• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LüROTH EXPANSION?

    2016-04-18 05:44:36ZhenliangZHANG張振亮SchoolofMathematicalSciencesHenanInstituteofScienceandTechnologyXinxiang453003ChinaSchoolofMathematicsandStatisticsHuazhongUniversitryofScienceandTechnologyWuhan430074ChinaEmailzhliangzhanghotmailcomChuny

    Zhenliang ZHANG(張振亮)School of Mathematical Sciences,Henan Institute of Science and Technology,Xinxiang 453003,China;School of Mathematics and Statistics,Huazhong Universitry of Science and Technology,Wuhan 430074,ChinaE-mail:zhliang zhang@hotmail.comChunyun CAO(曹春云)College of Science,Huazhong Agricultural Universitry,Wuhan 430070,ChinaE-mail:caochunyun@mail.hzau.edu.cn

    ?

    ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LüROTH EXPANSION?

    Zhenliang ZHANG(張振亮)
    School of Mathematical Sciences,Henan Institute of Science and Technology,
    Xinxiang 453003,China;
    School of Mathematics and Statistics,Huazhong Universitry of Science and Technology,
    Wuhan 430074,China
    E-mail:zhliang zhang@hotmail.com
    Chunyun CAO(曹春云)?
    College of Science,Huazhong Agricultural Universitry,Wuhan 430070,China
    E-mail:caochunyun@mail.hzau.edu.cn

    AbstractFor any x∈(0,1](except at most countably many points),there exists a unique sequence{dn(x)}n≥1of integers,called the digit sequence of x,such that

    The dexter in finite series expansion is called the Lüroth expansion of x.This paper is concerned with the size of the set of points x whose digit sequence in its Lüroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions with arbitrary common di ff erence.More precisely,we determine the Hausdor ff dimension of the above set.

    Key wordsLüroth expansion;arithmetic progression;Hausdor ff dimension

    2010 MR Subject Classi fi cation11K55;28A80

    ?Received September 15,2014;revised March 6,2015.This work was supported by NSFC(11326206,11426111).

    ?Corresponding author:Chunyun CAO.

    1 Introduction

    The Lüroth expansion was first introduced by Lüroth[1]in 1883.For any x∈(0,1],the Lüroth map T:(0,1]→(0,1]is de fined by

    Then we de fi ne the integer sequence

    where Tndenotes the nth iterate of T(T0=Id(0,1]).

    By algorithm(1.1)and(1.2),any x∈(0,1](except at most countably many points)can be developed uniquely into an in finite series expansion of the form

    which is called the Lüroth expansion of x and denote it by x=[d1(x),d2(x),···,dn(x),···]for short.

    The above algorithm implies dn≥2 for all n≥1.On the contrary,for a sequence of integers{dn}n≥1satisfying dn≥2,?n≥1,there exists a unique x∈(0,1]such that dn(x)=dn,?n∈N in the Lüroth expansion of x.Namely,each irrational x∈(0,1]is corresponding to an in finite integer sequence{dn}n≥1.

    Whether integer subset contains arbitrarily long arithmetic progressions is a long-standing question in number theory,especially for some peculiar subsets,such as primes.For this,Van der Waerden[2]in 1927 established that while the set of integers is arbitrarily partitioned into two classes,at least one class contains arbitrarily long arithmetic progressions.In 2008,Green and Tao[3]gave a a ffi rmative answer to the problem that the primes contain arbitrarily long arithmetic progressions.

    Since{dn}n≥1can assume arbitrarily large values,it is possible that there are points whose sequence of digits in its Lüroth expansion contains arbitrarily long arithmetic progressions.In this paper,we discuss the above long-standing question in the setting of Lüroth expansion in the view of metric number theory.To be speci fi c,we are interested in the set of points whose sequence of digits in its Lüroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions.Denote such a set by ES,i.e.,

    Furthermore,we care about the points whose sequence of digits in its Lüroth expansion contains the arithmetic progressions with arbitrary common di ff erence as well as satisfying above properties.More precisely,we consider the set EASde fined as follows:

    It is natural to ask how large such sets are in the sense of Lebesgue measure or Hausdor ff dimension.We prove that

    The growth speed of the digit sequence{dn(x)}n≥1was studied in[4].The metric and ergodic properties of the digit sequence{dn(x)}n≥1and the Lüroth map T de fined by(1.1)were extensively studied in[5](see also[6-11]).The behavior of approximating real numbers by Lüroth expansion was thoroughly investigated in[12-14].Since the Lüroth system can also be viewed as an in finite iterated function system,dimensional theory in Lüroth expansionis also attached great importance.The spectrum analysis of the frequency of the digits was given in[15,16].Especially in[17],they showed that the set of numbers with bounded Lüroth expansions(or bounded Lüroth series)is winning and strong winning,which implies that the set of full Hausdor ff dimension may contain no such numbers considered in this paper.

    2 Proof of Theorem 1.1

    In this section,we prove the main result of this note.Let us first fi x some notations and briefly recall some basic properties and known results of Lüroth expansion.

    For any n≥1 and dj≥2,1≤j≤n,call(d1,d2,···,dn)an admissible block of order n.For any n≥1,denote by Lnthe collection of all admissible blocks of order n,i.e.,

    For any(d1,d2,···,dn)∈ Ln,let

    where cl denotes the closure of a set.It is clear that In(d1,d2,···,dn)is a subinterval of(0,1],and from the algorithm(1.1),its length is given by the following formula.

    In order to compute the Hausdor ff dimension of the set ES,we recall a result of Shen which will be used later to estimate the upper bound of dimHES.

    Lemma 2.2(see[4])dimH{x∈[0,1):dn(x)→∞as n→∞}=12.

    We also need the following lemma(usually called Billingsley’s theorem),which is an important tool to obtain a lower bound on the Hausdor ff dimension in fractal geometry.

    Lemma 2.3(see[18])Let E?(0,1]be a Borel set andμis a measure withμ(E)>0.If for any x∈E,

    where B(x,r)is the ball with center x and radius r,then

    Now let us begin the proof of Theorem 1.1.

    The upper bound on dimHESis easily available from Lemma 2.2 by noting that{dn(x)}n≥1is strictly increasing implies that dn(x)→∞as n→∞.That is,

    To determine the lower bound of dimHEAS,for any integer α>2,we will first construct a proper set E(α)such that for any x∈E(α),the digit sequence of x is strictly increasing.Moreover,the Hausdor ff dimension of E(α)is approximate to12with the increase of α.From this springboard set,we construct a subset of the target set EASby inserting a group of arithmetic progressions at the appropriate positions in the digit sequences of the points in E(α).By the appropriate choice of the positions,we will find a H?lder function between this subset and E(α).The above idea has been applied successfully in[19,20].

    Lemma 2.4Let α≥2 be an integer,denote

    Then

    ProofIn order to estimate the Hausdor ff dimension of E(α),we shall make use of a kind of symbolic space described as follows.For any n≥1,set

    For each n≥1 and(d1,d2,···,dn)∈Dn,we call In(d1,d2,···,dn)an admissible cylinder of order n with respect to E(α).Then

    Now we construct a set functionμon admissible cylinder by:μ(I)=1 and for any n≥1,

    By the Carathéodory extension theorem,μcan be extended to a probability measure supported on E(α).

    In light of Billingsley’s theorem,we are required to check the above de fined measureμ satisfies(2.1)for all x∈E(α).For each x∈E(α),there exists a sequence{dn}n≥1such that for each n≥1,x∈In(d1,d2,···,dn)and(d1,d2,···,dn)∈Dn.For any 0<r<18,there exists n≥1 such that

    Note that for any adjacent admissible cylinders of order n with respect to E(α):I(d1,···,dn)and I(d1,···,dn+1),we have

    since dn>(2n)α≥4.Then B(x,r)can intersect at most fi ve nth order admissible cylinders and at least one(n+1)th order admissible cylinder.As a result,we have

    By Lemma 2.1,the proof is completed.

    From this springboard set,now we turn to construct points of EAS.For any l≥1 and d≥1,let Ldl={d,2d,···,ld}be an arithmetic progression with length l and common di ff erence d.Put

    The new arranged sequence is denoted by{Lk}k≥1.It is easy to observe that,for any k≥1,

    where maxLkdenotes the maximum of Lk.Without any confusion,Lkis considered as a vector with its elements arranged in increasing order.

    For every x∈E(α),we will construct a point y belonging to EAS.For this purpose,the strategy is to insert vectors Lk+dnk(x)at the position nk(to be chosen)of the digit sequence of Lüroth expansion of x.More precisely,let{nk}k≥0be a sequence of integers such that

    and

    For each x∈E(α),we construct the point y as follows.

    For 1≤n≤n1,set dn(y)=dn(x).

    For n≤n1+|L1|,set(dn1+1(y),···,dn1+|L1|(y))=dn1(x)+L1.

    For n>n1+|L1|,let k≥1 be the integer such that

    Then as above,

    For nk+|L1|+···+|Lk|<n≤nk+1+|L1|+···+|Lk|,set

    For nk+1+|L1|+···+|Lk|<n≤nk+1+|L1|+···+|Lk+1|,set

    By the construction,it is evident that arbitrarily long arithmetic progressionswith arbitrary common di ff erence occur in the sequence{dn(y)}n≥1.Besides,from condition(2.2)satis fied by the sequence{nk}k≥0and the fact maxLk≤k2,the sequence{dn(y)}n≥1is also strictly increasing.So,we conclude that y∈EAS.We call x the seed of y and denote by FS(α)the collection of points constructed in the above way,then we have

    Now we establish a connection between FS(α)and E(α)by means of a(1+∈)?1-H?lder function.Note that(2.3),for any∈>0,we can choose k0large enough such that for everyn≥nk0and k≥k0,

    Fix d1,d2,···,dnk0with(2j)α≤dj≤(2j+1)αfor 1≤j≤nk0.Let

    and denote by FS(d1,d2,···,dnk0)the corresponding set of points y whose seed belongs to the set E(d1,d2,···,dnk0).

    Now we de fi ne a map

    where x is the seed of y.It is easy to find the map f is bijective.What is more,we will claim the map f is(1+∈)?1?H?lder function.For any pair y1,y2∈FS(d1,d2,···,dnk0),let x1,x2be the seeds of y1and y2,respectively.Denote byˉn the smallest integer such thatThenAssume that

    for some k≥k0.Recall that if x is the seed of y,then for nk+1+|L1|+···+|Lk|<n≤nk+1+|L1|+···+|Lk+1|,

    Therefore,for any nk+1+|L1|+···+|Lk|≤n<nk+1+|L1|+···+|Lk+1|,if dn(y1)=dn(y2),then dnk+1(x1)=dnk+1+|L1|+···+|Lk|(y1)=dnk+1+|L1|+···+|Lk|(y2)=dnk+1(x2).So dn+1(y1)=

    dn+1(y2).By the de finition ofˉn,we only need to consider the case

    First of all,we estimate the gap between y1and y2.Without loss of generality,assume thatis on the left

    Thus,

    Combining this with

    we can obtain that the gap between y1and y2is greater than the distance between the right endpoint ofHence

    since α≥2 and nk∈N.

    Next,we estimate the gap between x1and x2.Recall thatnk+1+|L1|+···+|Lk|,we have

    So,by Lemma2.1,

    Noticing that

    and

    By(2.5)we have

    So,the map f is(1+∈)?1-H?lder function.Then

    for any(d1,d2,···,dnk0)∈Dnk0.Since

    and∈is arbitrary,we get

    By Lemma 2.4 and let α→∞,then we can get

    AcknowledgementsThe authors are grateful to Professor J.Wu for many helpful advices.

    References

    [1]Lüroth J.Ueber eine eindeutige entwickelung von zahlen in eine unendliche reihe.Math Ann,1883,21:411-423

    [2]Van der Waerden B L.Beweis einer Baudetschen Vermutung.Nieuw Arch Wisk,1927,15:212-216

    [3]Green B,Tao T.The primes contain arbitrarily long arithmetic progressions.Ann Math,2008,167:481-547

    [4]Shen L M,Fang K.The fractional dimensional theory in Lüroth expansion.Czech Math J,2011,61:795-807

    [5]Dajani K,Kraaikamp C.Ergodic Theory of Numbers.The Carus Mathematical Monographs 29.Washigton D C:Mathematical Association of America,2002

    [6]Galambos J.Representations of Real Numbers by In finite Series.Lecture Notes in Mathematical 502.Berlin:Springer,1976

    [7]Jager H,de Vroedt C.Lüroth series and their ergodic properties.Nederl Akad Wet,Proc,Ser,1969,72:31-42

    [8]Kesseb?hmer M,Munday S,Stratmann B O.Strong renewal theorems and Lyapunov spectra for α-Farey and α-Lüroth systems.Ergodic Theory Dyn Syst,2012,32:989-1017

    [9]Shen L M,Liu Y H,Zhou Y Y.A note on a problem of J.Galambos.Turkish J Math,2008,32:103-109

    [10]?alát T.Zur metrischen theorie der Lürothschen Entwicklungen der reellen Zahlen.Czech Math J,1968,18:489-522

    [11]Wang S K,Xu J.On the Lebesgue measure of sum-level sets for Lüroth expansion.J Math Anal Appl,2011,374:197-200

    [12]Barrionuevo J,Burton R M,Dajani K,Kraaikamp C.Ergodic properties of generalized Lüroth series.Acta Arith,1996,74:311-327

    [13]Cao C Y,Wu J,Zhang Z L.The e ffi ciency of approximating the reals by Lüroth expansion.Czech Math J,2013,63:497-513

    [14]Dajani K,Kraaikamp C.On approximation by Lüroth series.J Théor Nombres Bordeaux,1996,8:331-346

    [15]Barreiraa L,Iommi G.Frequency of digits in the Lüroth expansion.J Number Theory,2009,129:1479-1490

    [16]Fan A H,Liao L M,Ma J H,Wang B W.Dimension of Besicovitch-Eggleston sets in countable symbolic space.Nonlinearity,2010,23:1185-1197

    [17]Mance B,Tseng J.Bounded Lüroth expansions:applying Schmidt games where in finite distortion exists.Acta Arith,2013,158:33-47

    [18]Falconer K J.Techniques in Fractal Geometry.Chichester:John Wiley&Sons,1997

    [19]Hu D G,Hu X H.Arbitrarily long arithmetic progressions for continued fractions of laurent series.Acta Math Sci,2013,33B(4):943-949

    [20]Tong X,Wang B W.How many points contain arithmetic progressions in their continued fraction expansion? Acta Arith,2009,139:369-376

    给我免费播放毛片高清在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 精品一区二区三区视频在线观看免费| 一进一出好大好爽视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品美女特级片免费视频播放器 | 欧美日本亚洲视频在线播放| 啦啦啦韩国在线观看视频| 国内精品久久久久久久电影| 嫩草影院精品99| 一二三四社区在线视频社区8| 18禁美女被吸乳视频| 女警被强在线播放| 怎么达到女性高潮| 老汉色∧v一级毛片| 久热这里只有精品99| 中文字幕人妻丝袜一区二区| 露出奶头的视频| 中国美女看黄片| tocl精华| 国产精品综合久久久久久久免费| 国产一卡二卡三卡精品| 欧美黄色淫秽网站| 成人午夜高清在线视频 | 国产极品粉嫩免费观看在线| 国产精品爽爽va在线观看网站 | 久久精品国产亚洲av高清一级| 1024香蕉在线观看| 村上凉子中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲专区字幕在线| 在线观看66精品国产| 欧美精品亚洲一区二区| 中文字幕高清在线视频| 9191精品国产免费久久| 国产精品99久久99久久久不卡| 黑人巨大精品欧美一区二区mp4| 999久久久精品免费观看国产| 精品不卡国产一区二区三区| 国产黄片美女视频| 又黄又粗又硬又大视频| 在线十欧美十亚洲十日本专区| 久久久久免费精品人妻一区二区 | 动漫黄色视频在线观看| 天天躁夜夜躁狠狠躁躁| 美女大奶头视频| 久久欧美精品欧美久久欧美| 久久欧美精品欧美久久欧美| 亚洲自拍偷在线| 欧美黑人精品巨大| 两个人免费观看高清视频| 国产真人三级小视频在线观看| 香蕉久久夜色| 在线av久久热| 美女 人体艺术 gogo| 精品国产一区二区三区四区第35| 久久伊人香网站| 精品久久久久久成人av| 黑人欧美特级aaaaaa片| 欧美久久黑人一区二区| 亚洲国产日韩欧美精品在线观看 | 亚洲 欧美 日韩 在线 免费| ponron亚洲| 亚洲自拍偷在线| 天堂√8在线中文| 国产黄色小视频在线观看| 夜夜爽天天搞| 成人手机av| 99久久无色码亚洲精品果冻| 久久香蕉激情| 久久草成人影院| 国产精品久久电影中文字幕| 两个人看的免费小视频| 成人精品一区二区免费| 美国免费a级毛片| 欧美不卡视频在线免费观看 | 美国免费a级毛片| 色综合婷婷激情| 中文字幕av电影在线播放| 欧美在线一区亚洲| 久久精品成人免费网站| 啪啪无遮挡十八禁网站| 成人三级黄色视频| 日韩高清综合在线| 日本a在线网址| 国产精品日韩av在线免费观看| svipshipincom国产片| 国产麻豆成人av免费视频| 久久久久久久精品吃奶| 久久狼人影院| av欧美777| 18禁国产床啪视频网站| 欧美黑人欧美精品刺激| 亚洲中文av在线| 欧美激情高清一区二区三区| cao死你这个sao货| 亚洲五月婷婷丁香| 操出白浆在线播放| 久久久久久亚洲精品国产蜜桃av| 国产亚洲欧美精品永久| 色av中文字幕| 亚洲熟女毛片儿| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 中文资源天堂在线| 日本 av在线| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| 变态另类成人亚洲欧美熟女| 免费高清视频大片| 欧美色欧美亚洲另类二区| 久久精品亚洲精品国产色婷小说| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 国产激情欧美一区二区| 国产精品久久久av美女十八| 国产亚洲av嫩草精品影院| 人妻丰满熟妇av一区二区三区| 天天躁夜夜躁狠狠躁躁| 搡老妇女老女人老熟妇| 黄片播放在线免费| 神马国产精品三级电影在线观看 | 色综合站精品国产| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 一进一出好大好爽视频| 麻豆成人午夜福利视频| 欧美绝顶高潮抽搐喷水| 久久天堂一区二区三区四区| 美女 人体艺术 gogo| 无限看片的www在线观看| 欧美黑人精品巨大| 国产国语露脸激情在线看| 91在线观看av| 在线永久观看黄色视频| aaaaa片日本免费| 欧美国产精品va在线观看不卡| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 好看av亚洲va欧美ⅴa在| 久久久国产欧美日韩av| 青草久久国产| 成人永久免费在线观看视频| 免费电影在线观看免费观看| 在线看三级毛片| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 国产av又大| 亚洲国产欧美网| 国产一区在线观看成人免费| 久99久视频精品免费| netflix在线观看网站| 亚洲国产精品999在线| 中亚洲国语对白在线视频| 人妻丰满熟妇av一区二区三区| 午夜福利在线在线| 免费看十八禁软件| 啦啦啦观看免费观看视频高清| 亚洲精品在线观看二区| 国产精华一区二区三区| 波多野结衣巨乳人妻| 亚洲欧美日韩无卡精品| 久久香蕉激情| 欧美精品亚洲一区二区| 国产精品日韩av在线免费观看| 久久草成人影院| 国产亚洲av高清不卡| 日韩三级视频一区二区三区| 亚洲国产中文字幕在线视频| 亚洲av成人不卡在线观看播放网| 18禁裸乳无遮挡免费网站照片 | 亚洲成a人片在线一区二区| 黄色毛片三级朝国网站| 久热这里只有精品99| 久9热在线精品视频| av电影中文网址| 男女做爰动态图高潮gif福利片| 禁无遮挡网站| 欧美性长视频在线观看| 亚洲精品色激情综合| 国产日本99.免费观看| 老司机在亚洲福利影院| 久久久久久大精品| 色综合欧美亚洲国产小说| 亚洲专区国产一区二区| 国产精品精品国产色婷婷| 精品久久久久久久久久久久久 | 午夜免费激情av| 国产激情偷乱视频一区二区| 精品国产美女av久久久久小说| 人人妻人人澡人人看| 亚洲最大成人中文| 国产午夜精品久久久久久| 狂野欧美激情性xxxx| 午夜两性在线视频| 黄色视频,在线免费观看| 色尼玛亚洲综合影院| 久久精品人妻少妇| 亚洲七黄色美女视频| 久久人妻av系列| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 亚洲一区二区三区不卡视频| 国产av不卡久久| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| 老鸭窝网址在线观看| 久久 成人 亚洲| 91成人精品电影| 露出奶头的视频| 真人一进一出gif抽搐免费| 黄色毛片三级朝国网站| 亚洲真实伦在线观看| 好男人在线观看高清免费视频 | 美女高潮到喷水免费观看| 中亚洲国语对白在线视频| 人妻久久中文字幕网| 久久精品亚洲精品国产色婷小说| 女人高潮潮喷娇喘18禁视频| 最新美女视频免费是黄的| 欧美久久黑人一区二区| 欧美成人午夜精品| 日本 av在线| 丝袜人妻中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产免费男女视频| 国产精品影院久久| 极品教师在线免费播放| 免费在线观看亚洲国产| 香蕉久久夜色| 国产精品久久久av美女十八| 亚洲av第一区精品v没综合| 99久久综合精品五月天人人| 一本大道久久a久久精品| 午夜免费成人在线视频| 国产精品精品国产色婷婷| 欧美丝袜亚洲另类 | 欧美日本亚洲视频在线播放| 久久人妻福利社区极品人妻图片| 久久久久久亚洲精品国产蜜桃av| 日本三级黄在线观看| 一个人观看的视频www高清免费观看 | 国产亚洲精品一区二区www| 免费在线观看黄色视频的| 色精品久久人妻99蜜桃| 天天一区二区日本电影三级| 看免费av毛片| 97碰自拍视频| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 777久久人妻少妇嫩草av网站| 久久中文看片网| 欧美人与性动交α欧美精品济南到| 国产精品电影一区二区三区| 精品人妻1区二区| 免费高清在线观看日韩| 波多野结衣高清作品| 黄色成人免费大全| 国产又色又爽无遮挡免费看| 国产精品,欧美在线| 久久精品人妻少妇| www日本黄色视频网| 久久久久久久精品吃奶| 亚洲成a人片在线一区二区| 国产99久久九九免费精品| 亚洲成人久久性| 天堂√8在线中文| 免费在线观看黄色视频的| 在线观看舔阴道视频| 欧美在线黄色| 黄频高清免费视频| 午夜成年电影在线免费观看| 精品不卡国产一区二区三区| www.999成人在线观看| 国产国语露脸激情在线看| 一本大道久久a久久精品| 午夜福利一区二区在线看| 十八禁人妻一区二区| 亚洲精品av麻豆狂野| 国产男靠女视频免费网站| 国产黄色小视频在线观看| 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 十八禁网站免费在线| 午夜久久久在线观看| 女人高潮潮喷娇喘18禁视频| 久久久国产成人免费| 无限看片的www在线观看| 亚洲,欧美精品.| 国产区一区二久久| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 成人国产综合亚洲| 满18在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品中文字幕在线视频| 俺也久久电影网| 亚洲av五月六月丁香网| 黄频高清免费视频| 久久精品亚洲精品国产色婷小说| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 黄色女人牲交| 亚洲男人的天堂狠狠| 91成人精品电影| 亚洲成人久久爱视频| 精品国产亚洲在线| www.www免费av| 女性被躁到高潮视频| 亚洲性夜色夜夜综合| 久久 成人 亚洲| 男女床上黄色一级片免费看| 国产在线精品亚洲第一网站| 免费av毛片视频| 精品日产1卡2卡| 亚洲美女黄片视频| 在线av久久热| 天天躁狠狠躁夜夜躁狠狠躁| x7x7x7水蜜桃| 嫩草影视91久久| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边做爽爽视频免费| 99久久无色码亚洲精品果冻| 亚洲av五月六月丁香网| 18禁美女被吸乳视频| 精品久久久久久久人妻蜜臀av| 在线免费观看的www视频| 99热这里只有精品一区 | 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 精品一区二区三区av网在线观看| 88av欧美| 免费观看精品视频网站| 亚洲av美国av| 日韩大尺度精品在线看网址| 在线天堂中文资源库| 日本一本二区三区精品| 亚洲精品色激情综合| 日韩欧美国产在线观看| 免费电影在线观看免费观看| 国产片内射在线| 久久亚洲精品不卡| 国产成人啪精品午夜网站| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 久久99热这里只有精品18| 亚洲精品国产一区二区精华液| 18禁黄网站禁片免费观看直播| 97超级碰碰碰精品色视频在线观看| 大型黄色视频在线免费观看| 中文字幕精品亚洲无线码一区 | 高清毛片免费观看视频网站| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 不卡一级毛片| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| 国产区一区二久久| 美女免费视频网站| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 国产成人啪精品午夜网站| 久久精品夜夜夜夜夜久久蜜豆 | 我的亚洲天堂| 黄色视频不卡| 亚洲午夜理论影院| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 国产精品久久久久久人妻精品电影| 在线十欧美十亚洲十日本专区| 亚洲七黄色美女视频| 超碰成人久久| 夜夜爽天天搞| 午夜两性在线视频| 99在线视频只有这里精品首页| 亚洲精品中文字幕在线视频| 女警被强在线播放| 2021天堂中文幕一二区在线观 | 少妇被粗大的猛进出69影院| 91大片在线观看| 欧美激情 高清一区二区三区| 观看免费一级毛片| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 国产一区二区三区在线臀色熟女| 中文字幕精品免费在线观看视频| 两个人视频免费观看高清| 岛国在线观看网站| 精品久久久久久久末码| 成人特级黄色片久久久久久久| 午夜福利视频1000在线观看| 黄色 视频免费看| 男人操女人黄网站| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片 | e午夜精品久久久久久久| 脱女人内裤的视频| 巨乳人妻的诱惑在线观看| 一边摸一边抽搐一进一小说| 欧美乱码精品一区二区三区| 深夜精品福利| 精品午夜福利视频在线观看一区| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| 在线播放国产精品三级| 成人三级黄色视频| 久久这里只有精品19| 亚洲中文字幕一区二区三区有码在线看 | 一本一本综合久久| 欧美绝顶高潮抽搐喷水| 亚洲成av片中文字幕在线观看| 91麻豆av在线| 亚洲精品在线美女| 99国产精品一区二区蜜桃av| 欧美最黄视频在线播放免费| 久久婷婷成人综合色麻豆| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 日本精品一区二区三区蜜桃| 老司机福利观看| av中文乱码字幕在线| 欧美乱妇无乱码| 婷婷亚洲欧美| 国产一区二区三区在线臀色熟女| 免费在线观看日本一区| 国产av一区二区精品久久| 婷婷丁香在线五月| 亚洲真实伦在线观看| 中文字幕人妻熟女乱码| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放 | 日韩三级视频一区二区三区| 最近最新中文字幕大全电影3 | 中文字幕最新亚洲高清| 日本精品一区二区三区蜜桃| 婷婷丁香在线五月| 一a级毛片在线观看| 国产片内射在线| 天堂动漫精品| 国产成人精品久久二区二区免费| 国内毛片毛片毛片毛片毛片| 美女国产高潮福利片在线看| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区视频在线观看免费| av福利片在线| av天堂在线播放| 精品日产1卡2卡| 精品国产美女av久久久久小说| 亚洲欧美日韩高清在线视频| 国产三级黄色录像| 一本综合久久免费| 久久亚洲真实| 亚洲熟女毛片儿| 在线观看免费午夜福利视频| 午夜影院日韩av| 法律面前人人平等表现在哪些方面| 日韩欧美三级三区| 亚洲av中文字字幕乱码综合 | 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 午夜影院日韩av| 亚洲第一欧美日韩一区二区三区| 亚洲自拍偷在线| 两人在一起打扑克的视频| 一进一出抽搐动态| 国产乱人伦免费视频| 搡老妇女老女人老熟妇| 午夜免费鲁丝| 在线永久观看黄色视频| 人妻久久中文字幕网| av天堂在线播放| 精品熟女少妇八av免费久了| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 精品福利观看| 69av精品久久久久久| 午夜日韩欧美国产| 国产精品九九99| 亚洲 欧美一区二区三区| 深夜精品福利| 黄片播放在线免费| 在线免费观看的www视频| 天堂影院成人在线观看| 久久精品aⅴ一区二区三区四区| 亚洲av电影不卡..在线观看| 天天躁狠狠躁夜夜躁狠狠躁| www国产在线视频色| 亚洲成人精品中文字幕电影| 国产成人欧美在线观看| 国产野战对白在线观看| 少妇的丰满在线观看| 亚洲国产看品久久| √禁漫天堂资源中文www| 男人舔女人下体高潮全视频| 级片在线观看| 美女高潮到喷水免费观看| 在线十欧美十亚洲十日本专区| 一区二区三区精品91| 嫩草影视91久久| 亚洲avbb在线观看| 波多野结衣高清作品| 久久精品亚洲精品国产色婷小说| 又大又爽又粗| www.自偷自拍.com| 性欧美人与动物交配| 久久中文看片网| 91在线观看av| 这个男人来自地球电影免费观看| www.自偷自拍.com| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 不卡av一区二区三区| 一本久久中文字幕| 国产av在哪里看| 丰满人妻熟妇乱又伦精品不卡| av有码第一页| 女性被躁到高潮视频| 最近在线观看免费完整版| 亚洲国产精品999在线| 两个人看的免费小视频| 俄罗斯特黄特色一大片| 久热爱精品视频在线9| 可以在线观看的亚洲视频| 在线观看一区二区三区| 国产精品电影一区二区三区| 欧美成人性av电影在线观看| 不卡一级毛片| 精品久久蜜臀av无| 十八禁网站免费在线| 亚洲最大成人中文| 99在线视频只有这里精品首页| 97人妻精品一区二区三区麻豆 | 丝袜在线中文字幕| 婷婷丁香在线五月| 亚洲精品美女久久av网站| 欧美精品啪啪一区二区三区| 国产熟女午夜一区二区三区| 美女免费视频网站| 国产高清videossex| 日本精品一区二区三区蜜桃| 99精品在免费线老司机午夜| 亚洲成人国产一区在线观看| 正在播放国产对白刺激| 国产高清激情床上av| 成人18禁高潮啪啪吃奶动态图| 国产黄a三级三级三级人| 精品卡一卡二卡四卡免费| 91av网站免费观看| 婷婷亚洲欧美| 高清毛片免费观看视频网站| 亚洲一区二区三区色噜噜| 97超级碰碰碰精品色视频在线观看| 日韩 欧美 亚洲 中文字幕| 欧美国产日韩亚洲一区| 国产精品二区激情视频| 可以在线观看毛片的网站| 亚洲性夜色夜夜综合| 一本综合久久免费| 满18在线观看网站| 国产精品亚洲一级av第二区| 精品欧美国产一区二区三| 波多野结衣高清无吗| x7x7x7水蜜桃| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 国产野战对白在线观看| 亚洲第一电影网av| 长腿黑丝高跟| 精品高清国产在线一区| 人成视频在线观看免费观看| 精品一区二区三区视频在线观看免费| 精品无人区乱码1区二区| 国产成人系列免费观看| 天堂影院成人在线观看| 国产一区二区激情短视频| 香蕉久久夜色| 99riav亚洲国产免费| 久久久久久免费高清国产稀缺| 中文字幕精品亚洲无线码一区 | 日韩av在线大香蕉| 不卡一级毛片| 最新在线观看一区二区三区| 亚洲片人在线观看| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区| 啦啦啦韩国在线观看视频| 视频区欧美日本亚洲| 激情在线观看视频在线高清| 禁无遮挡网站| av中文乱码字幕在线| 欧美国产日韩亚洲一区| 美女高潮到喷水免费观看| 色婷婷久久久亚洲欧美| 欧美乱妇无乱码| 97碰自拍视频| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩精品亚洲av| 中文字幕精品免费在线观看视频| 一本久久中文字幕| www.自偷自拍.com| 中出人妻视频一区二区| 88av欧美| 女人爽到高潮嗷嗷叫在线视频| 欧美zozozo另类| 久热爱精品视频在线9| 18禁黄网站禁片午夜丰满| 国产不卡一卡二| 人妻丰满熟妇av一区二区三区|