• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Friction between Liquid Crystals and Crystalline Surfaces by Molecular Dynamic Simulations?

    2016-05-10 07:38:18YongWenZhang張永文XiaoSongChen陳曉松andWeiChen陳衛(wèi)
    Communications in Theoretical Physics 2016年10期

    Yong-Wen Zhang(張永文)Xiao-Song Chen(陳曉松)and Wei Chen(陳衛(wèi))?

    1CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,P.O.Box 2735,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Computer Network Information Center,Chinese Academy of Sciences,P.O.Box 349,Beijing 100190,China

    1 Introduction

    Recently,using liquid crystal(LC)molecules as lubricants or lubricant additives has been shown to produce a dramatic reduction of friction to ultralow values.[1?4]We have already performed a systematic molecular dynamics(MD)study on the friction force of the con fined LC monolayer under different shearing and sliding conditions by considering three different atomic structures for the con fining surfaces in our previous article.[5]It has demonstrated that the frictional properties of the LC molecules depend on the competition between the Effect of the pattern of surface mesh and that of the imposed sliding direction.

    Many studies have also focused on the influence of the lubricant-surface interaction energy on friction force.The stick-slip events and periodic breaking-reforming transitions of atomic-scale capillary water bridges can be observed for thin water films con fined by hydrophilic mica sheets from MD simulations.However,only smooth sliding without stick-slip events is observed for water conther progress in the optimization of frictional properties of LC lubricants,in this study,we continue studying the key structural and dynamical properties of con fined LC molecules under shear conditions by performing MD simulations of a simplified rigid bead-necklace model of the LC molecules.[9?11]Previous study about the boundary lubrication characteristics of this model have shown that the coarse-grained bead-necklace model capture much of the structural and dynamic properties of LC lubricant.[5]We here consider LC molecules con fined by surfaces with different energy parameters of LC-surface interaction under temperature changing conditions,approximating a wide variety of materials.We will show that the attractive force between LC molecules and surfaces leads to the enhanced LC density layering away from the surfaces and partial alignment of LC molecules in the first fluid layer.And the slip length is found to change signi ficantly as a function of LC-surface interaction energy.

    The article is arranged as follows.The details of the MD simulations procedure are described in Sec.2.The simulation results are presented and discussed in details in Sec.3.We conclude the article by a few remarks in the last section.

    2 Model

    In this study,LC molecule is treated as a coarsegrained rigid bead-necklace model.[5,9?11]Each LC molecule consists of nine interaction sites(beads).The non-bonded interactions between the beads belonging to different molecules are described by pairwise-additive Lennard–Jones(L-J)12-6 potentials,

    Fig.1 (Color online)The sketch of the simulation geometry.y axis is normal to the page.Blue LC molecules are con fined by two rigid crystalline plates(black atoms).The top plate is moved with a constant driving velocity V along the x direction,and the bottom plate is fixed.The distance between the two plates is kept at 20.04.

    Figure 1 shows a sketch of the simulation geometry.LC molecules are con fined by two rigid crystalline surfaces.Atomic structure of the surfaces is a projection of the face-centered cubic(fcc)on the plane that is perpendicular to the(100)direction.The top and bottom surfaces have the same number of the atoms 1800,and the distance between the two surfaces is kept at 20.04.The total number of LC molecules is set to 576 in all of the MD simulations.The length of simulation box inx,yandzdirections are chosen to beLx=30.0,Ly=30.0,andLz=40.0.The periodic boundary conditions are used in all the three directions.The number densityρof the LC molecules con fined by two surfaces can be calculated byρ=576/(30.0×30.0×20.04)≈0.0319.Each molecular bead interacts with the surface atoms via the potential as Eq.(1),the parameters?bs,σbsare obtained by combination rules,

    where the subscriptsdenotes surface atom.σssis always equal to 1,and?ssis selected in the range of 0.2 to 1.8 in this study.

    All the MD simulations are performed in the NVT canonical ensemble(constant number of particles,constant volume and constant temperature).We consider both equilibrium and non-equilibrium properties of the con fined LC molecules.The top surface is moved with a constant driving velocityVwhich is varied in a range between zero to 0.95 along thexdirection,and the bottom surface is always kept still.A Nos′e-Hoover thermostat is implemented whenV=0 to control the temperature in the equilibrium state.A Langevin themostatting,which is widely used in MD simulations of sheared fluids,[5,12?13]is applied in theydirection to remove viscous heating generated in the shear flow whenV>0.As for the Langevin the mostatting,the equations of motion of thei-th bead are

    whereυi,x,υi,yandυi,zare the projection ofi-th bead velocity inx,yandzdirection respectively.Fi,x,Fi,yandFi,zare the projection of the net deterministic force acting on thei-th bead inx,yandzdirection.fi(t)is aδ-correlated stationary Gaussian process with zero mean,satisfyingands the damping factor which is set to 0.01 in our simulation.different types of liquid crystal phases have been observed in different temperature ranges.[14]Thus,we also consider the influence of temperature on the system.Temperatures are chosen to beT?=3.5,4.5,and 5.5 respectively.All of the MD simulations are performed with the Largescale Atomic/Molecular Massively Parallel simulator(LAMMPS)[15]in this study.After an initial 107time steps during which the system reaches the steady state,a typical production runs of a total of 107time steps are carried out with the integration time step of 0.001τ.

    3 Results

    3.1 Fixed Surfaces

    The results of equilibrium MD simulations when the driving velocity is zero is reported firstly.Figure 2 shows the density pro filesρ(z)/ρof LC molecules con fined by two surfaces with different energy parameters?ssunder different temperatures.As forT?=3.5,the LC molecules maintain layered structures inzdirection.The molecules are divided into 20 layers corresponding to 20 peaks.The average kinetic energy of the LC molecule increases as the temperature increases.The layered structures of LC molecules are destroyed by thermodynamic fluctuation at high temperatures.As it is shown in Fig.2(a),atT?=5.5,only the LC molecules close to the surfaces are in the layered structure.Increasing the LC-surfaces interaction energy leads to more LC molecules are attracted by the surfaces.It can be observed that at a low LC-surfaces interaction,?ss=0.2,the height of the peaks nearest the surfaces is much smaller than those of the larger interaction energy.

    Fig.2 (Color online)Reduced density pro files of the LC molecules in z direction for temperatures T?=3.5(red lines),4.5(green lines)and 5.5(blue lines)with different energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and(c) ?ss=1.8.The number density ρ is equal to 0.0319.The bottom surface and the top surface are located at z=0 and z=20.02 respectively.The dashed line represents the position of the trough following the peak nearest the bottom surface,which is located at z=1.52.This position is denoted by a in this article.

    Fig.3 (Color online)Variation of the adsorption capacity of bottom surface as a function of ?ssfor temperatures T?=3.5(red squares),T?=4.5(green circles)and T?=5.5(purple triangles).

    Surface structures have significant effects on interface friction by affecting the distribution of angles of the adsorbed LC molecules.It has been observed in the previ-ous work that LC molecules align their long axes roughly along the surface mesh and induce a number of domains with different local orientation orders.[5]We consider here the influence of the LC-surface interaction energy on the orientation of LC molecules close to the surfaces.The distributions of|cos(θ)|and|cos(φ)|for LC monolayer closest to the bottom surface are calculated with different?ssand temperatures.In spherical coordinate system,θangle of the unit vector of the LC molecule measures from the fixedzdirection,and theφangle of its orthogonal projection onx-yplane measures fromxdirection onx-yplane.

    Fig.4 (Color online)The distributions of|cos(θ)|and|cos(φ)|for LC molecules closest to the surface with the energy parameters(a) ?ss=0.2,(b) ?ss=1.0,and(c) ?ss=1.8 at different temperatures.

    The distributions are plotted in Fig.4.The values of|cos(θ)|are around 0.01,and they do not depend on?ssand temperature. Those results indicate thatθis very close to 90?,the LC molecules near the surfaces almost lie in thex-yplane.However,the maximum value ofdecreases with increasing temperature at a fixed?ss.In contrast,this value increases as?ssincreases at a fixed temperature.In general,the Effect of the temperature competes with the influence of the LC-surface interaction energy.The nearest atoms in the(100)surface are arranged along the 2D vectors in thex-yplane with the angles that are equal to±45?.The fraction of LC molecules withφ=±45?increases with increasing?ssfor a fixed value of temperature.The results can be understood that the larger value of?ssmakes the surfaces more attractive.However,when temperature increases for a fixed?ss,the LC molecules get less ordered due to the thermodynamic fluctuation.

    3.2 Sliding Surfaces

    We consider hereafter the non-equilibrium properties of the LC molecules by the shear flow simulations.

    The top surface is moved with a constant nonzero driving velocityValong thexdirection.The velocity pro files of the LC molecules forV=0.2 under different temperatures are plotted in Fig.5.For?ss=0.2,the slip velocity pro file of LC molecules atT?=3.5 coincides with that ofT?=4.5,their slopes are almost zero which indicates that adjacent layers move parallel to each other with same speeds.When the temperature isT?=5.5 for?ss=0.2,each layer of LC molecules moves faster than the one just below it.For a higher LC-surface interaction energy,?ss=1.0,the velocity pro files are nonlinear forT?=3.5 andT?=4.5,a large amount of LC molecules attach to the surfaces and move with the same velocities.However,the velocity pro files are almost linear forT?=5.5.The similar behavior can be observed for?ss=1.8.Lubrication layers and sticky layers close to surfaces typically occur for the shear flow simulations at high LC-surface interaction energy,and the width of sticky layer becomes smaller as temperature increases until sticky layer disappears.ForT?=5.5,the layered struc-ture of LC molecules is destroyed,there are only lubrication layers at the LC-surfaces interface.Our results are similar as that reported in Ref.[16],where polymer solution forms lubrication layers at weakly attract surfaces,the sticky surface layers only appear for more attractive surfaces.Obviously,the temperature can also change the velocity pro files from nonlinear to linear.Figure 6 shows the results of fitting the velocity pro files for three different energy parameters?ssand different shearing velocitiesVof top surface atT?=5.5.

    Fig.5 (Color online)Velocity pro files vx(z)for temperatures T?=3.5,4.5,and 5.5 with the different energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and ?ss=1.8.We take 20 bins in z direction to calculate vx(z).Top surface speed V=0.2.

    Fig.6 (Color online)Velocity pro files for the energy parameters(a) ?ss=0.2,(b) ?ss=1.0 and ?ss=1.8.Top surface speeds V=0.2(red),V=0.5(green)and V=0.8(blue).The dashed lines are linear regression lines and their extrapolation length in z direction are the slip length b.The temperature is kept at T?=5.5.

    Fig.7 (Color online)Variation of the slip length b as a function of the parameter ?ssfor different shearing velocities of top surface,V=0.2(orange),V=0.5(green)and V=0.8(blue);The dash lines are linear regression lines.

    Figure 7 shows the results of variation of the slip lengthbas a function of the parameters?ssfor three different shearing velocitiesV=0.2,V=0.5,andV=0.8.It can be observed that the slip length increases with decreasing interaction energies.The slip lengthbvaries according tolinearly.The value of slip lengthbis small with strong interaction between LC molecules and surfaces.When this interaction becomes weaker,there are larger values for the slip lengthb.The similar behavior can also be observed in the MD simulations of polymer solution,[16]where the slip lengthbincreases with decreasing liquid-surface interaction energy.

    Fig.8 (Color online)Variation of the slip length b as a function of the slip velocity of top surface at different energy parameters ?ss.The red lines are linear regression fitting lines and the shadowed area is 95%con fidence region.

    It has been shown from the experimental results on the Effect of humidity for mica surfaces,[19]that as for the water con fined by hydrophilic surfaces,the friction force decreases with increasing shearing velocities.This Effect is basically the result of the hydrogen bond network forming between hydrophilic surfaces.However,the trend is inversed on bare mica surfaces and other hydrophobic surfaces,because there is no hydrogen bond network formation kinetics in this process.As expected,the increase of energy parameter?ssleads to an increase in the wettability of the surface,[20]thus complementary simulations are performed to study the dependence of the slip length on shearing velocity at different energy parameters.For simulations on simple liquid system,[21]a gradual transition in shear rate dependence of the slip length from linear to highly nonlinear is observed upon reducing the strength of wall-liquid interactions.The slip length is a linear function of shear rate at high wall-liquid interaction energies,and it is a power-law function for weak interaction energies.Figure 8 shows the results for LC molecules atT?=5.5,it can be observed that the slip length depends on the shearing rate linearly at large values of?ss,we can also observe nonlinear behavior at?ss=0.2,0.3,and 0.4,but it does not comply with the power-law,the widths of 95%confidence region for the linear regression fit are much greater than those of large values of?ss.

    Friction depends on shearing velocity has been confirmed.When the surface materials are different,velocity dependence of friction will be changed.The chemical nature of the surface,which can form H-bond network,exhibit a friction that decreases with shear velocity,but if the surface can not form such networks,this behavior is opposite.[19]So exploring influence of variation of the slip lengthbas a function of shearing velocity by different wall fluid interaction energies is signi ficant.When the shearing velocity changes,we get different values of the slip lengthbunder same energy parameter?ss(In Fig.7).For simulations on simple liquid system,[21]a gradual transition in shear rate dependence of the slip length from linear to highly nonlinear is observed upon reducing the strength of wall- fluid interactions.The slip length is a linear function of shear rate at high wall- fluid interaction energies,it is a power-law function for weak wall- fluid interaction energies.Our results are similar to simple liquid at high wall- fluid interaction energies,for weak wall- fluid interaction energies,we also observe nonlinear behavior but it does not comply with the power-law.Figure 8 shows this result.We add a linear regression line to each picture of?ss.For low values of?ss=0.2,0.3,and 0.4,the widths of 95%confidence region for the regression fit are large,wherefore variation of the slip length as the slip velocity increases are nonlinear and no clear trend.When the energy parameter?sstakes larger values,we can get better linear regression lines and the slip lengthbincreases as the shearingVincreases linearly.

    4 Conclusion

    In summary,molecular dynamics simulation was applied to study the friction between liquid crystals and crystalline surfaces for different LC-surface interaction en-ergies,temperatures,and shearing velocities.Our results show that the LC molecules nearest the surfaces exhibit significant orientational order at high LC-surface interaction energies and low temperatures,but get less ordered when the temperature increases or interaction energies decrease.Our findings reveal that the slip length varies as a function of the LC-surface interaction energy,which can be well described though a theoretical curve.We find that the slip length increases linearly with increase in the shearing velocity at high LC-surface interaction energies,but for weak interaction energies,no signi ficant trend can be observed.

    References

    [1]R.J.Bushby and K.Kawta,Liquid Crystals38(2011)1415.

    [2]T.Amann and A.Kailer,Wear271(2011)1701.

    [3]T.Amann and A.Kailer,Tribol Lett.41(2011)121.

    [4]T.Aman and A.Kailer,Tribol Lett.37(2010)343.

    [5]W.Chen,S.Kulju,A.S.Foster,M.J.Alawa,and L.Laurson,Phys.Rev.E90(2014)012404.

    [6]W.Chen,A.S.Foster,M.J.Alawa,and L.Laurson,Phys.Rev.Lett.114(2015)095502.

    [7]J.Chen,I.Ratera,J.Y.Park,and M.Salmeron,Phys.Rev.Lett.96(2006)236102.

    [8]S.Ohmishi and A.Stewart,Langmuir18(2002)6140.

    [9]P.Tian,D.Bedrov,G.D.Simith,and M.Glaser,J.Chem.Phys.115(2001)9055.

    [10]P.Tian and G.D.Smith,J.Chem.Phys.116(2002)9957.

    [11]P.Tian,D.Bedrov,G.D.Smith,M.Glaser,and J.E.Maclennan,J.Chem.Phys.117(2002)9452.

    [12]P.A.Thompson and S.M.Troian,Nature(London)389(1997)360.

    [13]N.V.Priezjev,J.Chem.Phys.136(2012)224702.

    [14]A.J.McDonald and S.Hanna,Phys.Rev.E75(2007)041703.

    [15]S.Plimpton,J.Comp.Phys.117(1995)1.

    [16]J.Servantie and M.Muller,Phys.Rev.Lett.101(2008)026101.

    [17]D.M.Huang,C.Sendner,D.Horinek,R.R.Netz,and L.Bocquet,Phys.Rev.Lett.101(2008)226101.

    [18]C.Sendner,D.Horinek,L.Becquet,and R.R.Netz,Langmuir25(2009)10768.

    [19]J.Chen,I.Rathera,J.Y.Pack,and M.Salmeron,Phys.Rev.Lett.96(2006)236102.

    [20]T.Werder,J.H.Walther,R.I.Ja ff e,T.Halicioglu,and P.Koumoutsakos,J.Phys.Chem.107(2003)1345.

    [21]N.V.Prizezjev,Phys.Rev.E75(2007)0501605.

    99久久国产精品久久久| 久久久久精品国产欧美久久久| 国产精品久久久久久精品电影| 一级毛片精品| 精品熟女少妇八av免费久了| 亚洲国产欧洲综合997久久,| 国产一级毛片七仙女欲春2| 欧洲精品卡2卡3卡4卡5卡区| 日本a在线网址| 男人舔女人下体高潮全视频| 成人国产综合亚洲| 少妇的丰满在线观看| 久久久久久久精品吃奶| 久久亚洲精品不卡| 级片在线观看| 久久亚洲真实| 搡老岳熟女国产| 日本一本二区三区精品| 91久久精品国产一区二区成人 | 我的老师免费观看完整版| 精品一区二区三区av网在线观看| 精品久久久久久久毛片微露脸| 美女大奶头视频| 少妇的逼水好多| 热99re8久久精品国产| 美女免费视频网站| 亚洲av五月六月丁香网| 亚洲在线自拍视频| 午夜激情福利司机影院| 久久久水蜜桃国产精品网| 日韩欧美精品v在线| av天堂中文字幕网| 亚洲人成网站高清观看| cao死你这个sao货| 亚洲片人在线观看| 国语自产精品视频在线第100页| 人妻丰满熟妇av一区二区三区| 亚洲人成伊人成综合网2020| 亚洲熟妇熟女久久| 精品电影一区二区在线| 欧美精品啪啪一区二区三区| 久久热在线av| 亚洲精品在线美女| 国产三级黄色录像| 亚洲 欧美 日韩 在线 免费| 99久久精品一区二区三区| 国产精品亚洲av一区麻豆| 欧美一区二区国产精品久久精品| 日韩人妻高清精品专区| 99精品在免费线老司机午夜| 一进一出抽搐动态| www日本黄色视频网| 日本成人三级电影网站| 99国产精品99久久久久| 国产成人影院久久av| 99热只有精品国产| 搞女人的毛片| 欧美色欧美亚洲另类二区| 日本免费a在线| 国产一区二区在线观看日韩 | 免费高清视频大片| 国产高潮美女av| 脱女人内裤的视频| 亚洲一区高清亚洲精品| 国产成人影院久久av| 国产成年人精品一区二区| 99久久久亚洲精品蜜臀av| 欧美最黄视频在线播放免费| 狂野欧美激情性xxxx| 亚洲欧美日韩高清专用| 亚洲国产欧美人成| 亚洲国产精品sss在线观看| 欧美日韩黄片免| 麻豆一二三区av精品| 精品日产1卡2卡| 这个男人来自地球电影免费观看| 国产精品女同一区二区软件 | 一级毛片精品| 国产激情久久老熟女| 免费观看的影片在线观看| 国产精品久久久久久精品电影| 1000部很黄的大片| 国语自产精品视频在线第100页| 欧美中文综合在线视频| a在线观看视频网站| 成年女人永久免费观看视频| 亚洲av五月六月丁香网| 亚洲第一欧美日韩一区二区三区| 操出白浆在线播放| 成人特级av手机在线观看| 日韩欧美精品v在线| 国产精品久久久久久久电影 | 老司机福利观看| 亚洲成av人片免费观看| 亚洲无线在线观看| 免费电影在线观看免费观看| 无遮挡黄片免费观看| 亚洲中文字幕日韩| 欧美日韩瑟瑟在线播放| 国产综合懂色| 成人鲁丝片一二三区免费| 俺也久久电影网| 国产高清有码在线观看视频| 哪里可以看免费的av片| 精品国产三级普通话版| 欧美+亚洲+日韩+国产| 免费av不卡在线播放| 国产激情偷乱视频一区二区| 亚洲欧洲精品一区二区精品久久久| 99在线视频只有这里精品首页| 成人特级av手机在线观看| 午夜免费观看网址| 在线视频色国产色| 精品一区二区三区视频在线观看免费| 精品久久久久久久人妻蜜臀av| 色视频www国产| 欧美成人一区二区免费高清观看 | 别揉我奶头~嗯~啊~动态视频| 久久久久久国产a免费观看| 一进一出好大好爽视频| 99国产极品粉嫩在线观看| 亚洲 欧美 日韩 在线 免费| x7x7x7水蜜桃| 天天添夜夜摸| 在线观看美女被高潮喷水网站 | 久久香蕉国产精品| 久久这里只有精品中国| 久久99热这里只有精品18| 国内精品美女久久久久久| 91九色精品人成在线观看| 波多野结衣巨乳人妻| 国产高清三级在线| 亚洲第一欧美日韩一区二区三区| 美女高潮的动态| 女警被强在线播放| 亚洲五月婷婷丁香| 久久天堂一区二区三区四区| 亚洲国产欧美网| 精品熟女少妇八av免费久了| 色吧在线观看| 日韩精品中文字幕看吧| 91麻豆av在线| 极品教师在线免费播放| 亚洲成人久久性| svipshipincom国产片| 色综合站精品国产| 2021天堂中文幕一二区在线观| 99热这里只有是精品50| 嫁个100分男人电影在线观看| 深夜精品福利| 18禁国产床啪视频网站| 亚洲美女视频黄频| 国产乱人视频| 三级国产精品欧美在线观看 | 人人妻,人人澡人人爽秒播| 五月伊人婷婷丁香| 亚洲狠狠婷婷综合久久图片| 国产精品av久久久久免费| 国产精品,欧美在线| 国产真人三级小视频在线观看| 国产高潮美女av| av天堂中文字幕网| 国产毛片a区久久久久| 亚洲自偷自拍图片 自拍| 国产伦在线观看视频一区| 制服人妻中文乱码| 亚洲第一欧美日韩一区二区三区| 美女高潮的动态| 久久精品国产99精品国产亚洲性色| 99精品久久久久人妻精品| 两性夫妻黄色片| 18美女黄网站色大片免费观看| 亚洲精品美女久久久久99蜜臀| 免费电影在线观看免费观看| 国产伦精品一区二区三区视频9 | 老司机午夜十八禁免费视频| 久久性视频一级片| 亚洲七黄色美女视频| 偷拍熟女少妇极品色| 久久久精品欧美日韩精品| 久久久久久大精品| 久久精品综合一区二区三区| 色吧在线观看| 黄片小视频在线播放| 美女高潮喷水抽搐中文字幕| 深夜精品福利| 岛国视频午夜一区免费看| 国产又色又爽无遮挡免费看| av国产免费在线观看| 97人妻精品一区二区三区麻豆| 神马国产精品三级电影在线观看| 国产精品影院久久| 欧美av亚洲av综合av国产av| 久久婷婷人人爽人人干人人爱| 无遮挡黄片免费观看| 美女大奶头视频| 日本五十路高清| 精品久久久久久,| 国产精品av视频在线免费观看| 90打野战视频偷拍视频| 亚洲激情在线av| 婷婷六月久久综合丁香| 热99在线观看视频| 久久久成人免费电影| 久久精品夜夜夜夜夜久久蜜豆| 国产高清激情床上av| 久久精品aⅴ一区二区三区四区| 精品国产美女av久久久久小说| 久久婷婷人人爽人人干人人爱| 丰满的人妻完整版| 亚洲片人在线观看| 成人特级av手机在线观看| 亚洲国产精品sss在线观看| 最新中文字幕久久久久 | 婷婷六月久久综合丁香| 在线免费观看的www视频| 国产精品一区二区三区四区久久| 综合色av麻豆| 狠狠狠狠99中文字幕| 中亚洲国语对白在线视频| 国产精品美女特级片免费视频播放器 | 麻豆国产97在线/欧美| 国产三级黄色录像| 69av精品久久久久久| 黄片大片在线免费观看| 一进一出抽搐动态| 欧美成人免费av一区二区三区| 久久人妻av系列| 亚洲午夜理论影院| 亚洲av五月六月丁香网| 日韩中文字幕欧美一区二区| 日本免费一区二区三区高清不卡| av中文乱码字幕在线| 久久中文看片网| 视频区欧美日本亚洲| av在线天堂中文字幕| 国产成人精品无人区| 日本一二三区视频观看| 午夜激情欧美在线| 欧美国产日韩亚洲一区| 国产精品电影一区二区三区| 国产亚洲精品av在线| 亚洲一区二区三区不卡视频| 在线观看66精品国产| 国产乱人视频| 国产又色又爽无遮挡免费看| 天堂√8在线中文| 观看美女的网站| 精品一区二区三区视频在线 | 91在线精品国自产拍蜜月 | 在线观看美女被高潮喷水网站 | 亚洲欧美精品综合久久99| 亚洲第一欧美日韩一区二区三区| 午夜成年电影在线免费观看| 一级毛片精品| 手机成人av网站| 亚洲人成网站在线播放欧美日韩| 不卡一级毛片| 不卡一级毛片| 91av网一区二区| 国产欧美日韩一区二区三| 久久久久久大精品| 色播亚洲综合网| 一本一本综合久久| 99久久精品国产亚洲精品| 校园春色视频在线观看| 久久人妻av系列| 国产熟女xx| 小说图片视频综合网站| 精品电影一区二区在线| 美女午夜性视频免费| 九色成人免费人妻av| 在线观看美女被高潮喷水网站 | 亚洲人成伊人成综合网2020| 国产精品 欧美亚洲| 亚洲在线观看片| 在线十欧美十亚洲十日本专区| 国产午夜福利久久久久久| 2021天堂中文幕一二区在线观| 国产蜜桃级精品一区二区三区| 深夜精品福利| 国产黄色小视频在线观看| 午夜精品在线福利| 在线看三级毛片| 国产精品一区二区免费欧美| 香蕉久久夜色| 日韩中文字幕欧美一区二区| 精品人妻1区二区| 日本精品一区二区三区蜜桃| 丝袜人妻中文字幕| 午夜久久久久精精品| 成人永久免费在线观看视频| 午夜福利在线观看免费完整高清在 | 亚洲人与动物交配视频| svipshipincom国产片| 欧美乱码精品一区二区三区| 日本黄大片高清| 色综合亚洲欧美另类图片| 91av网站免费观看| 亚洲国产色片| 真实男女啪啪啪动态图| 少妇熟女aⅴ在线视频| 精品人妻1区二区| 天堂√8在线中文| 99久久无色码亚洲精品果冻| 又爽又黄无遮挡网站| 成人精品一区二区免费| 动漫黄色视频在线观看| 亚洲国产精品sss在线观看| avwww免费| 国产精品爽爽va在线观看网站| 熟女电影av网| 国产成年人精品一区二区| 色精品久久人妻99蜜桃| 亚洲精品456在线播放app | 非洲黑人性xxxx精品又粗又长| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看 | 久久中文看片网| 18美女黄网站色大片免费观看| www国产在线视频色| 精品不卡国产一区二区三区| 国产欧美日韩精品亚洲av| а√天堂www在线а√下载| 久久久色成人| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品久久久久久毛片| 日韩 欧美 亚洲 中文字幕| 九色成人免费人妻av| 久久精品91无色码中文字幕| 很黄的视频免费| 亚洲在线观看片| 在线a可以看的网站| 日韩成人在线观看一区二区三区| 亚洲熟妇中文字幕五十中出| 天天躁日日操中文字幕| 很黄的视频免费| 成人欧美大片| 欧美三级亚洲精品| 丰满的人妻完整版| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 亚洲国产欧美网| 国内少妇人妻偷人精品xxx网站 | 亚洲人与动物交配视频| 九色国产91popny在线| 日本成人三级电影网站| 日本 av在线| 成人午夜高清在线视频| 国产97色在线日韩免费| 亚洲欧美日韩东京热| 国产男靠女视频免费网站| 久久香蕉国产精品| 免费观看的影片在线观看| 亚洲国产中文字幕在线视频| 免费看光身美女| 日韩欧美精品v在线| 最近视频中文字幕2019在线8| 亚洲国产色片| 夜夜躁狠狠躁天天躁| 精品一区二区三区视频在线观看免费| 国产主播在线观看一区二区| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 香蕉久久夜色| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 别揉我奶头~嗯~啊~动态视频| 亚洲在线观看片| 精品一区二区三区视频在线观看免费| 色综合亚洲欧美另类图片| 最近最新免费中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 免费看光身美女| 一a级毛片在线观看| 国产成人精品无人区| 特大巨黑吊av在线直播| 又黄又爽又免费观看的视频| 久久99热这里只有精品18| 欧美成狂野欧美在线观看| 国产伦在线观看视频一区| 女人高潮潮喷娇喘18禁视频| 极品教师在线免费播放| www国产在线视频色| 欧美精品啪啪一区二区三区| avwww免费| 国产精品 国内视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 午夜福利欧美成人| 色播亚洲综合网| 高清在线国产一区| 午夜两性在线视频| 日本精品一区二区三区蜜桃| 欧美乱妇无乱码| 窝窝影院91人妻| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 亚洲成a人片在线一区二区| 亚洲va日本ⅴa欧美va伊人久久| 天堂动漫精品| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 村上凉子中文字幕在线| 日本免费a在线| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 欧美成人一区二区免费高清观看 | 欧美+亚洲+日韩+国产| 中文字幕熟女人妻在线| 美女高潮的动态| 国产精品乱码一区二三区的特点| 日韩成人在线观看一区二区三区| 性色av乱码一区二区三区2| 欧美一级毛片孕妇| 激情在线观看视频在线高清| 欧美性猛交黑人性爽| 中文字幕最新亚洲高清| 老汉色∧v一级毛片| 国产午夜精品久久久久久| 免费在线观看成人毛片| 两性午夜刺激爽爽歪歪视频在线观看| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 国产激情久久老熟女| 国产亚洲精品久久久久久毛片| 亚洲精品色激情综合| 国产真实乱freesex| 中文字幕av在线有码专区| 在线视频色国产色| 天天躁日日操中文字幕| 中文字幕最新亚洲高清| 黄色 视频免费看| 久久久久久大精品| 免费看日本二区| 国产乱人伦免费视频| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 99久久99久久久精品蜜桃| 婷婷精品国产亚洲av在线| 岛国在线免费视频观看| 一本精品99久久精品77| 成人av一区二区三区在线看| 在线观看美女被高潮喷水网站 | 九九在线视频观看精品| 国产欧美日韩精品亚洲av| av片东京热男人的天堂| 老熟妇乱子伦视频在线观看| 亚洲,欧美精品.| bbb黄色大片| 天天一区二区日本电影三级| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区精品| 国产亚洲精品av在线| av欧美777| 精品一区二区三区视频在线 | 人妻丰满熟妇av一区二区三区| 操出白浆在线播放| e午夜精品久久久久久久| 黄色成人免费大全| 天堂√8在线中文| 国产成人啪精品午夜网站| 亚洲成人久久性| 性色av乱码一区二区三区2| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 久久久久久久久中文| 国产精品香港三级国产av潘金莲| av女优亚洲男人天堂 | 黄片小视频在线播放| 精品一区二区三区四区五区乱码| 国产乱人伦免费视频| 国产精品日韩av在线免费观看| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 听说在线观看完整版免费高清| 久久久久精品国产欧美久久久| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 成人精品一区二区免费| 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 久久国产精品影院| or卡值多少钱| 国产高清videossex| 午夜免费成人在线视频| 国产成人影院久久av| 搞女人的毛片| 一二三四社区在线视频社区8| 性欧美人与动物交配| 成年女人看的毛片在线观看| 久久中文字幕人妻熟女| 久久人妻av系列| 成人三级黄色视频| 这个男人来自地球电影免费观看| 在线国产一区二区在线| 久久99热这里只有精品18| 欧美丝袜亚洲另类 | 怎么达到女性高潮| 久久精品夜夜夜夜夜久久蜜豆| 在线观看免费午夜福利视频| 白带黄色成豆腐渣| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 男女午夜视频在线观看| www.www免费av| 又黄又粗又硬又大视频| 国产高清视频在线观看网站| 亚洲国产精品久久男人天堂| 国产精品久久久久久亚洲av鲁大| 国产精品 国内视频| netflix在线观看网站| 深夜精品福利| 特大巨黑吊av在线直播| 人人妻,人人澡人人爽秒播| 毛片女人毛片| 麻豆成人av在线观看| 国产精品女同一区二区软件 | 欧美黄色淫秽网站| 国产一区二区三区视频了| 男插女下体视频免费在线播放| 99视频精品全部免费 在线 | 欧美日本视频| 亚洲熟妇中文字幕五十中出| 国产激情久久老熟女| 男人舔奶头视频| a在线观看视频网站| www日本在线高清视频| 色综合站精品国产| 男女那种视频在线观看| 精品国产三级普通话版| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 欧美zozozo另类| 亚洲国产欧美网| 波多野结衣高清作品| 日韩欧美国产在线观看| 美女午夜性视频免费| 国产69精品久久久久777片 | 亚洲精华国产精华精| 99国产精品一区二区三区| 淫秽高清视频在线观看| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片| 成年免费大片在线观看| 一区二区三区高清视频在线| 十八禁人妻一区二区| 亚洲午夜精品一区,二区,三区| 听说在线观看完整版免费高清| 一级毛片女人18水好多| 在线永久观看黄色视频| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 亚洲国产色片| 999久久久精品免费观看国产| a级毛片在线看网站| 天天一区二区日本电影三级| 露出奶头的视频| 99热精品在线国产| 欧美黄色片欧美黄色片| 亚洲第一电影网av| 欧美在线黄色| 少妇的丰满在线观看| 国产野战对白在线观看| 精品熟女少妇八av免费久了| 午夜福利在线观看免费完整高清在 | 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| aaaaa片日本免费| 嫩草影视91久久| av女优亚洲男人天堂 | 欧美性猛交╳xxx乱大交人| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 脱女人内裤的视频| 欧美黄色片欧美黄色片| 午夜久久久久精精品| 亚洲美女视频黄频| 亚洲av电影不卡..在线观看| 美女免费视频网站| 欧美色欧美亚洲另类二区| 嫩草影视91久久| bbb黄色大片| 久久久久久人人人人人| 久久久国产成人免费| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片| 免费无遮挡裸体视频| 69av精品久久久久久| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 欧美日韩国产亚洲二区| 我要搜黄色片| 国产精品亚洲美女久久久| or卡值多少钱| 一级毛片高清免费大全| 19禁男女啪啪无遮挡网站| 欧美一级a爱片免费观看看| 精品乱码久久久久久99久播| 最新美女视频免费是黄的| 香蕉av资源在线| 级片在线观看| 宅男免费午夜| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 国产人伦9x9x在线观看| 国产精品久久久人人做人人爽| 欧美中文综合在线视频| 久久婷婷人人爽人人干人人爱| 国产精品永久免费网站| 国产主播在线观看一区二区| 高清在线国产一区| 丰满的人妻完整版|