• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study of Structural,Magnetic,Electronic and Elastic Properties of PuC2?

    2016-05-10 07:38:10RongYang楊榮BinTang唐斌TaoGao高濤andBingYunAo敖冰云
    Communications in Theoretical Physics 2016年10期

    Rong Yang(楊榮)Bin Tang(唐斌)Tao Gao(高濤)? and Bing-Yun Ao(敖冰云)?

    1Institute of Atomic and Molecular Physics,Sichuan University,Chengdu 610065,China

    2College of Materials Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China

    3Institute of Finance&Trade,Chongqing City Management College,Chongqing 401331,China

    4Science and Technology on Surface Physics and Chemistry Laboratory,P.O.Box 718-35,Mianyang 621907,China

    1 Introduction

    Plutonium monocarbide(PuC)is considered as one of the very promising advanced fuel materials for fast breeder reactor.Whereas plutonium dicarbide(PuC2)is often recommended to improve the performance of tristructural-isotropic(fuel)-coated particles for the veryhigh-temperature reactors.Compared with oxide fuels,carbide fuels have many advantages[1]such as good thermal conductivity,high heavy atom density and high melting point.As a consequence,modeling of the structural and physical properties of plutonium carbides from theoretical viewpoint is indispensable to their applications in the nuclear industry.

    Plutonium dicarbide has tetragonal structure(CaC2type),which is isostructural with tetragonalα–UC2.[1?2]Unlike plutonium monocarbide which has been studied extensively,the investigations on plutonium dicarbide are very scarce.Experimentally,only some data on structural parameters[3]and thermodynamic properties[4?6]can be obtained.In theory,Wenet al.[7]performed a calculation on PuC2to investigate the structural,electronic and magnetic properties using the Hyed–Scuserie–Ernzerhof(HSE)hybrid functional.However,the theoretical studies of the elastic property and the chemical bonding of PuC2are still lacking.The elastic constants describe the mechanical property of materials in the region of small deformations where the stress-strain relations are still linear.The investigation on the chemical bonding can deepen the understanding of the structure of PuC2and its nature.Hence in this paper,we systematically investigate the crystal structure,magnetism,electronic structure,chemical bonding and elastic properties of PuC2.The chemical bonding and elastic properties are calculated for first time.

    Since Pu is located at a special site where the transition of 5f electrons from itinerancy to localization occurs,[8]it is a considerable challenge to investigate the physical properties of PuC2theoretically.The standard local spin-density approximation(LSDA)approach underestimate the strong on-site Coulomb repulsion of the Pu 5f electrons and consequently fail to capture the electronic localization effects.The LSDA+U method with the socalled Hubbard parametric term(U)could be one way to take into account a partial localization of the 5f electrons.Recently,plutonium hydride,oxides,and monocarbide have been studied by using density functional theory(DFT)+U calculations.[7,9?10]In this paper,we use the LSDA+U approach to describe the strongly correlated metal PuC2.As for the value of U parameter,we tune it to reproduce a certain set of experimental lattice constant and other properties.

    In this paper,we first use the LSDA+U scheme to investigate the structural and magnetic properties of PuC2.We find that by choosing an appropriate Hubbard U parameter around 1.5 eV,the structural parameters and magnetism for PuC2can be in good agreement with the experimental or other theoretical results.Then the electronic properties are given. Furthermore,the valenceelectron charge density and the difference charge densities along the(100)plane,the Bader charge analysis are determined to discuss the chemical bonding.Finally,we predict the elastic constants.

    This paper is organized as follows.The calculation method and details are described in Secs.2 and 3,we present and discuss the results.In Sec.4,we draw our conclusions.

    2 Computational Details

    All our calculations are based on first-principles density functional theory with the projector-augmentedwave(PAW)method[11?12]using the Vienna ab initio simulation package(VASP)code.[13]The electronic exchange and correlation is treated within LSDA[14]and LSDA+U[15]method for strongly correlated Effect of 5f electrons.The rotationally invariant form of the LSDA+U approximation is used with a spherically averaged double counting term introduced by Dudarevet al.[16]The Dudarev approach of the DFT+U is the most widely used approach in studies of plutonium compounds.[7,9?10]Within this approach,only the difference between the spherically averaged screened Coulomb energyUand the exchange energyJis important.That is,there is one single parameter which will be calledUeff.We set the parametersU=0 eV andJ=0 eV(Ueff=0 eV);U=3.0 eV andJ=1.5 eV(Ueff=1.5 eV);U=3.0 eV andJ=0 eV(Ueff=3 eV)for LSDA+U.Through comparing with the experimental data,we choose a suitable value of the parameterUefffor PuC2.In our calculations,the nonmagnetic(NM),ferromagnetic(FM)and antiferromagnetic(AFM)states are considered.In the antiferromagnetic(AFM)calculations,we employ a 1–k AFM con figuration assuming the magnetic moments of plutonium ions lie in the plane ferromagnetically and alter their signs in the[001]direction(see Fig.1).

    For the calculations of PuC2,a 6 atom conventional cell is employed.As kinetic energy cuto ffand K-point meshes are significant for the accuracy of the first principle calculations,we make a test before calculation to guarantee an excellent convergence.K-points are set to 11×7×7 and the electron wave function is expanded in plane waves up to a cutoffenergy of 500 eV.Convergence is reached when the total energies converge with 10?6eV and ionic relaxation is performed until the force acting on each atom is below the threshold of 0.001 eV/?A.

    Fig.1 (Color online)The crystal structure of PuC2 with 1k antiferromagnetic(AFM)order.Red(big)balls represent Pu atoms and blue(small)balls represent C atoms.

    Bader charge analysis[17]based on the quantum theory of atoms in molecules(QTAIM)is used to determine the charge transfer between Pu and C atoms.Based on the Hooke’s law,the elastic sti ff ness tensorCijklcan be expressed as:[18]

    whereσijandeklrefer to the applied stress and Eulerian strain tensors,respectively,Xandxare the coordinates before and after the deformation for crystals,respectively.We calculate the elastic constants for PuC2from the “stress-strain” technique.[19]According to this method,the total energies are calculated as function of suitable applied strains.In our calculation the strain is varied in steps of 0.002 from–0.02 to 0.02.The elastic constants are obtained by fitting the energy-strain curves.For the tetragonal structure,there are six independent elastic constantsC11,C12,C13,C33,C55,andC66.

    3 Results and Discussion

    3.1 Structural and Magnetic Properties

    The structure of PuC2is equivalent to that of CaC2,whose space group is I4 mmm(No.139).The occupied Wycko ffpositions are 2a of Pu and 4e of C.Figure 1 shows the structure of PuC2.In our calculations,the unit cell lattice parameters and atomic coordinates are fully relaxed to find the equilibrium structure.The calculated lattice constants,relative energy,magnetic moment and band gap for the nonmagnetic(NM),ferromagnetic(FM)and antiferromagnetic(AFM)states of PuC2are presented in Table 1.Table 1 shows that LSDA severely underestimates the lattice parameters,compared with the experimental data.After turning on Hubbard parameterU,an increase ofUeffleads to an increase of the lattice parameter.This can be explained as follows.With the introduction of HubbardU,the localization of the 5f electrons of Pu will be enhanced,while the cohesion of the crystal is further decreased,which leads to the increase of the lattice constant.WhenUeffis increased to 3 eV,the calculated lattice parameters are bigger than the experimental values.SoUeffwhich is bigger than 3 eV is not suitable for PuC2.

    Table 1 Complication of data on NM,FM and AFM states of PuC2:lattice constant(?A),relative energy Erel(eV/per Pu2C3or PuC2),total magnetic momentμtotand band gap(eV).

    For PuC2,the total energy of the AFM phase is the lowest in LSDA,LSDA+U(1.5 eV)and LSDA+U(3.0 eV)framework.It indicates that PuC2is AFM,which is consistent with the result obtained by Wenet al.[7]For the lattice parametera0of PuC2,the discrepancy between the experiment[3]and our calculations is 3.75%for LSDA,1.52%for LSDA+U(1.5 eV)and 0.69%for LSDA+U(3.0 eV)in the AFM states.The difference of lattice parameterc0is 2.97%for LSDA,0.10%for LSDA+U(1.5 eV)and 1.38%for LSDA+U(3.0 eV)in the AFM states.Regarding the lattice parametersa0andc0,1.5 eV is suitable for PuC2.The results obtained by Wenet al.[7]are also listed in Table 1.We find that our results are better than theirs.

    In brief,our results indicate that the calculated structural parameters and atomic coordinates are consistent with the experimental values.These results are sufficient to study the electronic structure,chemical bonding and elastic properties.Regarding the lattice parameters,the LSDA+U(Ueff=1.5 eV)scheme seems to be most close to the experimental value.In the following sections,our calculations are performed based on the results that PuC2is AFM.

    3.2 Electronic Properties

    The total and partial densities of states for PuC2in LSDA+U(Ueff=1.5 eV)are depicted in Fig.2.The total DOS curves all cross over the Fermi level(EF)with a nonzero occupation of Pu 5f electrons on it.It indicates that PuC2is metal.The lower part of the valence bands,from –7.5 eV to –15 eV,is mainly of the C 2s character.The low-lying bands,from –2.5 eV to –5 eV,are derived mainly from the C 2p states.The DOS of Pu atoms is mainly dominated by the 5f partial DOS and the Pu d orbits contribute a little to the total DOS.

    Fig.2(Color online)Total and partial densities of states for PuC2in LSDA+U(Ue ff=1.5 eV)framework.

    Since we could not find any experimental data of DOS of PuC2,we will interpret it on the basis of photoelectron spectrum of Pu-based metallic systems.Photoelectron spectroscopy studies of Pu metals[20]exhibit the same type of features that the 5f states appear in the vicinity of the Fermi level and three sharp peaks appear within 1 eV,located at the Fermi energyEF,and at 0.50 eV and 0.85 eV.Obviously,the experimental studies show that the Pu 5f density of states play an important role in it.Thus the Pu 5f density of states are calculated for different values ofUeff(Fig.3).From Fig.3,no peak is found in the vicinity of the Fermi level when the value 3 eV of the Hubbard potential is used.The absence of these peaks has direct relevance to the 5f character of the calculated PuC2ground state obtained in LSDA+U(3.0 eV).When the value ofUeffis lifted,the 5f states in the vicinity of the Fermi level are reduced,which indicates that the localization of 5f electrons is highly strengthened.And we also find that the DOS of PuC2from LSDA and LSDA+U(1.5 eV)schemes have three sharp peaks within 1 eV,as is shown in Table 2.So on the basis of the lattice parameter and density of states,the LSDA+U(Ueff=1.5 eV)scheme seems to be more suitable for PuC2.

    Fig.3 (Color online)Pu 5f densities of states for PuC2 calculated by LSDA+U method for different values of the U term.

    Table 2 Three peaks of DOS within 1 eV located at P1,P2,and P3(in eV)for PuC2in LSDA and LSDA+U(Ue ff=1.5 eV)framework.

    From the PDOS for Pu d and C s,Pu d and C p(Fig.4),we can analyze the Pu-C interaction of PuC2.The DOS of Pu d,C s,and C p have sharp peaks at the equivalent energy,which indicate that hybridization exists between Pu d and C p orbitals,Pu d and C s orbitals.The hybridization Effect implies certain covalent character in the bonding of PuC2.This can be con firmed by the later charge density analysis.

    Fig.4 (Color online)partial densities of states for the(a)Pu d and C p(b)Pu d and C s of PuC2in LSDA+U(Ue ff=1.5 eV)calculations.

    3.3 Chemical Bonding

    In order to understand the electronic bonding character for PuC2,the valence-electron charge density and the difference charge densities along the(100)plane are plotted in Fig.5.From Fig.5(a),we can see that most of the electrons are bound around Pu atomic nuclei,only a few valence electrons can escape the bondage of the nuclei.For PuC2,the charge density distribution is largely deformed toward their bonds between the nearest C1-C2 atoms,which implies significant covalent character in the bonding of C1 and C2 atoms.This can be attributed to the sp2hybridization between C1 and C2 atoms.In the difference electron-charge density contour maps(Fig.5(b)),the blue zone and orange zone represent the loss of charge and the gain of charge.For PuC2,there is much light charge buildup with the typical characteristic of metallic bonding in the interstices regions away from the bonds,which suggests that PuC2is metallic as indicated by the DOS analysis.This can be related to part of the Pu 5f electrons transferred into the interstitial region.And we can also see that much of charge piles up in the bonding regions of Pu and C atoms.This indicates that the bonding of Pu and C atoms has certain covalent character in PuC2,as suggested by the PDOS for Pu d,C s and C p(Fig.4).Meanwhile,it is also obvious that there is net charge transferred from the Pu atom to the C atom.The feature re flects that ionic character exists in the PuC2systems.The competition between the ionic character and covalent character in the PuC2systems can be associated with the charge transferred between Pu and C atoms.We employ the bader charge analysis[17]to examine the charge transferred between the Pu atom and C atom.

    We all know that Pu atom has 16 electrons outside the core,and C atom has 4 electrons outside the core.From Table 3,each Pu atom losses 1.66|e|,while a charge of 0.93|e|is transferred to C1 atom and 0.73|e|is transferred to C2 atom in PuC2system.These estimates suggest that the ionic character is weaker than the covalent character in the PuC2systems.Meanwhile,the results indicate that C1 atoms of PuC2are easier to gain electrons than the C2 atoms,namely that the ionic character of Pu-C1 is slightly stronger than Pu-C2.

    Table 3 Calculated bader charges(QB)and bader volumes(VB)for AFM PuC2 in LSDA+U(Ue ff=1.5 eV)framework.

    Fig.5 (Color online)Contour plots of(a)the charge density and(b)the charge density difference for PuC2 along the(100)plane in LSDA+U(Ue ff=1.5 eV)calculations.

    Combining with the PDOS,the difference charge densities and the bader charge analysis,we can reach the following conclusion:(i)typical characteristic of metallic bonding are present in PuC2system;(ii)mixtures of covalent and ionic character are present in both Pu-C1 and Pu-C2 bonding,but the ionic character is slightly weaker than the covalent character;(iii)significant covalent character is present in the C1-C2 bonding.

    3.4 Elastic Properties

    Because the structure of PuC2belongs to the tetragonal structure,there are six independent elastic constantsC11,C12,C13,C33,C55,andC66.From the obtained elastic constants,the elastic modulus can be further calculated by Voigt[21]and Reuss[22]approximation.The Voigt bulk modulus(BV),the Reuss bulk modulus(BR),the Voigt shear modulus(GV),and the Reuss shear modulus(GR)are defined by:

    Our results are listed in Table 4.

    The necessary conditions for mechanical stability are given byC11>0,C33>0,C44>0,C66>0,(C11–C12)>0,(C11+C33–2C13)>0,and[2(C11+C12)+C33+4C13]>0 for tetragonal crystal.[23]Our calculated elastic constants imply that PuC2is elastically stable.Based on Hill approximation,[24]the bulk modulusB=(BR+BV)/2 and the shear modulusG=(GR+GV)/2 can be derived.The calculatedBandGare 93 GPa and 56 GPa,respectively.G/Bcriterion can be used to predict the ductile and brittle behavior.According to Pugh’s empirical rule,[25]a higher value than the criticalG/Bratio of 0.57 associates with brittleness and a lower value corresponds to ductility.The obtainedG/Bvalue of 0.60 indicates that PuC2is a brittle material.The Poisson’s ratioσis also obtained:σ=(3B?2G)/[2(2B+G)]using the calculated bulk modulusBand shear modulusG.The calculated Poisson’s ratioσis 0.34,which is within the range(from 0.25 to 0.45)for typical metals.To the best of our knowledge,the mechanical properties have not yet been measured experimentally and calculated theoretically for PuC2,so there are currently no experimental or theoretical data for comparison.Hence we hope our results can help to provide useful reference on investigating the elastic properties of PuC2.

    Table 4 Calculated elastic properties of PuC2.GV,GRare shear modulus in GPa,BV,BRare bulk modulus in GPa.

    4 Conclusions

    The LSDA and LSDA+U methods have been applied to systematically study the crystal structure,magnetism,electronic structure,chemical bonding,and elastic properties of PuC2.Regarding the lattice parameter and density of states,Hubbard parametric term(U)is tuned to 1.5 eV for PuC2.The optimized lattice parameters are consistent with known experimental data.The total energy calculations indicate that the ground state of PuC2is found to be AFM.This agrees with the other theoretical results.The calculated electronic properties indicate that PuC2is metallic mainly contributed by Pu 5f electrons.Through PDOS,charge density differences and bader charge analysis,the Pu-C bonding has a mixture of covalent and ionic components and the ionic character is weaker than the covalent character in the PuC2systems.Meanwhile,C1-C2 bonding has strong covalent character because of sp2hybridization between C atoms.The calculated elastic properties show that PuC2is a brittle material.We hope that our research are helpful for further studies on PuC2.

    Acknowledgments

    The authors are grateful to the Center of High Performance Computing Physics discipline of Sichuan University for computing.

    References

    [1]D.Srivastava,S.P.Garg,and G.L.Goswami,J.Nucl.Mater.161(1989)44.

    [2]J.G.Reavis,M.W.Shupe,C.W.Bjorklund,and J.A.Leary,Trans.Am.Nucl.Soc.10(1967)111.

    [3]D.M.Chackraburtty and N.C.Jayadevan,Acta Crystallogr.18(1965)811.

    [4]C.E.Holley and Jr,The Thermodynamic Properties of Uranium and Plutonium Carbides,Los Alamos Scientific Laboratory,Los Alamos,N.M.,LADC-5487(1962).

    [5]R.N.R.Mulford,F.H.Ellinger,G.S.Hendrix,and E.D.Albrecht,Plutonium 1960,Cleaver-Hume Press Ltd.,London(1961)p.301.

    [6]R.N.R Mulford,J.O.Ford,and J.G.Ho ff man,Proceedings of the Symposium on Nuclear Materials,IAEA,Vienna(1962)p.517.

    [7]X.D.Wen,R.L.Martin,G.E.Scueria,S.P.Rudin,and E.R.Batista,J.Phys.Chem.C117(2013)13122.

    [8]S.S.Hecker,Metall.Mater.Trans.A39A(2008)1585.

    [9]B.Sun,P.Zhang,and X.G.Zhao,J.Chem.Phys.128(2008)084705.

    [10]J.J.Ai,T.Liu,T.Gao,and B.Y.Ao,Comput.Mater.Sci.51(2012)127.

    [11]P.E.Bloechl,Phys.Rev.B50(1994)17953.

    [12]G.Kresse and D.Joubert,Phys.Rev.B59(1999)1758.

    [13]G.Kresse and J.Hafner,Phys.Rev.B47(1993)558.

    [14]S.H.Vosko,L.Wilk,and M.Nusair,Can.J.Phys.58(1980)1200.

    [15]A.I.Liechtenstein,V.I.Anisimov,and J.Zaanen,Phys.Rev.B52(1995)5467.

    [16]S.L.Dudarev,G.A.Dudarev,S.Y.Savrasov,C.J.Humphreys,and A.P.Sutton,Phys.Rev.B57(1998)1505.

    [17]R.F.W.Bader,Atoms in Molecules:a Uantum Theory,Oxford University Press,New York(1990).

    [18]J.F.Nye,Physical Properties of Crystals,Clarendon Press,Oxford(1985).

    [19]J.W.Yang,T.Gao,and L.Y.Guo,Physica B429(2013)119.

    [20]T.Gouder,L.Havela,A.B.Shick,F.Huber,F.Wastin,and J.Rebizant,J.Phys.Condens.Matter.19(2007)476201.

    [21]W.Voigt,Lehrburch der Kristallphysik,Teubner,Leipzig(1928).

    [22]A.Reuss and Z.Angew,Math.Mech.9(1929)49.

    [23]Z.Wu,E.Zhao,H.Xiang,X.Hao,X.Liu,and J.Meng,Phys.Rev.B76(2007)054115.

    [24]R.Hill,Phys.Soc.Lond.65(1952)350.

    [25]S.F.Pugh,Philos.Mag.45(1954)823.

    哪里可以看免费的av片| 久久人妻av系列| 久久综合国产亚洲精品| 亚洲欧美成人综合另类久久久 | 直男gayav资源| 日韩 亚洲 欧美在线| 亚洲aⅴ乱码一区二区在线播放| 中文欧美无线码| 久久精品国产亚洲av涩爱 | 大香蕉久久网| 国产高清三级在线| 99热这里只有是精品在线观看| 99久久精品国产国产毛片| 99九九线精品视频在线观看视频| 日产精品乱码卡一卡2卡三| 国产精品99久久久久久久久| 又黄又爽又刺激的免费视频.| 国产精品精品国产色婷婷| 91aial.com中文字幕在线观看| 国产老妇女一区| 国产欧美日韩精品一区二区| 久久精品久久久久久久性| 最后的刺客免费高清国语| 中文字幕熟女人妻在线| 亚洲一级一片aⅴ在线观看| www日本黄色视频网| 人体艺术视频欧美日本| 中文字幕av在线有码专区| 免费在线观看成人毛片| 综合色av麻豆| 亚洲精品日韩av片在线观看| 全区人妻精品视频| 国产伦理片在线播放av一区 | 九九爱精品视频在线观看| 久久午夜福利片| 少妇的逼好多水| 91av网一区二区| 22中文网久久字幕| 国产精品久久久久久久电影| 免费一级毛片在线播放高清视频| 欧美成人精品欧美一级黄| 在线免费十八禁| 最近手机中文字幕大全| 亚洲七黄色美女视频| 久久人人精品亚洲av| 国产午夜福利久久久久久| 色综合色国产| 人人妻人人看人人澡| 久久精品国产鲁丝片午夜精品| 国产成人aa在线观看| 日日干狠狠操夜夜爽| 亚洲最大成人av| 亚洲国产欧洲综合997久久,| 亚洲精品日韩av片在线观看| 91午夜精品亚洲一区二区三区| 亚洲在久久综合| 成人一区二区视频在线观看| 久久精品国产99精品国产亚洲性色| 久99久视频精品免费| 亚洲欧美日韩高清专用| 久久国内精品自在自线图片| 一夜夜www| 成人漫画全彩无遮挡| 国产精品三级大全| 亚洲熟妇中文字幕五十中出| 五月玫瑰六月丁香| 精品久久久久久久久亚洲| 边亲边吃奶的免费视频| 黄色一级大片看看| 丝袜喷水一区| 亚洲人成网站在线播| 国产成人aa在线观看| 精品欧美国产一区二区三| 在线观看午夜福利视频| 日韩高清综合在线| videossex国产| 国产高清有码在线观看视频| 欧美日韩乱码在线| 美女xxoo啪啪120秒动态图| 久久综合国产亚洲精品| 国产一区二区激情短视频| 久久99热这里只有精品18| 蜜臀久久99精品久久宅男| 天天躁夜夜躁狠狠久久av| 成人特级黄色片久久久久久久| www日本黄色视频网| 22中文网久久字幕| 又粗又爽又猛毛片免费看| 婷婷亚洲欧美| 亚洲,欧美,日韩| 日韩成人伦理影院| 亚洲性久久影院| 午夜精品一区二区三区免费看| 中文字幕人妻熟人妻熟丝袜美| 高清毛片免费看| 国产69精品久久久久777片| 美女高潮的动态| 秋霞在线观看毛片| 一级黄片播放器| 成人性生交大片免费视频hd| 99久久精品国产国产毛片| 在现免费观看毛片| 99在线视频只有这里精品首页| 久久午夜福利片| 69人妻影院| 一级二级三级毛片免费看| 亚洲精品粉嫩美女一区| 长腿黑丝高跟| 97在线视频观看| 一级毛片电影观看 | 日本撒尿小便嘘嘘汇集6| 女人十人毛片免费观看3o分钟| 精品久久国产蜜桃| 哪里可以看免费的av片| 国产高清视频在线观看网站| www日本黄色视频网| 欧美日本亚洲视频在线播放| 麻豆久久精品国产亚洲av| 在线观看66精品国产| 亚洲国产日韩欧美精品在线观看| 99热这里只有是精品50| 久久人妻av系列| 91精品国产九色| 国产麻豆成人av免费视频| 国产精品久久久久久精品电影小说 | 嫩草影院精品99| 黄片无遮挡物在线观看| 麻豆久久精品国产亚洲av| 精品人妻偷拍中文字幕| 欧美日韩综合久久久久久| 美女脱内裤让男人舔精品视频 | 日产精品乱码卡一卡2卡三| 国产精品久久久久久亚洲av鲁大| 日韩av不卡免费在线播放| 此物有八面人人有两片| 国产极品天堂在线| 亚洲精品久久久久久婷婷小说 | 嘟嘟电影网在线观看| 久久精品久久久久久久性| 国产精品伦人一区二区| 欧美3d第一页| 亚洲成a人片在线一区二区| 青春草国产在线视频 | 免费黄网站久久成人精品| 九九爱精品视频在线观看| 精品久久久久久久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 麻豆av噜噜一区二区三区| 久久久国产成人精品二区| 国产69精品久久久久777片| 久久精品久久久久久久性| 美女 人体艺术 gogo| 乱系列少妇在线播放| 少妇人妻精品综合一区二区 | 99久国产av精品国产电影| 亚洲欧美日韩卡通动漫| 夜夜爽天天搞| 亚洲婷婷狠狠爱综合网| 97人妻精品一区二区三区麻豆| 色5月婷婷丁香| 伦精品一区二区三区| 99久久九九国产精品国产免费| 美女脱内裤让男人舔精品视频 | 久久热精品热| 又粗又爽又猛毛片免费看| 欧美一区二区精品小视频在线| ponron亚洲| 久久欧美精品欧美久久欧美| 久久国产乱子免费精品| 久久99热这里只有精品18| 26uuu在线亚洲综合色| 神马国产精品三级电影在线观看| 又粗又爽又猛毛片免费看| 免费观看a级毛片全部| 男女做爰动态图高潮gif福利片| 我的女老师完整版在线观看| 美女黄网站色视频| 欧美精品国产亚洲| 欧美一区二区国产精品久久精品| 久久久久久久午夜电影| 欧美一区二区亚洲| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产精品成人综合色| 一边摸一边抽搐一进一小说| 亚洲欧美清纯卡通| 男人和女人高潮做爰伦理| 又爽又黄无遮挡网站| 99热全是精品| 精品日产1卡2卡| 女人被狂操c到高潮| 女的被弄到高潮叫床怎么办| 国产v大片淫在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站高清观看| 联通29元200g的流量卡| 久久久欧美国产精品| 久久鲁丝午夜福利片| 九九在线视频观看精品| 在线天堂最新版资源| 精品不卡国产一区二区三区| 亚洲国产高清在线一区二区三| 亚洲欧美精品自产自拍| 日韩一本色道免费dvd| 婷婷色综合大香蕉| 久久婷婷人人爽人人干人人爱| 丰满人妻一区二区三区视频av| АⅤ资源中文在线天堂| 在线观看美女被高潮喷水网站| 亚洲av熟女| 国产亚洲av嫩草精品影院| 乱系列少妇在线播放| 性欧美人与动物交配| 午夜精品国产一区二区电影 | 99久久中文字幕三级久久日本| 一边亲一边摸免费视频| 青青草视频在线视频观看| 69人妻影院| 麻豆成人午夜福利视频| 一级黄片播放器| 国内久久婷婷六月综合欲色啪| 别揉我奶头 嗯啊视频| 国产探花在线观看一区二区| 一个人看视频在线观看www免费| 国语自产精品视频在线第100页| 不卡一级毛片| 国产精品无大码| www.色视频.com| 少妇的逼好多水| 搡老妇女老女人老熟妇| 春色校园在线视频观看| 韩国av在线不卡| 日本三级黄在线观看| 一级毛片aaaaaa免费看小| 国产午夜精品论理片| 亚洲在久久综合| 亚洲电影在线观看av| 久久欧美精品欧美久久欧美| 欧美日韩在线观看h| 亚洲av免费在线观看| 国产一区二区三区在线臀色熟女| 欧美zozozo另类| videossex国产| 亚洲成a人片在线一区二区| 久久精品国产鲁丝片午夜精品| 久久久久久久久中文| 伊人久久精品亚洲午夜| 国内精品美女久久久久久| 久久国产乱子免费精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久亚洲中文字幕| 亚洲,欧美,日韩| 寂寞人妻少妇视频99o| 亚洲精品日韩av片在线观看| 日韩三级伦理在线观看| 精品免费久久久久久久清纯| 简卡轻食公司| 欧美另类亚洲清纯唯美| 国产av麻豆久久久久久久| 欧美激情国产日韩精品一区| 国产午夜福利久久久久久| 天美传媒精品一区二区| 69人妻影院| 高清毛片免费观看视频网站| 久久精品久久久久久久性| 亚洲av成人精品一区久久| 国产成人精品婷婷| 亚洲欧美日韩卡通动漫| 少妇熟女欧美另类| 啦啦啦观看免费观看视频高清| 国产精品国产高清国产av| 亚洲乱码一区二区免费版| 久久婷婷人人爽人人干人人爱| 免费看美女性在线毛片视频| 国产精品久久久久久精品电影小说 | 麻豆一二三区av精品| 插逼视频在线观看| 哪个播放器可以免费观看大片| 九九热线精品视视频播放| 久久午夜亚洲精品久久| 免费黄网站久久成人精品| 国产午夜精品一二区理论片| 中文亚洲av片在线观看爽| 看非洲黑人一级黄片| 国产视频首页在线观看| 久久久色成人| 别揉我奶头 嗯啊视频| 亚洲色图av天堂| 在线观看一区二区三区| 一级毛片久久久久久久久女| 精品一区二区三区视频在线| 午夜久久久久精精品| 久久鲁丝午夜福利片| 波多野结衣高清无吗| 九色成人免费人妻av| 日本一二三区视频观看| 精品日产1卡2卡| 色5月婷婷丁香| 久久久久久九九精品二区国产| 久久精品夜夜夜夜夜久久蜜豆| 亚洲自偷自拍三级| 丝袜美腿在线中文| 又爽又黄无遮挡网站| 午夜视频国产福利| 国产成人精品久久久久久| 国产精品无大码| 成人特级av手机在线观看| 禁无遮挡网站| 久久久a久久爽久久v久久| 久久久久国产网址| 日本免费一区二区三区高清不卡| 国产亚洲91精品色在线| 嫩草影院入口| 人妻久久中文字幕网| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 亚洲欧洲日产国产| 精品人妻熟女av久视频| 免费av观看视频| 国产午夜精品久久久久久一区二区三区| 国产视频首页在线观看| 国产日本99.免费观看| 看黄色毛片网站| 一进一出抽搐gif免费好疼| 亚洲内射少妇av| 久久久国产成人免费| 国产欧美日韩精品一区二区| 国内精品美女久久久久久| 国产精品国产三级国产av玫瑰| 美女cb高潮喷水在线观看| 久久久精品大字幕| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 可以在线观看的亚洲视频| 日韩视频在线欧美| 1000部很黄的大片| 亚洲欧洲日产国产| 午夜激情福利司机影院| 国产成人午夜福利电影在线观看| 男人舔奶头视频| 综合色av麻豆| 人妻系列 视频| 成人永久免费在线观看视频| 久久99蜜桃精品久久| 乱人视频在线观看| 国产精品久久久久久久久免| 国产免费男女视频| 亚洲美女视频黄频| 午夜精品在线福利| 麻豆一二三区av精品| av天堂在线播放| 99久久无色码亚洲精品果冻| 国产精品永久免费网站| 久久精品91蜜桃| 国产精品人妻久久久影院| 亚洲国产色片| 成人综合一区亚洲| 国产乱人视频| av在线天堂中文字幕| 国产一级毛片在线| 国产精品一区二区在线观看99 | 91久久精品国产一区二区成人| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 99热全是精品| 熟妇人妻久久中文字幕3abv| 精品人妻视频免费看| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 国内精品美女久久久久久| 97在线视频观看| 在线免费观看不下载黄p国产| 少妇熟女aⅴ在线视频| 久久精品国产清高在天天线| 人妻系列 视频| 悠悠久久av| 插阴视频在线观看视频| 黄色配什么色好看| 欧美一区二区亚洲| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 啦啦啦啦在线视频资源| 男的添女的下面高潮视频| 国产成人a∨麻豆精品| 亚洲在久久综合| 亚洲国产欧美在线一区| 大香蕉久久网| 乱人视频在线观看| 成人综合一区亚洲| 国内揄拍国产精品人妻在线| 久久99热6这里只有精品| 麻豆久久精品国产亚洲av| av视频在线观看入口| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品自产自拍| 免费观看人在逋| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 最近视频中文字幕2019在线8| 国产一级毛片在线| 看十八女毛片水多多多| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲在久久综合| 草草在线视频免费看| 亚洲欧美清纯卡通| 精品久久久久久久人妻蜜臀av| 国产精品福利在线免费观看| 日韩av在线大香蕉| 高清在线视频一区二区三区 | 人妻久久中文字幕网| 人体艺术视频欧美日本| 国产成人精品婷婷| 青春草国产在线视频 | 99久久精品热视频| 国产精品嫩草影院av在线观看| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 精品国产三级普通话版| 久久久色成人| 岛国毛片在线播放| 在线免费观看的www视频| 久久久久性生活片| 久久久久久久久久久免费av| 哪里可以看免费的av片| 男人狂女人下面高潮的视频| 国产极品精品免费视频能看的| 激情 狠狠 欧美| 久久久久久久久久久丰满| 国内少妇人妻偷人精品xxx网站| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 黄片无遮挡物在线观看| 插阴视频在线观看视频| 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| 国产精品久久久久久精品电影小说 | 只有这里有精品99| 中国美女看黄片| 国产伦精品一区二区三区四那| 3wmmmm亚洲av在线观看| 1024手机看黄色片| 天天一区二区日本电影三级| 美女黄网站色视频| 久久99热6这里只有精品| 小说图片视频综合网站| 狂野欧美激情性xxxx在线观看| 成年av动漫网址| 亚洲成人久久性| 69人妻影院| 亚洲在线自拍视频| 村上凉子中文字幕在线| 在线观看午夜福利视频| 成人午夜精彩视频在线观看| 婷婷六月久久综合丁香| 美女 人体艺术 gogo| 夫妻性生交免费视频一级片| 色综合站精品国产| 午夜福利成人在线免费观看| 12—13女人毛片做爰片一| 成人午夜高清在线视频| 中文字幕久久专区| 男人舔女人下体高潮全视频| 国产淫片久久久久久久久| 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 欧美3d第一页| 亚洲中文字幕一区二区三区有码在线看| 超碰av人人做人人爽久久| 亚洲在线观看片| avwww免费| 99热全是精品| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 精品国内亚洲2022精品成人| 国产一区二区在线观看日韩| 狂野欧美白嫩少妇大欣赏| 日本成人三级电影网站| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 精品久久久久久久久亚洲| 国产成人aa在线观看| 国产黄片美女视频| 国产精品三级大全| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 久久久久九九精品影院| 亚洲无线观看免费| 久久久成人免费电影| 亚洲欧美中文字幕日韩二区| 亚洲,欧美,日韩| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站在线播| 亚洲精品亚洲一区二区| 国模一区二区三区四区视频| 内射极品少妇av片p| 国产成人福利小说| 亚洲图色成人| 欧美日本亚洲视频在线播放| 一本一本综合久久| 白带黄色成豆腐渣| 成人漫画全彩无遮挡| 日韩大尺度精品在线看网址| 亚洲欧洲国产日韩| 特大巨黑吊av在线直播| 中文字幕av成人在线电影| 日韩高清综合在线| 国产成人freesex在线| 有码 亚洲区| 精品人妻一区二区三区麻豆| 成人三级黄色视频| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 国产黄色小视频在线观看| 少妇的逼水好多| 国产男人的电影天堂91| 亚洲图色成人| 深夜a级毛片| 99热6这里只有精品| 身体一侧抽搐| 亚洲婷婷狠狠爱综合网| 日本熟妇午夜| 国产视频首页在线观看| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 少妇丰满av| 99热6这里只有精品| 91久久精品电影网| 1024手机看黄色片| 人体艺术视频欧美日本| 一个人观看的视频www高清免费观看| 国产午夜精品论理片| 国产精品日韩av在线免费观看| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 欧美色欧美亚洲另类二区| 国产爱豆传媒在线观看| 亚洲av免费高清在线观看| av天堂中文字幕网| 欧美在线一区亚洲| www.av在线官网国产| 观看美女的网站| 尾随美女入室| 嫩草影院精品99| 国产成人午夜福利电影在线观看| 一边亲一边摸免费视频| 又黄又爽又刺激的免费视频.| 99久久精品热视频| 精品久久久久久成人av| 国产 一区精品| 桃色一区二区三区在线观看| 亚洲激情五月婷婷啪啪| 麻豆成人午夜福利视频| 成年女人看的毛片在线观看| 一本久久精品| 插逼视频在线观看| 精品久久久久久久末码| 伦理电影大哥的女人| 日日干狠狠操夜夜爽| 伊人久久精品亚洲午夜| 午夜亚洲福利在线播放| 尾随美女入室| or卡值多少钱| 小蜜桃在线观看免费完整版高清| 国产一区二区在线av高清观看| 国产探花在线观看一区二区| 欧美精品国产亚洲| 亚洲在线观看片| 黑人高潮一二区| 老女人水多毛片| 国产精品一及| 亚洲不卡免费看| 亚洲精品成人久久久久久| 91精品国产九色| 精品人妻视频免费看| 国产一级毛片在线| 美女大奶头视频| 女人被狂操c到高潮| 国产精品无大码| 免费看av在线观看网站| 久久99精品国语久久久| 最近的中文字幕免费完整| 人妻夜夜爽99麻豆av| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 99久久精品国产国产毛片| 亚洲中文字幕一区二区三区有码在线看| 春色校园在线视频观看| 精品熟女少妇av免费看| 亚洲av免费高清在线观看| 日本黄大片高清| 能在线免费观看的黄片| 亚洲精品乱码久久久久久按摩| 国产中年淑女户外野战色| 久久99蜜桃精品久久| 美女高潮的动态| av国产免费在线观看| 内地一区二区视频在线| 国产精品一及| 国内精品久久久久精免费| 国产一区二区在线av高清观看| 午夜视频国产福利| 久久久精品欧美日韩精品| 久久久久久久久久成人| 亚洲av第一区精品v没综合| 岛国毛片在线播放| 国模一区二区三区四区视频| 精品熟女少妇av免费看| 国产精品久久久久久精品电影小说 | 99久久中文字幕三级久久日本| 观看免费一级毛片|