [4]M.A.Nowak,Science314(2006)1560.

    [5]G.Szab′o and G.F′ath,Phys.Rep.446(2007)97.

    [6]G.Szab′o and C.T?oke,Phys.Rev.E58(1998)69.

    [7]G.Szab′o,J.Vukov,and A.Szolnoki,Phys.Rev.E72(2005)047107.

    [8]J.Vukov,G.Szab′o,and A.Szolnoki,Phys.Rev.E77(2008)026109.

    [9]F.C.Santos and J.M.Pacheco,Phys.Rev.Lett.95(2005)098104.

    [10]W.X.Wang,J.Ren,G.R.Chen,and B.H.Wang,Phys.Rev.E74(2006)056113.

    [11]K.Gao,W.X.Wang,and B.H.Wang,Physica A380(2007)528.

    [12]Y.K.Liu,Z.Li,X.J.Chen,and L.Wang,Chin.Phys.Lett.26(2009)088902.

    [13]H.Bester and W.G¨uth,J.Econ.Behav.Organ.34(1998)193.

    [14]A.Possajennikov,J.Econ.Behav.Organ.42(2000)125.

    [15]D.K.Levine,Rev.Econ.Dynam.1(1998)593.

    [16]F.Bolle and A.Kritikos,Theory Dec.60(2006)371.

    [17]H.B.Callen,Thermodynamics and an Introduction to Thermostatistics,(2nd).,John Wiley&Sons,New York(1985).

    [18]Q.Zhuang,Z.R.Di,and J.S.Wu,PloS ONE9(2014)e105391.

    [19]L.Onsager,Phys.Rev.65(1944)117.

    [20]E.M¨uller-Hartmann and J.Zittartz,Z.Phys.B27(1977)261.

    [21]X.N.Wu and F.Y.Wu,Phys.Lett.A144(1990)123.

    [22]X.Z.Wang and J.S.Kim,Phys.Rev.Lett.78(1997)413.

    [23]S.Y.Kim and J.Korean,Phys.Soc.61(2012)1950.

    [24]S.J.Penney,V.K.Cumyn,and D.D.Betts,Physica A330(2003)507.

    [25]M.E.Fisher,Rep.Prog.Phys.30(1967)615.

    [26]J.P.Neirotti and M.J.de Oliveira,Phys.Rev.B54(1996)6351.

    [27]M.Godoy and W.Figueiredo,Phys.Rev.E65(2002)026111.

    猜你喜歡
    楊波劉劍
    劉劍繪畫作品選
    妞妞學說話
    英語科技文本翻譯在英語教學中的運用
    速讀·中旬(2021年5期)2021-07-28 17:32:05
    某型飛機主起機輪艙改進設計
    燒嘴旋流器優(yōu)化設計計算
    科學家(2021年24期)2021-04-25 13:25:34
    Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body?
    《厲害了,我的國》觀后感
    楊波藏品欣賞
    寶藏(2017年10期)2018-01-03 01:53:45
    分手謊言4年后險釀悲劇
    中外文摘(2014年19期)2014-11-18 12:45:13
    那滴血的分手謊言4年后發(fā)酵
    日韩 亚洲 欧美在线| 国产一级毛片在线| 久久精品久久久久久噜噜老黄| 亚洲精华国产精华液的使用体验| 啦啦啦中文免费视频观看日本| 久久鲁丝午夜福利片| 亚洲综合精品二区| 日韩精品有码人妻一区| 国产伦在线观看视频一区| 国产中年淑女户外野战色| 黑人高潮一二区| 成人免费观看视频高清| 国内精品宾馆在线| 免费观看a级毛片全部| 观看免费一级毛片| 桃花免费在线播放| 亚洲图色成人| 久久精品夜色国产| 日本猛色少妇xxxxx猛交久久| 日韩,欧美,国产一区二区三区| 99久久人妻综合| 中文字幕亚洲精品专区| 亚洲精品第二区| 97超碰精品成人国产| 国内揄拍国产精品人妻在线| 久久久精品免费免费高清| 中文在线观看免费www的网站| 性色av一级| 国产亚洲精品久久久com| 亚洲高清免费不卡视频| 精品久久国产蜜桃| 亚洲激情五月婷婷啪啪| 另类亚洲欧美激情| 亚洲国产最新在线播放| 久久97久久精品| 日本av手机在线免费观看| 97在线视频观看| 五月玫瑰六月丁香| 看非洲黑人一级黄片| 日韩一本色道免费dvd| 国产av码专区亚洲av| 国产精品一区二区三区四区免费观看| 人妻 亚洲 视频| 一级毛片aaaaaa免费看小| 又黄又爽又刺激的免费视频.| av黄色大香蕉| 婷婷色av中文字幕| 精品一区二区三区视频在线| 一本久久精品| 精品少妇内射三级| 99九九线精品视频在线观看视频| 亚州av有码| 最新中文字幕久久久久| 精品人妻偷拍中文字幕| 大陆偷拍与自拍| 亚洲欧美成人精品一区二区| 99久久人妻综合| 国产精品国产三级国产专区5o| 欧美日韩国产mv在线观看视频| √禁漫天堂资源中文www| 又大又黄又爽视频免费| 欧美日韩视频精品一区| 亚洲精品视频女| 肉色欧美久久久久久久蜜桃| 岛国毛片在线播放| 欧美高清成人免费视频www| 少妇的逼水好多| 久久久a久久爽久久v久久| 国产精品久久久久久久久免| 国产黄色视频一区二区在线观看| 婷婷色综合www| 91精品伊人久久大香线蕉| 久久久久人妻精品一区果冻| 久久久久视频综合| 视频区图区小说| av.在线天堂| 国产在线免费精品| 亚洲在久久综合| 成人午夜精彩视频在线观看| 久久久久久久亚洲中文字幕| 亚洲精品国产av蜜桃| 国产一级毛片在线| 色视频www国产| 国产 精品1| 一区二区三区免费毛片| 日日爽夜夜爽网站| 老司机影院成人| 丰满饥渴人妻一区二区三| 九九爱精品视频在线观看| 中文字幕久久专区| 99国产精品免费福利视频| 99精国产麻豆久久婷婷| 日日啪夜夜撸| 看非洲黑人一级黄片| av又黄又爽大尺度在线免费看| 国产一区亚洲一区在线观看| 五月玫瑰六月丁香| 午夜久久久在线观看| 多毛熟女@视频| 大片电影免费在线观看免费| 久久久国产一区二区| 高清av免费在线| 久久久精品94久久精品| 午夜久久久在线观看| 青春草亚洲视频在线观看| 我要看日韩黄色一级片| 亚洲国产精品一区三区| 国产免费视频播放在线视频| 精品卡一卡二卡四卡免费| 国内精品宾馆在线| 最近2019中文字幕mv第一页| 亚洲精品中文字幕在线视频 | 美女福利国产在线| 777米奇影视久久| 一级毛片 在线播放| 国产日韩欧美在线精品| 水蜜桃什么品种好| 91在线精品国自产拍蜜月| av福利片在线| 日本-黄色视频高清免费观看| 夫妻性生交免费视频一级片| 成人综合一区亚洲| 中文在线观看免费www的网站| 国产成人免费观看mmmm| 在线天堂最新版资源| 国产午夜精品一二区理论片| 精品人妻一区二区三区麻豆| 黄色欧美视频在线观看| 老女人水多毛片| 久久国产精品男人的天堂亚洲 | 欧美日韩视频精品一区| 亚洲av成人精品一区久久| 国产精品蜜桃在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲天堂av无毛| 五月伊人婷婷丁香| 一区二区av电影网| 国国产精品蜜臀av免费| 精品国产一区二区久久| 免费大片18禁| 国产日韩欧美视频二区| 80岁老熟妇乱子伦牲交| 精品熟女少妇av免费看| 亚洲伊人久久精品综合| 亚洲婷婷狠狠爱综合网| 亚洲国产欧美日韩在线播放 | 色视频在线一区二区三区| 青春草国产在线视频| 青春草视频在线免费观看| 日本黄色日本黄色录像| 亚洲精品久久久久久婷婷小说| 国产视频内射| 国产日韩欧美亚洲二区| 亚洲av二区三区四区| 一区二区av电影网| 日日爽夜夜爽网站| 欧美日韩亚洲高清精品| 伦精品一区二区三区| 亚洲精品,欧美精品| 多毛熟女@视频| 国产在视频线精品| 国产无遮挡羞羞视频在线观看| 成人二区视频| 国产爽快片一区二区三区| 香蕉精品网在线| 国产在线一区二区三区精| 日韩成人伦理影院| 成人亚洲精品一区在线观看| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 亚洲综合色惰| 免费大片18禁| 在线免费观看不下载黄p国产| 中文字幕制服av| 日韩电影二区| 精品一品国产午夜福利视频| 国产精品蜜桃在线观看| 极品教师在线视频| 国产 精品1| 如何舔出高潮| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 久久精品国产自在天天线| 2018国产大陆天天弄谢| 国产精品一区二区在线不卡| 天美传媒精品一区二区| 午夜91福利影院| 99久国产av精品国产电影| 日韩 亚洲 欧美在线| 国产91av在线免费观看| 精品亚洲成a人片在线观看| 国产淫语在线视频| 在线精品无人区一区二区三| 大香蕉久久网| 寂寞人妻少妇视频99o| 最新的欧美精品一区二区| 少妇人妻久久综合中文| 日韩免费高清中文字幕av| 国产精品久久久久成人av| 简卡轻食公司| 国产精品久久久久久久久免| 国产色爽女视频免费观看| 亚洲国产精品999| 国产精品.久久久| 亚洲av日韩在线播放| 一区二区三区精品91| 搡女人真爽免费视频火全软件| 亚洲精品乱久久久久久| 国产精品一区二区在线不卡| videossex国产| 亚洲精品第二区| 久久精品国产a三级三级三级| 美女中出高潮动态图| 中文资源天堂在线| 色94色欧美一区二区| 伊人亚洲综合成人网| 69精品国产乱码久久久| 国产精品人妻久久久影院| 在线观看国产h片| 一区二区三区免费毛片| 国产中年淑女户外野战色| 亚洲国产精品国产精品| 在线精品无人区一区二区三| 亚洲精品亚洲一区二区| 久久久国产一区二区| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 内射极品少妇av片p| 少妇人妻 视频| 亚洲va在线va天堂va国产| 国产午夜精品一二区理论片| 亚洲人成网站在线播| 97精品久久久久久久久久精品| 国产伦精品一区二区三区四那| 久久人妻熟女aⅴ| 日日撸夜夜添| 一级毛片我不卡| 国产深夜福利视频在线观看| 97超碰精品成人国产| 免费高清在线观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲欧美清纯卡通| 一个人免费看片子| 国产在线视频一区二区| 国产黄频视频在线观看| 欧美国产精品一级二级三级 | 免费看不卡的av| 自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 97在线人人人人妻| 永久网站在线| 多毛熟女@视频| 熟女人妻精品中文字幕| 日韩欧美一区视频在线观看 | 狠狠精品人妻久久久久久综合| 在线看a的网站| 国产一区二区三区av在线| 午夜老司机福利剧场| 亚洲,欧美,日韩| 午夜久久久在线观看| 国产乱人偷精品视频| 国产黄频视频在线观看| 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 中文乱码字字幕精品一区二区三区| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 国产精品一区二区在线观看99| 最近中文字幕高清免费大全6| 青春草视频在线免费观看| 亚洲av成人精品一二三区| 人妻系列 视频| 午夜福利在线观看免费完整高清在| 日日摸夜夜添夜夜爱| 久久久欧美国产精品| 亚洲自偷自拍三级| 一个人免费看片子| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 欧美3d第一页| 亚洲精品自拍成人| 亚洲国产精品成人久久小说| 人人妻人人澡人人爽人人夜夜| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| 亚洲一级一片aⅴ在线观看| 晚上一个人看的免费电影| 国产成人精品久久久久久| 亚洲av电影在线观看一区二区三区| 国产日韩欧美视频二区| 国产探花极品一区二区| 亚洲国产av新网站| 老司机亚洲免费影院| kizo精华| 日韩不卡一区二区三区视频在线| 亚洲综合精品二区| 女人久久www免费人成看片| 久久综合国产亚洲精品| 久久久欧美国产精品| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 91精品国产九色| 三级经典国产精品| av免费在线看不卡| 国产片特级美女逼逼视频| 中文资源天堂在线| 如日韩欧美国产精品一区二区三区 | 女性被躁到高潮视频| 97超碰精品成人国产| 视频区图区小说| 曰老女人黄片| 亚洲性久久影院| 人人妻人人澡人人看| 在现免费观看毛片| 久久av网站| 亚洲av男天堂| 最近的中文字幕免费完整| 欧美激情极品国产一区二区三区 | 免费看光身美女| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 少妇高潮的动态图| 高清不卡的av网站| av有码第一页| 亚洲高清免费不卡视频| 亚洲中文av在线| 久久精品久久精品一区二区三区| 国产欧美亚洲国产| 亚洲,一卡二卡三卡| 国产探花极品一区二区| av国产精品久久久久影院| 亚洲国产精品999| 日韩强制内射视频| 亚洲无线观看免费| 精品少妇久久久久久888优播| 午夜福利,免费看| 国产高清国产精品国产三级| h视频一区二区三区| 精品午夜福利在线看| 国产色爽女视频免费观看| 日日撸夜夜添| 97在线人人人人妻| 美女国产视频在线观看| 涩涩av久久男人的天堂| 日韩三级伦理在线观看| 亚洲第一av免费看| 高清av免费在线| 中文字幕久久专区| 男女边吃奶边做爰视频| 蜜桃在线观看..| 亚洲欧洲日产国产| 亚洲精华国产精华液的使用体验| 亚洲av电影在线观看一区二区三区| 人人妻人人看人人澡| 欧美少妇被猛烈插入视频| 一级毛片aaaaaa免费看小| 亚洲自偷自拍三级| 国产欧美日韩精品一区二区| 国产亚洲最大av| av视频免费观看在线观看| 一级a做视频免费观看| 国产欧美日韩精品一区二区| 国产亚洲最大av| 18+在线观看网站| 亚洲精品国产成人久久av| 欧美变态另类bdsm刘玥| 9色porny在线观看| 黄色配什么色好看| 热re99久久国产66热| .国产精品久久| 99九九在线精品视频 | 久久精品夜色国产| 亚洲精品,欧美精品| 性色av一级| 亚洲美女黄色视频免费看| 国产无遮挡羞羞视频在线观看| 国产精品无大码| 久热久热在线精品观看| 草草在线视频免费看| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www | 日本午夜av视频| 女的被弄到高潮叫床怎么办| 亚洲国产av新网站| 欧美精品高潮呻吟av久久| 亚洲av福利一区| 久久精品熟女亚洲av麻豆精品| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 人人妻人人添人人爽欧美一区卜| 人妻制服诱惑在线中文字幕| 一区二区三区四区激情视频| 久久女婷五月综合色啪小说| 久久久精品免费免费高清| 男女国产视频网站| 欧美人与善性xxx| 国产av国产精品国产| 国产黄片美女视频| 欧美 亚洲 国产 日韩一| 我的老师免费观看完整版| 精品人妻熟女av久视频| 街头女战士在线观看网站| 美女视频免费永久观看网站| 九九久久精品国产亚洲av麻豆| 老熟女久久久| 日韩三级伦理在线观看| 国产av一区二区精品久久| 久久影院123| 精品少妇黑人巨大在线播放| 六月丁香七月| 亚洲第一区二区三区不卡| 亚洲国产色片| 自拍偷自拍亚洲精品老妇| 国产一级毛片在线| 亚洲国产精品专区欧美| 大又大粗又爽又黄少妇毛片口| 夫妻午夜视频| 亚洲久久久国产精品| 久久 成人 亚洲| 99精国产麻豆久久婷婷| 久久国内精品自在自线图片| 国产又色又爽无遮挡免| 丰满人妻一区二区三区视频av| 国产91av在线免费观看| 成人黄色视频免费在线看| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 亚洲精品久久午夜乱码| 成人综合一区亚洲| 99久久中文字幕三级久久日本| 嘟嘟电影网在线观看| 黑丝袜美女国产一区| 一级二级三级毛片免费看| 夫妻性生交免费视频一级片| 亚洲国产精品一区三区| 内地一区二区视频在线| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 亚洲图色成人| 两个人的视频大全免费| 综合色丁香网| 少妇精品久久久久久久| 亚洲av成人精品一二三区| 国产成人aa在线观看| 国产在线免费精品| 免费播放大片免费观看视频在线观看| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 色吧在线观看| 国产亚洲一区二区精品| 亚洲成色77777| 欧美另类一区| 乱人伦中国视频| 汤姆久久久久久久影院中文字幕| 亚洲高清免费不卡视频| 两个人免费观看高清视频 | 国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲精品久久午夜乱码| 欧美精品高潮呻吟av久久| 午夜福利网站1000一区二区三区| 久久国产亚洲av麻豆专区| 久久久久久久久久成人| 日本午夜av视频| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 一二三四中文在线观看免费高清| 国产一区二区三区综合在线观看 | 国产av精品麻豆| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 精品国产国语对白av| 夫妻性生交免费视频一级片| 大片免费播放器 马上看| 伦理电影大哥的女人| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 日本-黄色视频高清免费观看| 午夜福利视频精品| 国产一区二区三区综合在线观看 | 日韩欧美一区视频在线观看 | 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 午夜影院在线不卡| 国产男人的电影天堂91| 青春草视频在线免费观看| 一边亲一边摸免费视频| 久久这里有精品视频免费| √禁漫天堂资源中文www| 大片免费播放器 马上看| 精品视频人人做人人爽| 汤姆久久久久久久影院中文字幕| 黄色毛片三级朝国网站 | 18禁在线播放成人免费| 久久这里有精品视频免费| 自拍欧美九色日韩亚洲蝌蚪91 | 美女国产视频在线观看| 久久99一区二区三区| 一级毛片我不卡| 一个人看视频在线观看www免费| 国产av国产精品国产| 国产高清不卡午夜福利| 人妻人人澡人人爽人人| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 久久免费观看电影| 天堂俺去俺来也www色官网| 少妇人妻一区二区三区视频| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线 | 国产精品嫩草影院av在线观看| 曰老女人黄片| 国产成人精品无人区| 大香蕉97超碰在线| 亚洲电影在线观看av| 一级毛片我不卡| 国产精品免费大片| 欧美成人午夜免费资源| av福利片在线| 亚洲成人一二三区av| 日本与韩国留学比较| 99热全是精品| 男人舔奶头视频| 免费黄色在线免费观看| 日本-黄色视频高清免费观看| 久久国内精品自在自线图片| 一级毛片黄色毛片免费观看视频| 韩国高清视频一区二区三区| 少妇人妻久久综合中文| 国产精品不卡视频一区二区| 国产在视频线精品| 亚洲真实伦在线观看| 中文字幕人妻熟人妻熟丝袜美| 在线观看国产h片| av福利片在线观看| 少妇熟女欧美另类| 一级毛片 在线播放| 中文资源天堂在线| 美女cb高潮喷水在线观看| 欧美精品一区二区免费开放| 精品亚洲成国产av| 综合色丁香网| 国产成人精品无人区| 国产欧美日韩一区二区三区在线 | 一级毛片我不卡| 一区二区三区精品91| av在线老鸭窝| 久久青草综合色| 日韩欧美 国产精品| 蜜桃久久精品国产亚洲av| √禁漫天堂资源中文www| 日韩 亚洲 欧美在线| 国产一区二区在线观看av| 国产精品不卡视频一区二区| 中文字幕精品免费在线观看视频 | 91午夜精品亚洲一区二区三区| 亚洲图色成人| 亚洲国产精品一区三区| 亚洲欧美一区二区三区黑人 | 最近最新中文字幕免费大全7| 日韩成人伦理影院| 大香蕉97超碰在线| 只有这里有精品99| 又黄又爽又刺激的免费视频.| 久久久久久久精品精品| 男的添女的下面高潮视频| 亚洲图色成人| 偷拍熟女少妇极品色| 在线看a的网站| 国产爽快片一区二区三区| 国产视频首页在线观看| 国产有黄有色有爽视频| a级毛色黄片| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看 | 丰满少妇做爰视频| 国产成人精品久久久久久| 亚洲av不卡在线观看| 午夜久久久在线观看| 国产高清不卡午夜福利| 另类精品久久| 欧美精品国产亚洲| 亚洲av二区三区四区| 一本一本综合久久| 国产黄频视频在线观看| 国产淫语在线视频| 丰满少妇做爰视频| 黄片无遮挡物在线观看| 国产免费又黄又爽又色| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 国产成人精品一,二区| 偷拍熟女少妇极品色| h日本视频在线播放| 女性被躁到高潮视频| 日产精品乱码卡一卡2卡三| 亚洲精品中文字幕在线视频 | 18禁在线无遮挡免费观看视频| 亚洲精品aⅴ在线观看| 国产精品久久久久久久久免| 各种免费的搞黄视频| 熟女av电影| 国产av国产精品国产| 久久99一区二区三区| 成人二区视频| 日韩三级伦理在线观看| 中国美白少妇内射xxxbb| 日本av手机在线免费观看|