• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Friction between Liquid Crystals and Crystalline Surfaces by Molecular Dynamic Simulations?

    2016-05-10 07:38:18YongWenZhang張永文XiaoSongChen陳曉松andWeiChen陳衛(wèi)
    Communications in Theoretical Physics 2016年10期

    Yong-Wen Zhang(張永文)Xiao-Song Chen(陳曉松)and Wei Chen(陳衛(wèi))?

    1CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    1 Introduction

    Recently,using liquid crystal(LC)molecules as lubricants or lubricant additives has been shown to produce a dramatic reduction of friction to ultralow values.[1?4]We have already performed a systematic molecular dynamics(MD)study on the friction force of the con fined LC monolayer under different shearing and sliding conditions by considering three different atomic structures for the con fining surfaces in our previous article.[5]It has demonstrated that the frictional properties of the LC molecules depend on the competition between the Effect of the pattern of surface mesh and that of the imposed sliding direction.

    Many studies have also focused on the influence of the lubricant-surface interaction energy on friction force.The stick-slip events and periodic breaking-reforming transitions of atomic-scale capillary water bridges can be observed for thin water films con fined by hydrophilic mica sheets from MD simulations.However,only smooth sliding without stick-slip events is observed for water conther progress in the optimization of frictional properties of LC lubricants,in this study,we continue studying the key structural and dynamical properties of con fined LC molecules under shear conditions by performing MD simulations of a simplified rigid bead-necklace model of the LC molecules.[9?11]Previous study about the boundary lubrication characteristics of this model have shown that the coarse-grained bead-necklace model capture much of the structural and dynamic properties of LC lubricant.[5]We here consider LC molecules con fined by surfaces with different energy parameters of LC-surface interaction under temperature changing conditions,approximating a wide variety of materials.We will show that the attractive force between LC molecules and surfaces leads to the enhanced LC density layering away from the surfaces and partial alignment of LC molecules in the first fluid layer.And the slip length is found to change signi ficantly as a function of LC-surface interaction energy.

    The article is arranged as follows.The details of the MD simulations procedure are described in Sec.2.The simulation results are presented and discussed in details in Sec.3.We conclude the article by a few remarks in the last section.

    2 Model

    In this study,LC molecule is treated as a coarsegrained rigid bead-necklace model.[5,9?11]Each LC molecule consists of nine interaction sites(beads).The non-bonded interactions between the beads belonging to different molecules are described by pairwise-additive Lennard–Jones(L-J)12-6 potentials,

    Fig.1 (Color online)The sketch of the simulation geometry.y axis is normal to the page.Blue LC molecules are con fined by two rigid crystalline plates(black atoms).The top plate is moved with a constant driving velocity V along the x direction,and the bottom plate is fixed.The distance between the two plates is kept at 20.04.

    Figure 1 shows a sketch of the simulation geometry.LC molecules are con fined by two rigid crystalline surfaces.Atomic structure of the surfaces is a projection of the face-centered cubic(fcc)on the plane that is perpendicular to the(100)direction.The top and bottom surfaces have the same number of the atoms 1800,and the distance between the two surfaces is kept at 20.04.The total number of LC molecules is set to 576 in all of the MD simulations.The length of simulation box inx,yandzdirections are chosen to beLx=30.0,Ly=30.0,andLz=40.0.The periodic boundary conditions are used in all the three directions.The number densityρof the LC molecules con fined by two surfaces can be calculated byρ=576/(30.0×30.0×20.04)≈0.0319.Each molecular bead interacts with the surface atoms via the potential as Eq.(1),the parameters?bs,σbsare obtained by combination rules,

    where the subscriptsdenotes surface atom.σssis always equal to 1,and?ssis selected in the range of 0.2 to 1.8 in this study.

    All the MD simulations are performed in the NVT canonical ensemble(constant number of particles,constant volume and constant temperature).We consider both equilibrium and non-equilibrium properties of the con fined LC molecules.The top surface is moved with a constant driving velocityVwhich is varied in a range between zero to 0.95 along thexdirection,and the bottom surface is always kept still.A Nos′e-Hoover thermostat is implemented whenV=0 to control the temperature in the equilibrium state.A Langevin themostatting,which is widely used in MD simulations of sheared fluids,[5,12?13]is applied in theydirection to remove viscous heating generated in the shear flow whenV>0.As for the Langevin the mostatting,the equations of motion of thei-th bead are

    whereυi,x,υi,yandυi,zare the projection ofi-th bead velocity inx,yandzdirection respectively.Fi,x,Fi,yandFi,zare the projection of the net deterministic force acting on thei-th bead inx,yandzdirection.fi(t)is aδ-correlated stationary Gaussian process with zero mean,satisfyingands the damping factor which is set to 0.01 in our simulation.different types of liquid crystal phases have been observed in different temperature ranges.[14]Thus,we also consider the influence of temperature on the system.Temperatures are chosen to beT?=3.5,4.5,and 5.5 respectively.All of the MD simulations are performed with the Largescale Atomic/Molecular Massively Parallel simulator(LAMMPS)[15]in this study.After an initial 107time steps during which the system reaches the steady state,a typical production runs of a total of 107time steps are carried out with the integration time step of 0.001τ.

    3 Results

    3.1 Fixed Surfaces

    The results of equilibrium MD simulations when the driving velocity is zero is reported firstly.Figure 2 shows the density pro filesρ(z)/ρof LC molecules con fined by two surfaces with different energy parameters?ssunder different temperatures.As forT?=3.5,the LC molecules maintain layered structures inzdirection.The molecules are divided into 20 layers corresponding to 20 peaks.The average kinetic energy of the LC molecule increases as the temperature increases.The layered structures of LC molecules are destroyed by thermodynamic fluctuation at high temperatures.As it is shown in Fig.2(a),atT?=5.5,only the LC molecules close to the surfaces are in the layered structure.Increasing the LC-surfaces interaction energy leads to more LC molecules are attracted by the surfaces.It can be observed that at a low LC-surfaces interaction,?ss=0.2,the height of the peaks nearest the surfaces is much smaller than those of the larger interaction energy.

    Fig.2 (Color online)Reduced density pro files of the LC molecules in z direction for temperatures T?=3.5(red lines),4.5(green lines)and 5.5(blue lines)with different energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and(c) ?ss=1.8.The number density ρ is equal to 0.0319.The bottom surface and the top surface are located at z=0 and z=20.02 respectively.The dashed line represents the position of the trough following the peak nearest the bottom surface,which is located at z=1.52.This position is denoted by a in this article.

    Fig.3 (Color online)Variation of the adsorption capacity of bottom surface as a function of ?ssfor temperatures T?=3.5(red squares),T?=4.5(green circles)and T?=5.5(purple triangles).

    Surface structures have significant effects on interface friction by affecting the distribution of angles of the adsorbed LC molecules.It has been observed in the previ-ous work that LC molecules align their long axes roughly along the surface mesh and induce a number of domains with different local orientation orders.[5]We consider here the influence of the LC-surface interaction energy on the orientation of LC molecules close to the surfaces.The distributions of|cos(θ)|and|cos(φ)|for LC monolayer closest to the bottom surface are calculated with different?ssand temperatures.In spherical coordinate system,θangle of the unit vector of the LC molecule measures from the fixedzdirection,and theφangle of its orthogonal projection onx-yplane measures fromxdirection onx-yplane.

    Fig.4 (Color online)The distributions of|cos(θ)|and|cos(φ)|for LC molecules closest to the surface with the energy parameters(a) ?ss=0.2,(b) ?ss=1.0,and(c) ?ss=1.8 at different temperatures.

    The distributions are plotted in Fig.4.The values of|cos(θ)|are around 0.01,and they do not depend on?ssand temperature. Those results indicate thatθis very close to 90?,the LC molecules near the surfaces almost lie in thex-yplane.However,the maximum value ofdecreases with increasing temperature at a fixed?ss.In contrast,this value increases as?ssincreases at a fixed temperature.In general,the Effect of the temperature competes with the influence of the LC-surface interaction energy.The nearest atoms in the(100)surface are arranged along the 2D vectors in thex-yplane with the angles that are equal to±45?.The fraction of LC molecules withφ=±45?increases with increasing?ssfor a fixed value of temperature.The results can be understood that the larger value of?ssmakes the surfaces more attractive.However,when temperature increases for a fixed?ss,the LC molecules get less ordered due to the thermodynamic fluctuation.

    3.2 Sliding Surfaces

    We consider hereafter the non-equilibrium properties of the LC molecules by the shear flow simulations.

    The top surface is moved with a constant nonzero driving velocityValong thexdirection.The velocity pro files of the LC molecules forV=0.2 under different temperatures are plotted in Fig.5.For?ss=0.2,the slip velocity pro file of LC molecules atT?=3.5 coincides with that ofT?=4.5,their slopes are almost zero which indicates that adjacent layers move parallel to each other with same speeds.When the temperature isT?=5.5 for?ss=0.2,each layer of LC molecules moves faster than the one just below it.For a higher LC-surface interaction energy,?ss=1.0,the velocity pro files are nonlinear forT?=3.5 andT?=4.5,a large amount of LC molecules attach to the surfaces and move with the same velocities.However,the velocity pro files are almost linear forT?=5.5.The similar behavior can be observed for?ss=1.8.Lubrication layers and sticky layers close to surfaces typically occur for the shear flow simulations at high LC-surface interaction energy,and the width of sticky layer becomes smaller as temperature increases until sticky layer disappears.ForT?=5.5,the layered struc-ture of LC molecules is destroyed,there are only lubrication layers at the LC-surfaces interface.Our results are similar as that reported in Ref.[16],where polymer solution forms lubrication layers at weakly attract surfaces,the sticky surface layers only appear for more attractive surfaces.Obviously,the temperature can also change the velocity pro files from nonlinear to linear.Figure 6 shows the results of fitting the velocity pro files for three different energy parameters?ssand different shearing velocitiesVof top surface atT?=5.5.

    Fig.5 (Color online)Velocity pro files vx(z)for temperatures T?=3.5,4.5,and 5.5 with the different energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and ?ss=1.8.We take 20 bins in z direction to calculate vx(z).Top surface speed V=0.2.

    Fig.6 (Color online)Velocity pro files for the energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and ?ss=1.8.Top surface speeds V=0.2(red),V=0.5(green)and V=0.8(blue).The dashed lines are linear regression lines and their extrapolation length in z direction are the slip length b.The temperature is kept at T?=5.5.

    Fig.7 (Color online)Variation of the slip length b as a function of the parameter ?ssfor different shearing velocities of top surface,V=0.2(orange),V=0.5(green)and V=0.8(blue);The dash lines are linear regression lines.

    Figure 7 shows the results of variation of the slip lengthbas a function of the parameters?ssfor three different shearing velocitiesV=0.2,V=0.5,andV=0.8.It can be observed that the slip length increases with decreasing interaction energies.The slip lengthbvaries according tolinearly.The value of slip lengthbis small with strong interaction between LC molecules and surfaces.When this interaction becomes weaker,there are larger values for the slip lengthb.The similar behavior can also be observed in the MD simulations of polymer solution,[16]where the slip lengthbincreases with decreasing liquid-surface interaction energy.

    Fig.8 (Color online)Variation of the slip length b as a function of the slip velocity of top surface at different energy parameters ?ss.The red lines are linear regression fitting lines and the shadowed area is 95%con fidence region.

    It has been shown from the experimental results on the Effect of humidity for mica surfaces,[19]that as for the water con fined by hydrophilic surfaces,the friction force decreases with increasing shearing velocities.This Effect is basically the result of the hydrogen bond network forming between hydrophilic surfaces.However,the trend is inversed on bare mica surfaces and other hydrophobic surfaces,because there is no hydrogen bond network formation kinetics in this process.As expected,the increase of energy parameter?ssleads to an increase in the wettability of the surface,[20]thus complementary simulations are performed to study the dependence of the slip length on shearing velocity at different energy parameters.For simulations on simple liquid system,[21]a gradual transition in shear rate dependence of the slip length from linear to highly nonlinear is observed upon reducing the strength of wall-liquid interactions.The slip length is a linear function of shear rate at high wall-liquid interaction energies,and it is a power-law function for weak interaction energies.Figure 8 shows the results for LC molecules atT?=5.5,it can be observed that the slip length depends on the shearing rate linearly at large values of?ss,we can also observe nonlinear behavior at?ss=0.2,0.3,and 0.4,but it does not comply with the power-law,the widths of 95%confidence region for the linear regression fit are much greater than those of large values of?ss.

    Friction depends on shearing velocity has been confirmed.When the surface materials are different,velocity dependence of friction will be changed.The chemical nature of the surface,which can form H-bond network,exhibit a friction that decreases with shear velocity,but if the surface can not form such networks,this behavior is opposite.[19]So exploring influence of variation of the slip lengthbas a function of shearing velocity by different wall fluid interaction energies is signi ficant.When the shearing velocity changes,we get different values of the slip lengthbunder same energy parameter?ss(In Fig.7).For simulations on simple liquid system,[21]a gradual transition in shear rate dependence of the slip length from linear to highly nonlinear is observed upon reducing the strength of wall- fluid interactions.The slip length is a linear function of shear rate at high wall- fluid interaction energies,it is a power-law function for weak wall- fluid interaction energies.Our results are similar to simple liquid at high wall- fluid interaction energies,for weak wall- fluid interaction energies,we also observe nonlinear behavior but it does not comply with the power-law.Figure 8 shows this result.We add a linear regression line to each picture of?ss.For low values of?ss=0.2,0.3,and 0.4,the widths of 95%confidence region for the regression fit are large,wherefore variation of the slip length as the slip velocity increases are nonlinear and no clear trend.When the energy parameter?sstakes larger values,we can get better linear regression lines and the slip lengthbincreases as the shearingVincreases linearly.

    4 Conclusion

    In summary,molecular dynamics simulation was applied to study the friction between liquid crystals and crystalline surfaces for different LC-surface interaction en-ergies,temperatures,and shearing velocities.Our results show that the LC molecules nearest the surfaces exhibit significant orientational order at high LC-surface interaction energies and low temperatures,but get less ordered when the temperature increases or interaction energies decrease.Our findings reveal that the slip length varies as a function of the LC-surface interaction energy,which can be well described though a theoretical curve.We find that the slip length increases linearly with increase in the shearing velocity at high LC-surface interaction energies,but for weak interaction energies,no signi ficant trend can be observed.

    References

    [1]R.J.Bushby and K.Kawta,Liquid Crystals38(2011)1415.

    [2]T.Amann and A.Kailer,Wear271(2011)1701.

    [3]T.Amann and A.Kailer,Tribol Lett.41(2011)121.

    [4]T.Aman and A.Kailer,Tribol Lett.37(2010)343.

    [5]W.Chen,S.Kulju,A.S.Foster,M.J.Alawa,and L.Laurson,Phys.Rev.E90(2014)012404.

    [6]W.Chen,A.S.Foster,M.J.Alawa,and L.Laurson,Phys.Rev.Lett.114(2015)095502.

    [7]J.Chen,I.Ratera,J.Y.Park,and M.Salmeron,Phys.Rev.Lett.96(2006)236102.

    [8]S.Ohmishi and A.Stewart,Langmuir18(2002)6140.

    [9]P.Tian,D.Bedrov,G.D.Simith,and M.Glaser,J.Chem.Phys.115(2001)9055.

    [10]P.Tian and G.D.Smith,J.Chem.Phys.116(2002)9957.

    [11]P.Tian,D.Bedrov,G.D.Smith,M.Glaser,and J.E.Maclennan,J.Chem.Phys.117(2002)9452.

    [12]P.A.Thompson and S.M.Troian,Nature(London)389(1997)360.

    [13]N.V.Priezjev,J.Chem.Phys.136(2012)224702.

    [14]A.J.McDonald and S.Hanna,Phys.Rev.E75(2007)041703.

    [15]S.Plimpton,J.Comp.Phys.117(1995)1.

    [16]J.Servantie and M.Muller,Phys.Rev.Lett.101(2008)026101.

    [17]D.M.Huang,C.Sendner,D.Horinek,R.R.Netz,and L.Bocquet,Phys.Rev.Lett.101(2008)226101.

    [18]C.Sendner,D.Horinek,L.Becquet,and R.R.Netz,Langmuir25(2009)10768.

    [19]J.Chen,I.Rathera,J.Y.Pack,and M.Salmeron,Phys.Rev.Lett.96(2006)236102.

    [20]T.Werder,J.H.Walther,R.I.Ja ff e,T.Halicioglu,and P.Koumoutsakos,J.Phys.Chem.107(2003)1345.

    [21]N.V.Prizezjev,Phys.Rev.E75(2007)0501605.

    听说在线观看完整版免费高清| av线在线观看网站| 亚洲综合色惰| 91久久精品电影网| 欧美激情国产日韩精品一区| 久久精品国产亚洲av天美| 日本av手机在线免费观看| 日本色播在线视频| 三级国产精品欧美在线观看| 少妇的逼水好多| 蜜桃亚洲精品一区二区三区| 午夜免费激情av| 最新中文字幕久久久久| av在线亚洲专区| 我要搜黄色片| 国产精品女同一区二区软件| av免费在线看不卡| 久久精品人妻少妇| 天天一区二区日本电影三级| 99久久成人亚洲精品观看| 国产亚洲一区二区精品| 国产精品熟女久久久久浪| 久久6这里有精品| 久久人人爽人人爽人人片va| 国产真实伦视频高清在线观看| 成年版毛片免费区| 中文字幕久久专区| 亚洲av电影不卡..在线观看| 久久久久网色| 亚洲内射少妇av| 日韩欧美三级三区| 3wmmmm亚洲av在线观看| 午夜a级毛片| eeuss影院久久| 精品一区二区三区人妻视频| 中文字幕av成人在线电影| 岛国毛片在线播放| 国产成人精品一,二区| 欧美成人精品欧美一级黄| 亚洲av免费高清在线观看| 久久6这里有精品| 舔av片在线| 七月丁香在线播放| 欧美日韩在线观看h| 天堂中文最新版在线下载 | 在线播放国产精品三级| 老司机影院成人| 最近中文字幕高清免费大全6| 乱人视频在线观看| 精品午夜福利在线看| 精品国产三级普通话版| 中文欧美无线码| 欧美又色又爽又黄视频| 久久久久国产网址| 亚洲成av人片在线播放无| 内地一区二区视频在线| 91精品国产九色| 久久人人爽人人片av| 亚洲精品国产av成人精品| 一级二级三级毛片免费看| 国产成人精品婷婷| 最新中文字幕久久久久| 神马国产精品三级电影在线观看| 精品酒店卫生间| 麻豆成人av视频| 国产又色又爽无遮挡免| 国产成人freesex在线| 亚洲欧美成人精品一区二区| 乱码一卡2卡4卡精品| 99久国产av精品| 熟女人妻精品中文字幕| 嫩草影院入口| 一级毛片久久久久久久久女| 精品久久久久久久久av| 美女黄网站色视频| 少妇人妻一区二区三区视频| 永久免费av网站大全| 人人妻人人澡人人爽人人夜夜 | 青春草亚洲视频在线观看| 亚洲欧美成人综合另类久久久 | 日韩 亚洲 欧美在线| 性色avwww在线观看| 99国产精品一区二区蜜桃av| 99九九线精品视频在线观看视频| 国产精品,欧美在线| 久久久成人免费电影| 99热网站在线观看| 久久这里只有精品中国| 亚洲自拍偷在线| 久久久成人免费电影| 国产男人的电影天堂91| 国产国拍精品亚洲av在线观看| 日韩大片免费观看网站 | 亚洲av免费在线观看| 色哟哟·www| 丰满人妻一区二区三区视频av| 久久国产乱子免费精品| 国产精品无大码| 日韩av在线免费看完整版不卡| 99久久精品一区二区三区| 国产 一区 欧美 日韩| 插阴视频在线观看视频| 日日干狠狠操夜夜爽| 久久久久久大精品| 国产成人福利小说| av又黄又爽大尺度在线免费看 | 亚洲av福利一区| 亚洲综合色惰| 99热网站在线观看| 日本wwww免费看| 少妇丰满av| 国产av在哪里看| 神马国产精品三级电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 在线a可以看的网站| 黄色一级大片看看| .国产精品久久| av.在线天堂| 国产女主播在线喷水免费视频网站 | 国产免费视频播放在线视频 | 97超视频在线观看视频| 国产高清视频在线观看网站| 亚洲av.av天堂| 日韩精品有码人妻一区| av免费在线看不卡| av又黄又爽大尺度在线免费看 | 天美传媒精品一区二区| 亚洲国产精品成人综合色| 久久韩国三级中文字幕| 99国产精品一区二区蜜桃av| 一个人免费在线观看电影| 国产高清国产精品国产三级 | 色噜噜av男人的天堂激情| 日韩av在线免费看完整版不卡| 中文字幕av成人在线电影| 午夜福利在线在线| 日韩人妻高清精品专区| 两个人的视频大全免费| 亚洲欧美精品自产自拍| 99久久九九国产精品国产免费| 国产成人freesex在线| 久久鲁丝午夜福利片| 少妇熟女aⅴ在线视频| 欧美日本视频| 国产成人午夜福利电影在线观看| 联通29元200g的流量卡| 美女被艹到高潮喷水动态| 国产精品人妻久久久久久| 高清视频免费观看一区二区 | 国产精品野战在线观看| 美女被艹到高潮喷水动态| 亚洲成av人片在线播放无| 岛国毛片在线播放| 成年版毛片免费区| 国产老妇女一区| 欧美三级亚洲精品| 寂寞人妻少妇视频99o| 午夜日本视频在线| 欧美日韩在线观看h| 少妇被粗大猛烈的视频| 美女国产视频在线观看| 国国产精品蜜臀av免费| 日本免费a在线| 日本av手机在线免费观看| 国产成人a∨麻豆精品| 欧美成人一区二区免费高清观看| 国产精品久久久久久av不卡| 亚洲综合精品二区| 久久精品国产99精品国产亚洲性色| 久久人人爽人人片av| 成人二区视频| 欧美成人精品欧美一级黄| 亚洲不卡免费看| 99热这里只有是精品50| 国产伦精品一区二区三区四那| 中文资源天堂在线| 欧美激情国产日韩精品一区| 伦理电影大哥的女人| 美女脱内裤让男人舔精品视频| 午夜福利在线观看免费完整高清在| 亚洲av日韩在线播放| 男的添女的下面高潮视频| 亚洲av中文av极速乱| 在线观看一区二区三区| 国产在线一区二区三区精 | 国产精品麻豆人妻色哟哟久久 | 国产 一区 欧美 日韩| 成人欧美大片| 国产成人一区二区在线| 老司机影院毛片| av在线观看视频网站免费| 七月丁香在线播放| 久久久精品欧美日韩精品| 成人无遮挡网站| 国产成人aa在线观看| 99久久人妻综合| 秋霞伦理黄片| 搞女人的毛片| 免费看a级黄色片| 亚洲av成人精品一二三区| 中文精品一卡2卡3卡4更新| 青青草视频在线视频观看| 好男人在线观看高清免费视频| 国产一级毛片在线| 又黄又爽又刺激的免费视频.| 小蜜桃在线观看免费完整版高清| 国产伦在线观看视频一区| 国产老妇女一区| 又粗又爽又猛毛片免费看| 亚洲精品日韩av片在线观看| 丰满人妻一区二区三区视频av| 亚洲国产欧美人成| 综合色丁香网| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩高清专用| 韩国高清视频一区二区三区| 亚洲欧美成人精品一区二区| 中文亚洲av片在线观看爽| 日韩一本色道免费dvd| 神马国产精品三级电影在线观看| 3wmmmm亚洲av在线观看| 国产男人的电影天堂91| 亚洲av电影在线观看一区二区三区 | 精品久久国产蜜桃| av在线播放精品| 日韩亚洲欧美综合| 国产视频内射| 中文在线观看免费www的网站| 欧美变态另类bdsm刘玥| www.色视频.com| av又黄又爽大尺度在线免费看 | videossex国产| 熟女人妻精品中文字幕| 日本三级黄在线观看| 成人午夜精彩视频在线观看| 欧美区成人在线视频| 亚洲欧美精品专区久久| 久久精品影院6| 99久久无色码亚洲精品果冻| 亚洲欧美中文字幕日韩二区| 亚洲不卡免费看| 小蜜桃在线观看免费完整版高清| 九九在线视频观看精品| 亚洲自拍偷在线| 久久精品综合一区二区三区| 午夜老司机福利剧场| 成年免费大片在线观看| 国产欧美日韩精品一区二区| 精品不卡国产一区二区三区| 国产精品国产三级专区第一集| 免费av毛片视频| 一夜夜www| 免费观看的影片在线观看| 中文字幕亚洲精品专区| 尾随美女入室| 日本免费在线观看一区| 成人三级黄色视频| 少妇的逼好多水| 亚洲国产最新在线播放| 蜜桃亚洲精品一区二区三区| 午夜精品一区二区三区免费看| 国产精品99久久久久久久久| 我的老师免费观看完整版| 五月伊人婷婷丁香| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜爱| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| 99re6热这里在线精品视频| 国产女主播在线喷水免费视频网站| av免费观看日本| 欧美精品国产亚洲| 亚洲精品av麻豆狂野| 麻豆乱淫一区二区| 成年动漫av网址| 99精国产麻豆久久婷婷| 免费观看a级毛片全部| 黑人猛操日本美女一级片| 亚洲人与动物交配视频| 少妇精品久久久久久久| 性高湖久久久久久久久免费观看| 欧美精品一区二区免费开放| 午夜久久久在线观看| 丝袜美足系列| 国产亚洲一区二区精品| 另类亚洲欧美激情| 高清黄色对白视频在线免费看| 亚洲国产av新网站| 大片免费播放器 马上看| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 国产女主播在线喷水免费视频网站| 免费不卡的大黄色大毛片视频在线观看| 精品久久久精品久久久| 成人综合一区亚洲| 久久免费观看电影| 欧美性感艳星| videos熟女内射| av有码第一页| 哪个播放器可以免费观看大片| 日日爽夜夜爽网站| 精品99又大又爽又粗少妇毛片| 在线观看人妻少妇| 最近中文字幕2019免费版| 最黄视频免费看| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 久久久久久久久久久免费av| 久久精品国产自在天天线| 亚洲,一卡二卡三卡| 久久精品国产亚洲av天美| a级毛片在线看网站| 久久午夜综合久久蜜桃| 熟女人妻精品中文字幕| 精品一品国产午夜福利视频| www.av在线官网国产| 波多野结衣一区麻豆| 啦啦啦中文免费视频观看日本| 婷婷色av中文字幕| 18+在线观看网站| 男女啪啪激烈高潮av片| 91久久精品国产一区二区三区| 日韩 亚洲 欧美在线| 亚洲精品久久成人aⅴ小说| 交换朋友夫妻互换小说| 久久久久视频综合| 大香蕉97超碰在线| 新久久久久国产一级毛片| 国产毛片在线视频| av在线观看视频网站免费| 一级a做视频免费观看| 老司机影院成人| 久久久久久久亚洲中文字幕| 最近中文字幕2019免费版| 日韩精品有码人妻一区| 91在线精品国自产拍蜜月| 999精品在线视频| 亚洲性久久影院| 蜜臀久久99精品久久宅男| 亚洲欧洲精品一区二区精品久久久 | 精品国产一区二区久久| 一二三四中文在线观看免费高清| 丝袜在线中文字幕| 亚洲精品美女久久久久99蜜臀 | 男女啪啪激烈高潮av片| 亚洲综合色网址| 咕卡用的链子| 91成人精品电影| 国产精品久久久久久久电影| 精品久久蜜臀av无| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 大话2 男鬼变身卡| 有码 亚洲区| 久久精品夜色国产| 黄色一级大片看看| 精品一区二区免费观看| 亚洲国产精品成人久久小说| 久久精品熟女亚洲av麻豆精品| 丝袜人妻中文字幕| 青青草视频在线视频观看| 九九爱精品视频在线观看| 亚洲人成77777在线视频| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 深夜精品福利| 最黄视频免费看| 丰满少妇做爰视频| 一级爰片在线观看| 久久免费观看电影| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 欧美日韩一区二区视频在线观看视频在线| 男女边吃奶边做爰视频| av女优亚洲男人天堂| 国产精品不卡视频一区二区| 日本av免费视频播放| 久久精品国产综合久久久 | 午夜av观看不卡| 美女福利国产在线| 在线观看人妻少妇| 精品熟女少妇av免费看| 九色成人免费人妻av| a级毛色黄片| 欧美日韩综合久久久久久| 国产精品免费大片| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 亚洲欧美中文字幕日韩二区| 午夜视频国产福利| 两性夫妻黄色片 | 亚洲精品成人av观看孕妇| 亚洲人成77777在线视频| 精品一区在线观看国产| 美女视频免费永久观看网站| 老司机影院毛片| 精品久久蜜臀av无| 少妇人妻精品综合一区二区| 国产成人一区二区在线| 亚洲综合色网址| 免费黄网站久久成人精品| 日韩人妻精品一区2区三区| 丰满少妇做爰视频| 亚洲成av片中文字幕在线观看 | 99精国产麻豆久久婷婷| 国产一区亚洲一区在线观看| 秋霞在线观看毛片| 五月开心婷婷网| 久久精品国产亚洲av天美| 老司机影院毛片| 免费久久久久久久精品成人欧美视频 | 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| 久久午夜福利片| 精品人妻在线不人妻| 国产极品粉嫩免费观看在线| 大香蕉97超碰在线| 免费在线观看完整版高清| 十分钟在线观看高清视频www| 久久精品夜色国产| 岛国毛片在线播放| 黑人高潮一二区| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| 亚洲综合色网址| 激情视频va一区二区三区| 国产男女超爽视频在线观看| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久成人av| 免费看不卡的av| 搡女人真爽免费视频火全软件| 中文乱码字字幕精品一区二区三区| 91精品三级在线观看| 亚洲精品乱久久久久久| 99热这里只有是精品在线观看| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 久久精品国产亚洲av天美| 久久久亚洲精品成人影院| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 亚洲精品一二三| 我的女老师完整版在线观看| 国产片特级美女逼逼视频| 亚洲av男天堂| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 欧美精品人与动牲交sv欧美| 亚洲高清免费不卡视频| 免费人成在线观看视频色| 哪个播放器可以免费观看大片| 在线 av 中文字幕| 免费看光身美女| www.熟女人妻精品国产 | 日本av免费视频播放| 国产亚洲精品久久久com| 国产成人一区二区在线| 一边亲一边摸免费视频| 久久久久久久国产电影| 亚洲一码二码三码区别大吗| 久久久久久久精品精品| 久热这里只有精品99| 亚洲精品乱久久久久久| 久久久久久人人人人人| 国产精品 国内视频| 丰满少妇做爰视频| 亚洲,欧美,日韩| 亚洲综合色网址| 男人舔女人的私密视频| 国产永久视频网站| 国产av国产精品国产| 久久狼人影院| 男人操女人黄网站| 久久精品夜色国产| 亚洲国产精品一区二区三区在线| 91在线精品国自产拍蜜月| 久久狼人影院| 日本wwww免费看| 欧美丝袜亚洲另类| 母亲3免费完整高清在线观看 | 午夜av观看不卡| 欧美日韩av久久| 精品国产一区二区三区久久久樱花| 国产综合精华液| 精品国产一区二区三区四区第35| 日韩不卡一区二区三区视频在线| 久久人人爽人人片av| 欧美xxⅹ黑人| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 免费大片18禁| 高清视频免费观看一区二区| 黄色怎么调成土黄色| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 日韩一区二区视频免费看| 高清av免费在线| 午夜影院在线不卡| av片东京热男人的天堂| 乱码一卡2卡4卡精品| 亚洲国产精品专区欧美| 亚洲国产欧美日韩在线播放| 日本午夜av视频| 亚洲国产欧美日韩在线播放| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在 | 国产精品人妻久久久影院| 亚洲美女搞黄在线观看| 哪个播放器可以免费观看大片| 亚洲人与动物交配视频| 免费观看在线日韩| 在线观看免费高清a一片| 熟女av电影| 久久ye,这里只有精品| 免费少妇av软件| 极品人妻少妇av视频| 男人舔女人的私密视频| av播播在线观看一区| 五月天丁香电影| 99国产综合亚洲精品| 一区二区三区四区激情视频| 欧美变态另类bdsm刘玥| 亚洲欧洲日产国产| 91成人精品电影| 久久这里只有精品19| 超碰97精品在线观看| 午夜日本视频在线| 国产片特级美女逼逼视频| 欧美日韩综合久久久久久| 最近中文字幕高清免费大全6| 久久精品aⅴ一区二区三区四区 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久av网站| 一级毛片电影观看| 午夜影院在线不卡| 一级毛片 在线播放| 国产精品蜜桃在线观看| 免费人妻精品一区二区三区视频| av女优亚洲男人天堂| 欧美xxⅹ黑人| 最近手机中文字幕大全| 熟女电影av网| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 欧美亚洲日本最大视频资源| 一区二区三区精品91| 在线免费观看不下载黄p国产| 国产精品 国内视频| 9热在线视频观看99| 大话2 男鬼变身卡| 老司机影院成人| 国产成人精品久久久久久| 一本久久精品| 国产av码专区亚洲av| 午夜91福利影院| 免费观看av网站的网址| 欧美人与性动交α欧美软件 | 亚洲,一卡二卡三卡| 国产一区二区激情短视频 | 国产男女超爽视频在线观看| 高清不卡的av网站| 99re6热这里在线精品视频| 亚洲精品久久午夜乱码| 大香蕉久久网| 国产免费视频播放在线视频| 你懂的网址亚洲精品在线观看| av女优亚洲男人天堂| 亚洲精品视频女| 天堂俺去俺来也www色官网| 交换朋友夫妻互换小说| 中文精品一卡2卡3卡4更新| 午夜福利视频在线观看免费| 人人妻人人澡人人看| 亚洲精品456在线播放app| av免费观看日本| 久久久久久久国产电影| 久久精品国产自在天天线| 国产精品蜜桃在线观看| 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美| 日本午夜av视频| 国产精品蜜桃在线观看| 欧美bdsm另类| 欧美日韩亚洲高清精品| 免费在线观看黄色视频的| 天天躁夜夜躁狠狠躁躁| 搡女人真爽免费视频火全软件| 天天躁夜夜躁狠狠躁躁| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩制服丝袜自拍偷拍| 亚洲国产精品专区欧美| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 精品一品国产午夜福利视频| 国产精品免费大片| 国产精品人妻久久久久久| 国产日韩一区二区三区精品不卡| 亚洲成av片中文字幕在线观看 | 久久久久久久久久人人人人人人| 久久精品国产综合久久久 | 久久 成人 亚洲| 欧美最新免费一区二区三区| 性色avwww在线观看| 大话2 男鬼变身卡|