• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON GROWTH OF MEROMORPHIC SOLUTIONS OF NONLINEAR DIFFERENCE EQUATIONS AND TWO CONJECTURES OF C.C.YANG?

    2016-04-18 05:44:18YueyangZHANG張月陽ZongshengGAO高宗升JilongZHANG張繼龍LMIBSchoolofMathematicsandSystemsScienceBeihangUniversityBeijing100191China
    關(guān)鍵詞:高宗

    Yueyang ZHANG(張月陽)Zongsheng GAO(高宗升)Jilong ZHANG(張繼龍)LMIB&School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

    ?

    ON GROWTH OF MEROMORPHIC SOLUTIONS OF NONLINEAR DIFFERENCE EQUATIONS AND TWO CONJECTURES OF C.C.YANG?

    Yueyang ZHANG(張月陽)Zongsheng GAO(高宗升)Jilong ZHANG(張繼龍)
    LMIB&School of Mathematics and Systems Science,Beihang University,Beijing 100191,China

    E-mail:zhangyy8911@gmail.com;06712@buaa.edu.cn;09017@buaa.edu.cn

    AbstractIn this paper,we investigate the growth of the meromorphic solutions of the following nonlinear di ff erence equations

    where n≥2 and Pn?1(f)is a di ff erence polynomial of degree at most n?1 in f with small functions as coeffi cients.Moreover,we give two examples to show that one conjecture proposed by Yang and Laine[2]does not hold in general if the hyper-order of f(z)is no less than 1.

    Key wordsgrowth;meromorphic solutions;di ff erence equations;conjectures

    2010 MR Subject Classi fi cation30D35;39A10

    ?Received October 27,2014;revised March 9,2015.The first author is supported by the NNSF of China(11171013,11371225,11201014),the YWF-14-SXXY-008 of Beihang University,and the Fundamental Research Funds for the Central University.

    1 Introduction

    In this paper,a meromorphic function always means meromorphic in the whole complex plane.We assume that the reader is familiar with the fundamental results and the standard notions of Nevanlinna’s value distribution theory of meromorphic functions(see,e.g.[1,4]).Let f(z)be a meromorphic function.We use σ(f)and λ(f)to denote the order of growth and the exponent of convergence of zeros of a meromorphic function f(z),respectively.In addition,we denote by S(r,f)any quantity that satisfies the condition S(r,f)=o(T(r,f))as r→∞outside of a possible exceptional set of finite logarithmic measure.A meromorphic function a(z)(∞)is called a small function with respect to f(z)provided that T(r,a(z))=S(r,f).Moreover,the hyper-order of growth of f(z)is de fined as follows

    Recently,there was of Nevanlinna theory(see,e.g.,[5,6,8-10,12-17]).Given a meromorphic function f(z)and a constant c,f(z+c)is called a shift of f.As for a di ff erenceproduct,we mean a di ff erence monomial of typewhere c1,···,ckare complex constants,and n1,···,nkare natural numbers.In the following,a di ff erence polynomial,resp.a differential-di ff erence polynomial,in f is de fined as a finite sum of di ff erence products of f and its shifts,resp.of products of f,derivatives of f and of their shifts,with all the coeffi cients of these monomials being small functions of f.Yang and Laine[2]investigated the nonlinear differential-di ff erence equations and gave two conjectures on the nonexistence of entire solutions of in finite order to some differential-di ff erence equations.We now recall Theorem 2.4 in[2]and the two conjectures.

    Theorem 1.1(see[2])Let p,q be polynomials.Then a nonlinear di ff erence equation

    has no transcendental entire solutions of finite order.

    Conjecture 1.2(see[2])There exists no entire function of in finite order that satisfies a di ff erence equation of type

    where q is a nonconstant polynomial,b,c are nonzero constants and n≥2 is an integer.

    Conjecture 1.3(see[2])Let f be an entire function of in finite order and n≥2 be an integer.Then a differential-di ff erence polynomial of the form fn+Pn?1(z,f)cannot be a nonconstant entire function of finite order,here Pn?1(z,f)is a differential-di ff erence polynomial of total degree at most n?1 in f,its derivatives and its shifts,with entire functions of finite order as coeffi cients.Moreover,we assume that all terms of Pn?1(z,f)have total degree≥1.

    Remark 1.4Li[3]proved that Conjecture 1.3 is correct when the hyper-order of f(z)is less than 1 by using a di ff erence analogue of the lemma on the logarithmic derivative(see[5,7])which was extended to the case of hyper-order σ2(f)<1.

    In this paper,we first investigate the following general nonlinear di ff erence equation

    where n≥2 and Pn?1(f)is a di ff erence polynomial of degree at most n?1 in f.We mainly focus on the growth of the transcendental meromorphic solutions of(1.3)and give the following Theorem 1.5 and Theorem 1.6.

    Theorem 1.5Suppose that f(z)is a transcendental meromorphic solution of(1.3),and Pn?1(f)is a di ff erence polynomial of degree at most n?1 in f.Then f(z)has in finite order.

    Since all solutions of(1.3)is of in finite order,we now generalize Theorem 1.1 and estimate the hyper-order of the meromorphic solutions of(1.3)with rational coeffi cients.

    Theorem 1.6Suppose that f(z)is a transcendental meromorphic solution of(1.3),and that all the coeffi cients of Pn?1(f)are rational,and that all the shifts of f(z)are f(z+c1),···,f(z+ck).Denote C=max{|c1|,···,|ck|}and

    (1)If f(z)is entire or has finitely many poles,then there exist constants K>0 and r0>0 such that

    holds for all r≥r0;

    (2)If f(z)has in finitely many poles,then there exist constants K>0 and r0>0 such that

    holds for all r≥r0.

    Furthermore,we get σ2(f)≥1.

    In Section 5,we will give two examples to show that Conjecture 1.3 does not hold in general if the hyper-order of f(z)is no less than 1.To Conjecture 1.2,we have the following conclusion.

    Theorem 1.7Suppose that f(z)is an entire solution of in finite order satisfying(1.2).If σ2(f)<∞,then for any entire function d(z)of finite order,we have λ(f?d)=∞.

    2 Some Lemmas

    Lemma 2.1(see[2])Let f(z)be a meromorphic function of finite order of a di ff erence equation of the form

    where P(z,f)and Q(z,f)are differential-di ff erence polynomials with all the coeffi cients aλ(z)being small functions of f(z)and degfQ(r,f)≤n.Then for each ε>0,

    possibly outside of an exceptional set of finite logarithmic measure.

    In what follows,a meromorphic function f(z)with more than S(r,f)poles(counting multiplicities)means that the integrated counting function of these poles is not of type S(r,f).

    Lemma 2.2(see[14])Suppose that f(z)is a meromorphic solution of(1.3)with more than S(r,f)poles(counting multiplicities).We use∞k(0l)to denote a pole(zero)of f(z)with multiplicity k(l),and let zjdenote the zeros and poles of the coeffi cients ai(z)which are small meromorphic functions with respect to f(z).Let mjbe the maximum order of zeros and poles of the functions ai(z)at zj.Then for any ε>0,there are at most S(r,f)points zjsuch that

    where mj≥εkj.

    Lemma 2.3(see[1])Let fj(z)(j=1,···,n)(n≥2)and gj(z)(j=1,···,n)(n≥1)be entire functions that satisfy

    (2)when 1≤j<k≤n,gj(z)?gk(z)is not a constant;

    (3)when 1≤j≤n,1≤h<k≤n,T(r,fj(z))=o{T(r,egk(z)?gh(z))}(r→∞,rE).Then fj(z)≡0(j=1,···,n).

    The following lemma is more general than Theorem 1.45 in[1].By applying Theorem 1.4 in[1]and the Caratheodory’s inequality,we may easily get the conclusion,so we omit its proof.

    Lemma 2.4Let h(z),a(z)be non-constant entire functions of finite order and f(z)= eh(z)+a(z).If h(z)is transcendental,then the hyper-order σ2(f)of f(z)satisfies σ2(f)=σ(h).

    3 Proof of Theorem 1.5

    ProofWe first observe that Pn?1(f)contains at least one shift of f(z),for otherwise(1.3)is obviously a contradiction.Let all the shifts of f(z)be f(z+c1),···,f(z+ck),where k∈N+,Now we suppose that f(z)is of finite order and we use the similar reasoning as that in the proof of Proposition 5.4 in[13].By Lemma 2.1,we conclude that m(r,f)=S(r,f).Therefore,N(r,f)=T(r,f)+S(r,f).Thus we may use the notations of Lemma 2.2 and say that f(z)has more than S(r,f)poles,counting multiplicities.Note that all the coeffi cients of(1.3)are of finite order.By the Hadamard’s theory,we may write a finite order meromorphic function a(z)as the formwhere p(z)is a polynomial and H1(z)and H2(z)(H1(z)H2(z)0)are the canonical products formed by the zeros and poles of a(z),respectively.Then we need write all the coeffi cients of(1.3)as the above form and multiply out all the denominators of the coeffi cients to obtain that

    where n0+n1+···+np=n?1(p≤k),and that Pn?2(f)is a di ff erence polynomial of degree at most n?2 in f,and that all the coeffi cients of(3.1)are finite order entire functions.Denoting the points in the pole sequence of f(z)by zj,then we have f(zj)=∞kj.By Lemma 2.2,f(z)has more than S(r,f)poles so that we have mj<εkjat zj,here mjrefers to the coeffi cients of(3.1).Let this sequence as our starting point and denote it by z1,j.Suppose that ε<1,we see thatComparing this with the left-hand side of(3.1),we conclude that at least one of the terms of the left-hand side of(3.1)has a pole with multiplicitiesSince all the coeffi cients of(3.1)are entire functions,we see that there is at least one of the points z1,j+c1,···,z1,j+ckis a pole of f(z).In particular,we suppose that n0=0 and all z1,j+c1,···,z1,j+cpare such poles of f(z)with multiplicities k1,···,kpand that

    where n1+···+np=n?1.By taking ε<1,we observe from(3.2)that at least one of k1,···,kp,say kμ,satisfies

    Then by induction,we may fi nally choose a sequence ziof poles of f(z)which satisfy the conditions f(zi)=∞kiand ki≥(δ)i?1k1≥(δ)i?1.We now estimate the counting functionN(r,f).Let C=max(|c1|,···,|ck|)and denote ri=|z1|+(i?1)C,then it is geometrically obvious that

    For i large enough,we have ri≤2(i?1)C,which suggests that

    Hence,

    This means that f(z)is of in finite order,which obviously contradicts to our assumption that f(z)is of finite order and this completes the proof.

    4 Proof of Theorem 1.6

    ProofWe multiply out the denominators of the coeffi cients in(1.3)and write(1.3)as the following form

    where n0+···+np=n?1,and that a(z)and an?1(z)are polynomials,and that Pn?2(f)is a di ff erence polynomial of degree at most n?2 in f with polynomial coeffi cients.The proof is now divided into two parts.

    (1)Suppose that f(z)is a transcendental entire solution of(4.1).Let a(z)=as0zs0+···and denote the highest degree of the polynomials of(4.1)by s.We first have

    when r is large enough.The maximum modulus principle yields

    for all i=1,···,k.It follows from(4.1)-(4.3)that

    where g(r)<K logr for some K>0,when r is large enough.Sinceby iterating the above inequality,we have

    where

    Since log(r+kC)≤logrlog(kC)for r and k sufficiently large,we observe that the series above converge wheneverHence

    Since,by the hypothesis,f(z)is transcendental entire of in finite order,we have the inequality logM(r,f)≥2K′logr for r large enough.Thus(4.4)and(4.5)imply that

    which holds for r sufficiently large,say r≥r0.By choosing r∈[r0,r0+C)arbitrarily and letting j→∞for each choice of r,we see that

    holds for all t≥t0:=r0+C,where K′′:=K′m?(r0+C)/Clogr0.We have proved the assertion in the case of f(z)being entire.

    Suppose then that f(z)is meromorphic with finitely many poles.Then there exists a polynomial S(z)such that w(z)=S(z)f(z)is entire.Substituting f(z)=w(z)/S(z)into(4.1)and again multiplying away the denominators,we will obtain a di ff erence equation with polynomial coeffi cients similar to(4.1).Applying the reasoning above to w(z),we obtain,by the growth properties of polynomials,that

    which holds for all r≥r1≥r0.We now prove the first part.

    (2)Finally,we suppose that f(z)is meromorphic with in finitely many poles.Choose a pole z0of f(z)having multiplicity τ≥1 such that z0is not a zero of a(z).Then the left-hand side of(4.1)has a pole of multiplicity nτ at z0.Note that in this case we may let ε=0 in the proof of Theorem 1.5.Since all the coeffi cients of(4.1)are polynomials,then there is at least one of the points z0+c1,···,z0+ckis a pole of f(z)of multiplicityDenote one of these points by z0+ck1.Substitute z0+ck1for z into(4.1)to obtain

    Since the coeffi cient a(z)has finitely many zeros only being inside of a finite disk|z|<R and that f(z)has in finitely many poles,then by following the same processes as that in the proof of Theorem 10 in[12],we can obtain

    holds for all r≥r0:=(k0+1)C+|z0|,where k0is some positive constant and K:= τm?(r0+C)/C.The fact that r0and K both depend on|z0|is not a problem,since z0is fixed.

    It is obvious that σ2(f)≥1,and this completes the proof.

    5 Proof of Theorem 1.7 and Two Examples

    ProofSuppose that λ(f?d)<∞,then by Weierstrass’s theorem,f(z)has the form

    We then discuss the following two cases:

    Case 1d(z)≡0.Then(5.2)can be written as

    We claim that a(z+1)?na(z)is transcendental and satisfies σ(a(z+1)?na(z))=σ(a(z)).Otherwise,we may suppose that a(z+1)?na(z)is a polynomial or transcendental entire function and satisfies σ(a(z+1)?na(z))<σ(a(z))and turn(5.3)into the following form

    which yields a contradiction when comparing the order of growth of both sides of(5.4).Then by Lemma 2.3,we get from(5.3)that p(z)n≡0,a contradiction,and this leads to that λ(f)=∞.

    Since n≥2,then by Lemma 2.3,we can also obtain p(z)≡0 from(5.5),a contradiction again and this completes the proof.

    Example 5.1Let f(z)=eez log 2+(log2)ez log 2.Then f(z)is of in finite order and satisfies the following equation

    By Lemma 2.4,we know that σ2(f(z))=σ(ez log 2)=1.This example shows that Conjecture 1.3 does not hold in general when f(z)is of hyper-order σ2(f)=1.

    We know from Theorem 1 in[11]that there exists a periodic function Π(z)with periodic 1 such that 1<σ(Π(z))<∞,thus we may give the following example.

    Example 5.2Let f(z)=eg(z)+g′(z),and let g(z)=Π(z)ez log 2.Then we have σ(Π(z)ez log 2)>1 and g(z+1)=2g(z).By Lemma 2.4,we know that σ2(f(z))=σ(Π(z)ez log 2)>1.Now f(z)is of in finite order and satisfies the following equation

    Let h(z)=g′(z),we have σ(h)=σ(g)>1.Suppose that

    then by Lemma 2.1,we have that m(r,h)=S(r,h),a contradiction to that h(z)is an entire function,which immediately gives

    Thus we see that Conjecture 1.3 does not hold in general when f(z)is of hyper-order σ2(f)>1.

    References

    [1]Yang C C,Yi H X.Uniqueness Theory of Meromorphic Function.Newtherlands:Kluwer Academic pulishers,2003

    [2]Yang C C,Laine I.On analogies between nonlinear di ff erence and differential equations.Pro Japan Acad,2010,86(A):10-14

    [3]Li N,Yang L.Some results related to complex linear and nolinear di ff erence equations.J Di ff Equ Appl,2014,20(2):237-250

    [4]Laine I.Nevanlinna Theory and Complex Di ff erential Equations.Berlin:W de Gruyter,1993

    [5]Halburd R G,Korhonen R J.Di ff erence analogue of the lemma on the logarithmic derivative with applications to di ff erence equation.J Math Anal Appl,2006,314(2):477-487

    [6]Chiang Y-M,Feng S-J.On the Nevanlinna charactericstic of f(z+η)and di ff erence equations in the complex plane.Ramanujan J,2008,16(1):105-129

    [7]Halburd R G,Korhonen R J.Holomorphic curves with shift-invatiant hyperplane preimages.arXiv:0903.3236v2

    [8]Zhang J L,Gao Z S,Li S.Distribution of zeros and shared values of di ff erence operator.Ann Polon Math,2011,102:213-221

    [9]Wen Z T,Heittokangas J,Laine I.Exponential polynomials as solutions of certain nonlinear di ff erence equations.Act Math Sinica,English Series,2012,66(2):1295-1306

    [10]Chen Z X.On growth,zeros and poles of meromorphic solutions of linear and nonlinear di ff erence equations.Arch Math,2011,10:2123-2133

    [11]Mitsuru Ozawa.On the existence of prime periodic entire functions.Kodai Math Sem Rep,1978,29(3):308-321

    [12]Heittokangas J,Korhonen R,Laine I,Rieppo J,Tohge K.Complex di ff erence equations of Malmquist type.Comput Methods Funct Theory,2001,1(1):27-39

    [13]Laine I,Yang C C.Clunie theorems for di ff erence and q-di ff erence polynomials.J Lond Math Soc,2007,76(3):556-566

    [14]Halburd R G,Korhonen R J.Finite order solutions and the discrete Painlevé equations.Proc Lond Math Soc,2007,94:443-474

    [15]Zhang J L,Korhonen R.On the Nevanlinna characteristic of f(qz)and its applications.J Math Anal Appl,2010,369(2):537-544

    [16]Li S,Gao Z S.Resolts on a question of Zhang and Yang.Acta Math Sci,2012,32B(2):717-723

    [17]Gao L Y.Estimates of n-functions and m-function of meromrophic sohctions of systems of complex di ff erence equations.Acta Math Sci,2012,32B(4):1495-1502

    猜你喜歡
    高宗
    從“天申節(jié)御筵”中探究南宋宮廷儀式
    老高的幸福生活
    趙構(gòu)用公筷
    趙構(gòu)用公筷
    測字先生——謝石
    從趙伯琮的入宮看宋高宗在立儲問題上的政治考量
    紹興后期高宗對中樞體制的調(diào)整——以湯思退再次“兼權(quán)”參政為中心的考察
    西夏研究(2016年1期)2016-07-19 10:09:11
    基于電流矢量和開關(guān)表格控制的異步電機(jī)控制方法
    一字之師
    故事會(2014年5期)2014-05-14 15:24:16
    從宮女到皇后的智勇人生
    百家講壇(2014年15期)2014-02-11 11:52:21
    国产成人aa在线观看| 久久综合国产亚洲精品| 亚洲av国产av综合av卡| 国产一区二区三区av在线| 99热国产这里只有精品6| 黑人猛操日本美女一级片| 丰满人妻一区二区三区视频av| 69精品国产乱码久久久| 亚洲av日韩在线播放| 国产精品成人在线| 99久久精品热视频| 97在线视频观看| 热re99久久国产66热| 午夜福利影视在线免费观看| 99久久综合免费| 一级毛片我不卡| 狂野欧美激情性bbbbbb| 欧美 日韩 精品 国产| 亚洲第一av免费看| 麻豆成人av视频| 国产有黄有色有爽视频| 久久99一区二区三区| 午夜av观看不卡| 十分钟在线观看高清视频www | 三级国产精品欧美在线观看| 日韩欧美 国产精品| 男人舔奶头视频| 深夜a级毛片| 日本wwww免费看| 黑人高潮一二区| 黑人猛操日本美女一级片| 久久99热这里只频精品6学生| 精品少妇久久久久久888优播| 日日摸夜夜添夜夜爱| 热99国产精品久久久久久7| 久久精品久久久久久久性| av黄色大香蕉| 亚洲国产毛片av蜜桃av| 久久午夜福利片| 简卡轻食公司| tube8黄色片| 国产黄片美女视频| 亚洲av国产av综合av卡| 一级毛片 在线播放| 我要看日韩黄色一级片| 99久国产av精品国产电影| 免费看日本二区| 在线免费观看不下载黄p国产| 久久6这里有精品| 9色porny在线观看| 久久久久精品性色| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久久av不卡| 男女边吃奶边做爰视频| 伦精品一区二区三区| 久久久久久久久久人人人人人人| 色94色欧美一区二区| 日韩av在线免费看完整版不卡| 成人黄色视频免费在线看| 狂野欧美激情性xxxx在线观看| 国模一区二区三区四区视频| 97精品久久久久久久久久精品| 免费看av在线观看网站| 亚洲精品第二区| 熟妇人妻不卡中文字幕| 人妻一区二区av| 人妻夜夜爽99麻豆av| 午夜福利在线观看免费完整高清在| 中文欧美无线码| 国产成人精品婷婷| 综合色丁香网| 久久精品国产亚洲网站| 大又大粗又爽又黄少妇毛片口| www.av在线官网国产| 亚洲精品视频女| 亚洲一级一片aⅴ在线观看| 一级a做视频免费观看| 免费av中文字幕在线| 狂野欧美激情性xxxx在线观看| 一级a做视频免费观看| 日韩制服骚丝袜av| 亚洲精品,欧美精品| 欧美xxⅹ黑人| av天堂中文字幕网| 岛国毛片在线播放| 欧美日韩一区二区视频在线观看视频在线| 午夜免费观看性视频| 99久久精品一区二区三区| 国产亚洲av片在线观看秒播厂| 久久婷婷青草| 久久亚洲国产成人精品v| 少妇精品久久久久久久| 乱码一卡2卡4卡精品| 丝瓜视频免费看黄片| 久久久久久久国产电影| 国产欧美日韩一区二区三区在线 | 久久久久久久久久久久大奶| 美女大奶头黄色视频| 亚洲一区二区三区欧美精品| 精品久久久久久久久亚洲| 色吧在线观看| 国产精品三级大全| 久久久国产一区二区| 91久久精品国产一区二区三区| 亚洲内射少妇av| 少妇的逼好多水| 久久综合国产亚洲精品| av不卡在线播放| 亚洲av不卡在线观看| 老女人水多毛片| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区 | 国产成人aa在线观看| 日本黄色片子视频| 日韩一区二区三区影片| 观看免费一级毛片| 亚洲无线观看免费| 黄色日韩在线| 夜夜看夜夜爽夜夜摸| 国产成人一区二区在线| 亚洲欧美成人精品一区二区| 久久av网站| 亚洲一区二区三区欧美精品| 人人妻人人澡人人看| 欧美少妇被猛烈插入视频| av卡一久久| 建设人人有责人人尽责人人享有的| 韩国av在线不卡| 在线观看人妻少妇| 色5月婷婷丁香| 国产熟女欧美一区二区| 自拍偷自拍亚洲精品老妇| 又大又黄又爽视频免费| 多毛熟女@视频| 日韩免费高清中文字幕av| 一级黄片播放器| av在线app专区| 精品人妻熟女毛片av久久网站| 在线观看av片永久免费下载| 久久国产亚洲av麻豆专区| 老女人水多毛片| a级毛片在线看网站| 18禁在线播放成人免费| 国产精品麻豆人妻色哟哟久久| 永久网站在线| 最近中文字幕高清免费大全6| 欧美成人精品欧美一级黄| 最近中文字幕2019免费版| 午夜久久久在线观看| 欧美3d第一页| 国产av精品麻豆| 国产成人精品婷婷| 春色校园在线视频观看| 亚洲精品成人av观看孕妇| 桃花免费在线播放| 多毛熟女@视频| 热99国产精品久久久久久7| 久久精品国产亚洲av天美| 日韩电影二区| 久久鲁丝午夜福利片| 日日啪夜夜撸| 一级片'在线观看视频| 嫩草影院入口| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 亚洲精品亚洲一区二区| 啦啦啦在线观看免费高清www| 国产精品欧美亚洲77777| 日韩亚洲欧美综合| 亚洲国产精品国产精品| 岛国毛片在线播放| av免费观看日本| 成人18禁高潮啪啪吃奶动态图 | 欧美国产精品一级二级三级 | 亚洲精品亚洲一区二区| 一级毛片电影观看| 国产精品嫩草影院av在线观看| 国产欧美日韩精品一区二区| av播播在线观看一区| 丰满少妇做爰视频| a级一级毛片免费在线观看| 国产一区二区在线观看日韩| 国产精品熟女久久久久浪| 亚洲无线观看免费| 一边亲一边摸免费视频| 国产深夜福利视频在线观看| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说| 日韩成人伦理影院| 少妇人妻久久综合中文| 久久99热6这里只有精品| 夫妻性生交免费视频一级片| 18禁在线播放成人免费| 在线观看免费视频网站a站| 国产 一区精品| 99久国产av精品国产电影| 久久久久久久久久成人| 亚洲内射少妇av| 亚洲精品国产av蜜桃| 中文天堂在线官网| 日韩免费高清中文字幕av| 亚洲国产精品999| 亚洲av男天堂| 国产亚洲一区二区精品| 男女免费视频国产| 男男h啪啪无遮挡| 久久狼人影院| 亚洲av.av天堂| 韩国高清视频一区二区三区| 天天操日日干夜夜撸| 日韩成人av中文字幕在线观看| 午夜精品国产一区二区电影| 日日啪夜夜撸| 麻豆成人午夜福利视频| 国产有黄有色有爽视频| 午夜福利视频精品| 精品少妇黑人巨大在线播放| 狂野欧美激情性xxxx在线观看| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站| 国产精品女同一区二区软件| 国产伦精品一区二区三区四那| 街头女战士在线观看网站| 久久6这里有精品| 在线观看免费视频网站a站| 国内揄拍国产精品人妻在线| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| av天堂久久9| 新久久久久国产一级毛片| 2022亚洲国产成人精品| 亚洲精品日本国产第一区| 伊人久久精品亚洲午夜| 91久久精品国产一区二区三区| 精品99又大又爽又粗少妇毛片| 肉色欧美久久久久久久蜜桃| 男男h啪啪无遮挡| 国产精品人妻久久久久久| av免费在线看不卡| 亚洲精品乱码久久久v下载方式| 成人毛片a级毛片在线播放| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 亚洲熟女精品中文字幕| 亚洲精品第二区| 欧美区成人在线视频| 欧美国产精品一级二级三级 | 搡老乐熟女国产| 日日摸夜夜添夜夜爱| 日韩精品有码人妻一区| 热re99久久国产66热| 久久精品国产a三级三级三级| 国产淫语在线视频| 两个人的视频大全免费| 男女边吃奶边做爰视频| 99热6这里只有精品| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 国产 精品1| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 久久99精品国语久久久| 九色成人免费人妻av| 少妇 在线观看| 内射极品少妇av片p| av播播在线观看一区| 午夜福利视频精品| 夜夜爽夜夜爽视频| 日日啪夜夜撸| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 午夜久久久在线观看| 新久久久久国产一级毛片| 免费人妻精品一区二区三区视频| 我要看黄色一级片免费的| 精品人妻熟女毛片av久久网站| 国产男人的电影天堂91| 国产爽快片一区二区三区| 自拍偷自拍亚洲精品老妇| 在线 av 中文字幕| 欧美最新免费一区二区三区| 午夜福利视频精品| 伦理电影大哥的女人| 国产精品一区二区在线不卡| 日韩欧美一区视频在线观看 | 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 黄色怎么调成土黄色| 少妇的逼水好多| 97超视频在线观看视频| 涩涩av久久男人的天堂| 美女国产视频在线观看| 亚洲精品乱码久久久v下载方式| 这个男人来自地球电影免费观看 | 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人 | 在线观看av片永久免费下载| 精品一区在线观看国产| 国产精品久久久久久精品古装| 尾随美女入室| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 日日摸夜夜添夜夜添av毛片| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 久久久欧美国产精品| 国产一区二区在线观看日韩| 婷婷色综合www| 熟女av电影| 少妇丰满av| 亚洲国产精品成人久久小说| 日日啪夜夜爽| 97在线人人人人妻| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 日本av手机在线免费观看| 久久人人爽人人片av| 国产高清不卡午夜福利| 一级二级三级毛片免费看| 精品亚洲成a人片在线观看| 深夜a级毛片| 成年人午夜在线观看视频| 精品酒店卫生间| 男女边吃奶边做爰视频| 亚洲不卡免费看| 久久久久久久久久久久大奶| 校园人妻丝袜中文字幕| av线在线观看网站| 亚洲精品aⅴ在线观看| 黄色怎么调成土黄色| 男人狂女人下面高潮的视频| 国产熟女欧美一区二区| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 伦精品一区二区三区| 一级毛片 在线播放| 国产精品国产三级国产专区5o| 伦理电影大哥的女人| 桃花免费在线播放| 亚洲精品成人av观看孕妇| 国产高清不卡午夜福利| 噜噜噜噜噜久久久久久91| 伊人久久国产一区二区| 国产精品国产三级专区第一集| 91久久精品国产一区二区成人| 丁香六月天网| 蜜臀久久99精品久久宅男| 国产免费一区二区三区四区乱码| h视频一区二区三区| 精品久久久久久久久亚洲| 亚洲国产精品成人久久小说| 女人久久www免费人成看片| 欧美少妇被猛烈插入视频| 亚洲国产精品国产精品| 国产精品福利在线免费观看| 一本一本综合久久| 国产一区二区三区综合在线观看 | 精品亚洲成国产av| 国产黄频视频在线观看| 婷婷色综合www| 国产在线视频一区二区| 国产男人的电影天堂91| 热re99久久精品国产66热6| 欧美三级亚洲精品| 日本av手机在线免费观看| 成年女人在线观看亚洲视频| 26uuu在线亚洲综合色| 最近2019中文字幕mv第一页| 亚洲成色77777| 一级毛片电影观看| av黄色大香蕉| 欧美精品一区二区大全| 日本av手机在线免费观看| 中文字幕久久专区| 欧美日韩一区二区视频在线观看视频在线| 夫妻午夜视频| 久久久久久久久久久丰满| av在线观看视频网站免费| 最近手机中文字幕大全| 在线播放无遮挡| 精品午夜福利在线看| 丝瓜视频免费看黄片| 国产亚洲5aaaaa淫片| 大香蕉97超碰在线| 亚洲欧美日韩东京热| 欧美精品国产亚洲| 亚洲国产精品国产精品| 国产黄频视频在线观看| 五月天丁香电影| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 新久久久久国产一级毛片| 亚洲欧美精品专区久久| 在现免费观看毛片| 成人免费观看视频高清| 青春草亚洲视频在线观看| 精品亚洲成国产av| 3wmmmm亚洲av在线观看| 97精品久久久久久久久久精品| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 韩国高清视频一区二区三区| 免费观看av网站的网址| 国产黄片视频在线免费观看| 成年女人在线观看亚洲视频| 日韩大片免费观看网站| 性色av一级| 久久久久久久久久久久大奶| 国模一区二区三区四区视频| 99国产精品免费福利视频| 国产精品免费大片| 亚洲精品一区蜜桃| 免费观看a级毛片全部| 国产成人aa在线观看| 亚洲电影在线观看av| 91久久精品国产一区二区成人| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片| 两个人的视频大全免费| 嫩草影院入口| 伊人久久精品亚洲午夜| 激情五月婷婷亚洲| 免费少妇av软件| 日韩制服骚丝袜av| 亚洲精品456在线播放app| 亚洲精品亚洲一区二区| 国产老妇伦熟女老妇高清| 国产成人精品福利久久| 亚洲内射少妇av| 在线观看一区二区三区激情| 26uuu在线亚洲综合色| 日本黄色片子视频| 一级,二级,三级黄色视频| 免费观看性生交大片5| av专区在线播放| 少妇人妻久久综合中文| 久久久久久久大尺度免费视频| 日韩av不卡免费在线播放| 午夜91福利影院| 少妇高潮的动态图| 国产视频首页在线观看| 中文字幕久久专区| 少妇人妻 视频| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| 国产精品嫩草影院av在线观看| 日本黄色日本黄色录像| 一级二级三级毛片免费看| 赤兔流量卡办理| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 中文欧美无线码| 99热全是精品| 永久免费av网站大全| 一本久久精品| 亚洲在久久综合| 久久人人爽av亚洲精品天堂| a级一级毛片免费在线观看| 蜜桃久久精品国产亚洲av| 男女国产视频网站| 亚洲第一av免费看| www.色视频.com| 亚洲国产欧美日韩在线播放 | 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| xxx大片免费视频| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| 国产精品久久久久久精品古装| 交换朋友夫妻互换小说| 国产精品熟女久久久久浪| 你懂的网址亚洲精品在线观看| 免费观看无遮挡的男女| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 高清av免费在线| 久久婷婷青草| √禁漫天堂资源中文www| 男女无遮挡免费网站观看| 啦啦啦在线观看免费高清www| 新久久久久国产一级毛片| 国产成人91sexporn| 97在线人人人人妻| 少妇人妻久久综合中文| 亚洲国产精品国产精品| 99久久精品热视频| 国产深夜福利视频在线观看| 国内揄拍国产精品人妻在线| 亚洲美女搞黄在线观看| 少妇人妻 视频| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 中文字幕免费在线视频6| 看非洲黑人一级黄片| 在线亚洲精品国产二区图片欧美 | www.色视频.com| 久久精品国产a三级三级三级| 国产 一区精品| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 国产中年淑女户外野战色| 22中文网久久字幕| 欧美xxxx性猛交bbbb| 在线观看av片永久免费下载| 久久精品夜色国产| 最新的欧美精品一区二区| 麻豆精品久久久久久蜜桃| 22中文网久久字幕| 国产老妇伦熟女老妇高清| 国产成人精品无人区| 大香蕉97超碰在线| 国产成人精品无人区| 亚洲内射少妇av| 国产成人aa在线观看| 国产精品一区二区性色av| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 午夜免费鲁丝| 欧美激情极品国产一区二区三区 | 乱系列少妇在线播放| 中文字幕人妻丝袜制服| 亚洲综合精品二区| 在线播放无遮挡| 亚洲电影在线观看av| 一级毛片我不卡| 久久精品国产自在天天线| 国产精品99久久99久久久不卡 | 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频 | 黄色怎么调成土黄色| 亚洲精品一区蜜桃| 日本色播在线视频| 丝袜脚勾引网站| 国产免费福利视频在线观看| 日本欧美国产在线视频| 岛国毛片在线播放| 精品一区在线观看国产| 国产成人午夜福利电影在线观看| 2018国产大陆天天弄谢| 欧美变态另类bdsm刘玥| 99九九线精品视频在线观看视频| 久久毛片免费看一区二区三区| a级毛片免费高清观看在线播放| 国产欧美日韩精品一区二区| 欧美另类一区| 尾随美女入室| 久久97久久精品| 九九在线视频观看精品| 中文乱码字字幕精品一区二区三区| 高清黄色对白视频在线免费看 | 亚洲第一区二区三区不卡| 亚洲国产色片| 亚洲真实伦在线观看| 美女视频免费永久观看网站| 国内揄拍国产精品人妻在线| 涩涩av久久男人的天堂| 午夜激情久久久久久久| 99久久精品一区二区三区| 9色porny在线观看| 国产在线免费精品| 亚洲成人手机| 精品熟女少妇av免费看| 精品人妻熟女av久视频| 国产黄频视频在线观看| 内地一区二区视频在线| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| 色哟哟·www| 久久精品国产亚洲av涩爱| 热re99久久国产66热| 寂寞人妻少妇视频99o| 亚洲精品成人av观看孕妇| 日本色播在线视频| 国产日韩欧美亚洲二区| 国产亚洲91精品色在线| 日韩欧美一区视频在线观看 | 国产av一区二区精品久久| 人人妻人人添人人爽欧美一区卜| 黄色一级大片看看| 99九九在线精品视频 | 午夜福利影视在线免费观看| 人妻夜夜爽99麻豆av| 男人和女人高潮做爰伦理| 亚洲av国产av综合av卡| 中文字幕亚洲精品专区| 久久久久久伊人网av| 日韩欧美一区视频在线观看 | 在线播放无遮挡| 久久国产亚洲av麻豆专区| 亚洲第一区二区三区不卡| 最近2019中文字幕mv第一页| 三级经典国产精品| 99热网站在线观看| 九九爱精品视频在线观看| 亚洲综合色惰| 免费人成在线观看视频色| 国产欧美另类精品又又久久亚洲欧美| 在线观看免费高清a一片| av.在线天堂| 天堂俺去俺来也www色官网| 99久久精品热视频| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 麻豆成人av视频| 最新的欧美精品一区二区| 中文乱码字字幕精品一区二区三区| 国产精品一区二区性色av| 韩国av在线不卡| 亚洲国产av新网站| 一级毛片aaaaaa免费看小|