• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?

    2016-04-18 05:44:38ZhengzhengCHEN陳正爭(zhēng)XiaojuanCHAI柴曉娟WenjuanWANG王文娟SchoolofMathematicalSciencesAnhuiUniversityHefei230601China
    關(guān)鍵詞:王文娟

    Zhengzheng CHEN(陳正爭(zhēng))Xiaojuan CHAI(柴曉娟)Wenjuan WANG(王文娟)School of Mathematical Sciences,Anhui University,Hefei 230601,China

    ?

    CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL?

    Zhengzheng CHEN(陳正爭(zhēng))?Xiaojuan CHAI(柴曉娟)Wenjuan WANG(王文娟)
    School of Mathematical Sciences,Anhui University,Hefei 230601,China

    E-mail:chenzzandu@163.com;chaixj.ahu@gmail.com;wangwenjuan@ahu.edu.cn

    AbstractThis paper is concerned with a singular limit for the one-dimensional compressible radiation hydrodynamics model.The singular limit we consider corresponds to the physical problem of letting the Bouguer number in finite while keeping the Boltzmann number constant.In the case when the corresponding Euler system admits a contact discontinuity wave,Wang and Xie(2011)[12]recently veri fied this singular limit and proved that the solution of the compressible radiation hydrodynamics model converges to the strong contact discontinuity wave in the L∝-norm away from the discontinuity line at a rate of,as the reciprocal of the Bouguer number tends to zero.In this paper,Wang and Xie’s convergence rate is improved toby introducing a new a priori assumption and some re fined energy estimates.Moreover,it is shown that the radiation fl ux q tends to zero in the L∝-norm away from the discontinuity line,at a convergence rate as the reciprocal of the Bouguer number tends to zero.

    Key wordsradiation hydrodynamics model;singular limit;contact discontinuity;convergence rate;energy estimates

    2010 MR Subject Classi fi cation35L65;58J45

    ?Received September 15,2014;revised May 25,2015.This work was supported by the Doctoral Scienti fi c Research Funds of Anhui University(J10113190005)and the Tian Yuan Foundation of China(11426031).

    ?Corresponding author:Zhengzheng CHEN.

    1 Introduction

    The compressible radiation hydrodynamics model that governs the motions of the one-dimensional radiating gas can be written in the Lagrangian coordinates as(see[1-6])

    here the unknown functions are the speci fi c volume v>0,the velocity u,the absolute temperature θ>0,the internal energy e,the pressure P and the radiation fl ux q of the fluids respectively.The parameter ε>0 represents the reciprocal of the Bouguer number,and v±>0,u±and θ±are given constants.For the derivation and physical meaning of ε,we refer to[5,6]for details.

    In the ideal fluids,i.e.,ε=0,system(1.1)is reduced to the compressible Euler system:

    which is a strict hyperbolic system of conservation laws.The Riemann problem of system(1.2)admits some basic wave patterns:the shock wave,rarefaction wave,contact discontinuity and some linear combinations of them,called the Riemann solution.

    We are concerned with the limiting process of the the radiation hydrodynamics flows when ε tends to zero and expect that the solution of(1.1)will approach to the Riemann solution of the Euler system(1.2)in such a process.This problem has been recently studied by some authors with signi fi cant progress.In[12],Wang and Xie first considered the singular limit to a single contact discontinuity and proved that the smooth solution of system(1.1)tends to the strong contact discontinuity solution of(1.2)as ε→0.Moreover,a convergence rateis obtained in[12].The main difficulty they encounter lies in deducing the suitable a priori estimates for solutions of(1.1)because the system is much less dissipative.To achieve those,they use a direct but trick energy analysis.Then using some similar ideas as[12],Rohde,Wang and Xie[13]considered the singular limit to the supposition of rarefaction waves and contact discontinuity for system(1.1)with a slower convergence rate

    A natural and interesting problem is that whether the convergence rates established in[12,13]can be improved further?The main purpose of this paper is devoted to this problem and as a first step,we consider the same problem as[12]and focus our attention on improving the convergence rate.By introducing a new a priori assumption(2.6)and some re fined energy estimates,we obtain a faster convergence rate ε78,instead of ε1

    4received in[12].

    Now we begin to formulate our main result.In the present paper,we consider the ideal polytropic fluids so that P and e are given by

    where γ>1 is the adiabatic exponent,s is the entropy and A,R are two positive constants.We impose(1.2)with the following Riemann initial data

    It is known that the contact discontinuity solution of the Riemann problem(1.2)-(1.3)takes the form[8,9]

    provided that

    In the setting of the compressible radiation hydrodynamics model(1.1),the corresponding wave to the contact discontinuity becomes smooth and behaves as a di ff usion wave due to the radiation effect.We call this wave a“viscous contact wave”.As[13],we construct the viscous contact waveas follows.Motivated by(1.5),the pressure of the profileis expected to be almost constant,that is

    And the radiation fl ux Q is expected to act a di ff usion term

    Then the energy equation(1.1)3is approximated by

    Using equations(1.6),(1.7)and Vt=Ux,we get a nonlinear di ff usion equation

    which has a unique self-similarity solutiondue to[10,11,34].Furthermore,Θ(ξ)is a monotone function,increasing if θ+>θ?and decreasing if θ+<θ?.On the other hand,there exists some positive constant,such that for δ=|θ+?θ?|≤,Θ satisfies

    where c0and c1are two positive constants depending only on θ?andOnce Θ is determined,the viscous contact wave profileis defined as follows:

    It is easy to check that the viscous contact wavesatisfies

    and

    Our main result is stated as follows.

    Theorem 1.1For any given(v?,u?,θ?),suppose that(v+,u+,θ+)satisfies(1.5).Let(vcd,ucd,θcd)be the contact discontinuity solution de fined in(1.4)for the Riemann problem(1.2)-(1.3).Then for any given large time T>0 and small constant σ>0,there exists a small constant ε0>0 such that for any ε∈(0,ε0),system(1.1)with the same initial data as those of(ˉV,ˉU,ˉΘ)admits a unique smooth solution(vε,uε,θε,qε)in[0,T]×R,still denoted by(v,u,θ,q).Moreover,it holds that

    where C>0 is a constant independent of ε.

    Remark 1.2In Theorem 1.1,we only require the strength of the contact discontinuity to be finite and have no need to restrict it to be small.

    Remark 1.3Although the convergence rate in(1.14)is the same as that in[12],we can show in(4.3)below that

    Notice that(1.17)and(1.15)obviously improve the corresponding ones obtained in[12].Moreover,(1.16)is essentially new compared with the former results.

    Remark 1.4A similar argument can be applied to study the singular limit for the 1-D compressible radiation hydrodynamics model to the superposition of rarefaction waves and contact discontinuity,and thus improves the main result of[13].

    Now we outline the main ideas used in proving our main result.The faster convergence rateobtained in(1.15)is essentially due to two factors.One is the ansatzde fined(1.10),which was first used in[13]for the study of the singular limit for the 1-D compressible radiation hydrodynamics model to the superposition of rarefaction waves and contact discontinuity.This ansatz satisfies the mass equation and the momentum equationexactly,while the error terms occur only in the energy and radiation equations.Notice that the error term R1is higher order in ε than the corresponding one de fined in[12]and thus leads the convergence to become faster.The other one,which is also the main novelty of this paper,is the new a priori assumption de fined in(2.6)below.To state our argument clearly,let’s recall that the analysis in[12]is to perform some energy estimates based on the a priori assumption that

    We observe that the first termin the right hand of(1.20)can be improved to Cε by some more elaborate energy estimates.Moreover,if we drive the energy estimates under the a priori assumption that

    with a>0 being a positive constant to be determined later,then the estimates(1.19),(1.20)with the termreplaced by Cε andstill hold by the smallness of ε,thus we obtain thatwithrespectively.Then by the Sobolev inequality,the convergence rate for‖(φ,ψ,ζ)(τ)‖L∝is improved toFurthermore,one can prove that‖(φyy,ψyy,ζyy)(τ)‖2≤ Cεθwithand consequently,the norm N(τ0,τ1)de fined in(1.18)can be bounded byand thus the a priori assumption(1.21)is indeed true by choosing a to be some positive constant smaller thanand ε>0 sufficiently small.

    Based on the above observations,we choose the new a priori assumption(2.6)in this paper.Such type a priori assumption is first used in[26]for the study of vanishing viscosity limit torarefaction wave with vacuum for the 1-D compressible Navier-Stokes equations.However,unlike the case of the zero dissipation limit to rarefaction wave[26,27,35],the a priori assumption(2.6)can indeed improve the convergence rate for solutions of the 1-D compressible radiation hydrodynamics model toward the contact discontinuity.We remark that the method of this paper can also be applied to study the zero dissipation limit to contact discontinuity for the 1-D compressible Navier-Stokes equations and thus improves the main results obtained in[17,18].

    Before concluding this section,we point out that there have been extensive studies on the compressible radiation hydrodynamics model and related models.Kawashima and Nishibata[6]studied a singular limit for a certain class of hyperbolic-elliptic coupled systems which contains a compressible radiation hydrodynamic system as a typical example.They shown that the solution to the hyperbolic-elliptic coupled system converges to the solution of the corresponding hyperbolic-parabolic coupled system with a convergence rate.In[24],Lattanzio and Marcati considered both the hyperbolic-parabolic and the hyperbolic-hyperbolic relaxation limits for the scalar Hamer model[7],which is the third order approximation of system(1.1).The results in[24]were later generalized by Francesco[33]to multidimensional case.For more interesting results on the Hamer model,we refer to[19-23,28,29]and the references therein.We should note that the existence and nonlinear stability of the basic waves for the compressible radiation hydrodynamics model has been studied extensively,we refer to[1,2,25,32]for the existence and nonlinear stability of shock profiles,[14-16]for the stability of contact discontinuity wave,and[30,31]for the stability of rarefaction wave.

    The reminder of this paper is organized as follows.After stating some notations,in Section 2,we will reformulate our problem into a perturbation one near the viscous contact wavede fined in(1.10).Section 3 is devoted to deducing the a priori estimates for solutions to the Cauchy problem(2.4).Finally,the proof of our main Theorem 1.1 is given in Section 4.

    NotationsThroughout this paper,for simplicity,we will omit the variables t,x of functions if it does not cause any confusion.C denotes a generic constant which may vary in different estimates.If the dependence need to be explicitly pointed out,the notations Ci(i∈N)are used.Hl(R)denotes the usual l-th order Sobolev space with its norm

    2 Reformulation of the Problem

    This section is devoted to reformulating our original problem.Due to estimates(1.9)and(1.11),to prove the main theorem,it suffices to show that there exists a solution to(1.1)in a neighborhood of the viscous contact waveand the asymptotic behavior of the solution to(1.1)is given byfor small parameter ε.Suppose that(v,u,θ,q)is the solution of system(1.1)with the following initial data:

    De fi ne

    then we deduce from(1.1),(1.12)and(2.1)that

    Using the following scalings:

    then problem(2.3)is reformulated as

    which will be achieved in the sections followed.In what follows,we seek the solutions to problem(2.4)in the following function space:

    for some τ∈[τ0,τ1].

    3 A Priori Estimates

    In this section,we establish the a priori estimates for solutions of the Cauchy problem(2.4).

    Proposition 3.1(A priori estimates)Under the assumptions of Theorem 1.1,suppose that(φ,ψ,ζ,w)∈X[τ0,τ2]is a solution of the Cauchy problem(2.4)for some τ0<τ2≤τ1,and satisfies the a priori assumption(2.6),then there exist positive constants ε0?1 and C0which are independent of ε and τ2,such that for 0<ε<ε0,it holds that

    Proposition 3.1 can be obtained by a series of lemma below.Before proving the a priori estimates(3.1)-(3.2),we have from the a priori assumption(2.6)and the Sobolev inequality

    that

    Furthermore,by the smallness of ε,we have

    and

    With(3.5)-(3.6)in hand,we now give the L2-estimates on(φ,ψ,ζ)(τ,y).

    Lemma 3.2Under the assumptions of Proposition 3.1,if ε is suitably small,then there exists a positive constant C>0 such that

    ProofSimilar to[12],we have

    where

    On the other hand,multiplying(2.4)4by w,we get by a direct computation that

    Notice that Φ(1)=Φ′(1)=0 and Φ′′(s)>0,there exists positive constants C1and C2such that

    Putting(3.9)into(3.8)and integrating the resultant equation in τ and y over[τ0,τ]×R,we have from(3.10)that

    Now we estimate the terms Ii,i=1,2,3,4 one by one.It follows from(2.5)1and the Cauchy inequality that

    here and hereafter,η>0 denotes a suitably small constant and Cη>0 denotes a constant depending on η.

    Using integration by parts,(1.10),(2.5)1,(3.4)and the Cauchy inequality,we have

    and

    Combining(3.11)-(3.15),we get by the smallness of ε and η that

    Then Gronwall’s inequality implies that

    which yields(3.7)immediately.This completes the proof of Lemma 3.2.

    Next,we estimate‖(φy,ψy,ζy)(τ)‖2.

    Lemma 3.3Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    ProofLet S=(v,u,θ),then system(1.1)1,2,3can be rewritten in the following symmetric form

    where g(qy)=(0,0,?qy)?and

    Set W=S?ˉS=(φ,ψ,ζ)(τ,y),it follows from(3.19)and(3.20)that

    with

    Multiplying(3.21)by A0(S)?1and differentiating the resulting equation with respect to y,then multiplying the resultant equation by(Wy)?A0(S),we obtain by a direct calculation that

    here〈·,·〉denotes the usual inner product on R3and

    On the other hand,we rewrite equation(2.4)4as

    Multiplying(3.25)by wyyyields

    Combining(3.23)with(3.26),and integrating the resulting equation in τ and y over[τ0,τ]× R,we have

    Now we estimate Ii,i=6,7,8 term by term.It follows from integration by parts,(2.5)1and(3.4)that

    where we have used the fact that

    due to(3.20)and(3.21),respectively.

    For I7,we have

    Similar to the estimate of I6,we have

    We deduce from(2.5)1,(3.22)and(3.29)that

    thus

    Similarly,

    Combining(3.31),(3.33)and(3.34),we obtain

    For I8,we deduce from integration by parts that

    Similar to the estimates as above,can be estimated as follows

    Thus it follows from(3.36)-(3.40)that

    Substituting(3.28),(3.35)and(3.41)into(3.27),we have by(3.5)-(3.6),Lemma 3.2 and the smallness of ε and η that

    Then(3.18)follows immediately by combining(3.42)and(3.7).This completes the proof of Lemma 3.3.

    To close the a priori estimates,we control the termin the following

    Lemma 3.4Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    ProofWe rewrite equations(2.4)2and(2.4)3as

    Linearizing(3.44)around the viscous contact waveyields

    Integrating(3.46)in τ and y over[τ0,τ2]×R gives rise to

    Now we estimate Ji,i=1,2,3,4,5 respectively.First,we deduce from(2.5)1and the Cauchy inequality that

    where in the last inequality of(3.49),we have used the fact that

    due to(2.5)1.Using the Cauchy inequality,(2.5)1and Lemma 3.2,we obtain

    Similarly,it holds

    and

    Combining(3.47)-(3.52),using Lemmas 3.2-3.3 and the smallness ε and η,we get

    Multiplying(3.54)by 2C3and adding the resultant equation to(3.53),using Lemmas 3.2-3.3 and the smallness ε,we can get(3.43).This completes the proof of Lemma 3.4.

    As a consequence of Lemmas 3.2-3.4,we have

    Corollary 3.5Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    Lemma 3.6Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that for all τ∈[τ0,τ2],

    provided that ε is suitably small.

    ProofWe rewrite equation(2.4)4as

    Multiplying(3.58)by w and integrating the resultant equation in y over R,we have from integration by parts that

    Using the smallness of η and ε,and Corollary 3.5,we obtain

    Then it follows from(3.58)that

    Therefore we have(3.57)holds.This completes the proof of Lemma 3.6.

    By repeating the same argument,we can also obtain

    Lemma 3.7Under the assumptions of Proposition 3.1,there exists a positive constant C>0 such that

    provided that ε is suitably small.

    Proof of Proposition 3.1Proposition 3.1 follows immediately from Corollary 3.5 and Lemmas 3.6-3.7.

    4 Proof of Main Result

    Now,we are ready to prove our main result as follows.

    Proof of Theorem 1.1Since Proposition 3.1 is proved,we can close the a priori assumption(2.6)by choosing ε in(3.1)-(3.2)sufficiently small.Then by the standard continuity argument,one can extend the local-in-time solution to the time τ=τ1.Moreover,estimates(3.1)-(3.2)hold for τ2=τ1,that is

    Thus

    which together with(1.11)gives(1.14).Moreover,by the Sobolev inequality(3.3)and(4.1)-(4.2),we have

    then(1.15)and(1.16)follows from(4.4),(1.9)and(4.5),(1.9),respectively.This completes the proof of Theorem 1.1.

    References

    [1]Lin C J,Coulombel J F,Goudon T.Shock pro fl ies for non-equilibrium radiating gases.Phys D,2006,218:83-94

    [2]Lin C J,Coulombel J F,Goudon T.Asymptotic stability of shock pro fl ies in radiative hydrodynamics.C R Math Acad Sci Paris,2007,345:625-628

    [3]Mihalas D,Mihalas B.Foundation of Radiation Hydrodynamics.London:Oxford University Press,1984

    [4]Pomraning G C.The Equations of Radiation Hydrodynamics.New York:Pergamon Press,1973

    [5]Vincenti W,Kruger C.Introduction to Physical Gas Dynamics.New York:Wiley,1965

    [6]Kawashima S,Nishibata S.A singular limit for hyperbolic-parabolic coupled systems in radiation hydrodynamics.Indiana Univ Math J,2001,50:567-589

    [7]Hamer K.Nonlinear effects on the propagation of sound waves in a radiating gas.Quart J Mech Appl Math,1971,24:155-168

    [8]Serre D.Systems of Conservation Laws,Vol 1.Cambridge:Cambridge University Press,1999

    [9]Smoller J.Shock Waves and Reaction-Di ff usion Equations.New York:Springer-Verlag,1994

    [10]Atkinson F V,Peletier L A.Similarity solutions of the nonlinear di ff usion equation.Arch Rational Meth Anal,1974,54:373-392

    [11]Duyn C J,Peletier L A.A class of similarity solutions of the nonlinear di ff usion equation.Nonlinear Anal,1976/77,1(3):223-233

    [12]Wang J,Xie F.Singular limit to strong contact discontinuity for a 1D compressible radiation hydrodynamics model.SIAM J Math Anal,2011,43:1189-1204

    [13]Rohde C,Wang W J,Xie F.Hyperbolic-Hyperbolic relaxation limit for a 1D compreesible radiation hydrodynamics model:superposition of rarefaction wave and contact wave.Commun Pure Appl Anal,2013,12:2145-2171

    [14]Wang J,Xie F.Asymptotic stability of viscous contact wave for the 1D radiation hydrodynamics system,J Di ff er Equ,2011,251:1030-1055

    [15]Xie F.Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model.Discrete Contin Dyn Syst Ser B,2012,17:1075-1100

    [16]Rohde C,Xie F.Decay rates to viscous contact wave for a 1D compressible radiation hydrodynamics model.Math Models Methods Appl Sci,2013,23:441-469

    [17]Ma S X.Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations.J Di ff er Equ,2010,48:95-110

    [18]Ma S X.Viscous limit to contact discontinuity for the 1-D compressible Navier-Stokes equations.J Math Anal Appl,2012,387:1033-1043

    [19]Kawashima S,Nikkuni Y,Nishibata S.Larger-time behavior of solutions to hyperbolic-elliptic coupled systems.Arch Ration Mech Anal,2003,170:297-329

    [20]Kawashima S,Nikkuni Y,Nishibata S.The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics//Analysis of Systems of Conservation Laws.Chapman and Hall/CRC,1997:87-127

    [21]Kawashima S,Nishibata S.Weak solutions with a shock to a model system of the radiating gas.Sci Bull Josai Univ,1998,5:119-130

    [22]Kawashima S,Nishibata S.Cauchy problem for a model system of the radiating gas:weak solutions with a jump and classical solutions.Math Models Methods Appl Sci,1999,9:69-91

    [23]Kawashima S,Nishibata S.Shock waves for a model system of a radiating gas.SIAM J Math Anal,1999,30:95-117

    [24]Lattanzio C,Marcati P.Golobal well-posedness and relaxation limits of a model for radiating gas.J Di ff er Equ,2003,190:439-465

    [25]Lattanzio C,Mascia C,Serre D.Shock waves for radiative hyperbolic-elliptic systems.Indiana Univ Math J,2007,56:2601-2640

    [26]Huang F M,Li M J,Wang Y.Zero dissipation limit to rarefaction wave with vacuum for the 1-D compressible Navier-Stokes equations.SIAM J Math Anal,2012,44:1742-1759

    [27]Huang F M,Li X.Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations.Chin Ann Math Ser B,2012,33:385-394

    [28]Gao W L,Zhu C J.Asymptotic decay toward the planar rarefaction waves for a model system of the radiating gas in two dimensions.Math Models Methods Appl Sci,2008,18:511-541

    [29]Gao W L,Ruan L Z,Zhu C J.Decay rates to the planar rarefaction waves for a model system of the radiating gas in n dimensions.J Di ff er Equ,2008,244:2614-2640

    [30]Lin C J.Asymptotic stability of rarefaction waves in radiative hydrodynamics.Commun Math Sci,2011,9:207-223

    [31]Xiao Q H,Liu Y N,Kim J S.Asymptotic behavior of rarefaction waves for a model system of a radiating gas.J Inequal Appl,2012,Art ID:81

    [32]Nguyen T,Plaza R G,Zumbrun K.Stability of radiative shock profiles for hyperbolic-elliptic coupled systems.Phys D,2010,239:428-453

    [33]Francesco M Di.Initial value problem and relaxation limits of the Hamer model for radiating gases in several space variables.NoDEA Nonlinear Di ff erential Equations Appl,2007,13:531-562

    [34]Hong H,Huang F M.Asymptotic behavior of solutions toward the superposition of contout discontinuity and shock wave for compressible Navier-Stokes equations with free boundary.Acta Math Sci,2012,32B(1):389-412

    [35]Xin Z P.Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases.Comm Pure Appl Math,1993,46:621-665

    猜你喜歡
    王文娟
    越劇名伶王文娟的世紀(jì)人生
    人人健康(2023年12期)2023-06-28 09:23:22
    “林妹妹”王文娟的性格人生:臺(tái)上復(fù)雜,臺(tái)下簡(jiǎn)單
    廉政瞭望(2021年8期)2021-08-27 08:42:37
    『林妹妹』王文娟的性格人生:臺(tái)上復(fù)雜,臺(tái)下簡(jiǎn)單
    廉政瞭望(2021年15期)2021-08-23 04:57:48
    My English teacher
    “林妹妹”王文娟:養(yǎng)生要糙一點(diǎn)
    Almost Sure Convergence of Weighted Sums for Extended Negatively Dependent Random Variables Under Sub-Linear Expectations
    似一朵青云剛出岫
    東方女性(2017年1期)2017-03-01 17:06:39
    找規(guī)律
    王文娟:越劇“女神”的“簡(jiǎn)單”生活
    迅達(dá)咨詢,享譽(yù)西南——專訪四川省迅達(dá)工程咨詢監(jiān)理有限公司總經(jīng)理 王文娟
    a级毛片在线看网站| 人人妻人人爽人人添夜夜欢视频| 99国产精品免费福利视频| 欧美日韩一区二区视频在线观看视频在线| 日本午夜av视频| svipshipincom国产片| 亚洲精品久久午夜乱码| 一边摸一边做爽爽视频免费| 精品一区二区三卡| 90打野战视频偷拍视频| 精品国产乱码久久久久久小说| 777米奇影视久久| 亚洲精品久久午夜乱码| 免费看av在线观看网站| 亚洲,欧美精品.| 欧美精品一区二区大全| 国产精品人妻久久久影院| 亚洲av电影在线观看一区二区三区| av电影中文网址| 亚洲欧美激情在线| 精品人妻在线不人妻| 午夜福利在线免费观看网站| 免费人妻精品一区二区三区视频| 欧美国产精品一级二级三级| 不卡av一区二区三区| 国产亚洲一区二区精品| 成人午夜精彩视频在线观看| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 欧美乱码精品一区二区三区| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av涩爱| 这个男人来自地球电影免费观看 | 女性被躁到高潮视频| 另类精品久久| 亚洲成人国产一区在线观看 | 69精品国产乱码久久久| 国产人伦9x9x在线观看| 一级a爱视频在线免费观看| 国产一区有黄有色的免费视频| 尾随美女入室| 天天操日日干夜夜撸| 国产极品粉嫩免费观看在线| 91老司机精品| 麻豆精品久久久久久蜜桃| 男人添女人高潮全过程视频| 久久天躁狠狠躁夜夜2o2o | 男女高潮啪啪啪动态图| 好男人视频免费观看在线| 丰满饥渴人妻一区二区三| 国产精品香港三级国产av潘金莲 | 亚洲av成人精品一二三区| 日韩成人av中文字幕在线观看| 国产黄色视频一区二区在线观看| 日韩精品免费视频一区二区三区| 亚洲精品aⅴ在线观看| 亚洲精品乱久久久久久| 国产精品熟女久久久久浪| 日日啪夜夜爽| 人体艺术视频欧美日本| 大片电影免费在线观看免费| a 毛片基地| 日韩视频在线欧美| 交换朋友夫妻互换小说| 午夜久久久在线观看| 高清欧美精品videossex| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 亚洲色图 男人天堂 中文字幕| 制服人妻中文乱码| 少妇 在线观看| 国产xxxxx性猛交| 久久久久久久久久久免费av| 99香蕉大伊视频| 搡老乐熟女国产| 久久人人爽人人片av| 久热这里只有精品99| 亚洲av日韩在线播放| 亚洲免费av在线视频| 少妇猛男粗大的猛烈进出视频| 久久精品久久久久久久性| 亚洲av综合色区一区| 国产av一区二区精品久久| 国产成人一区二区在线| 青草久久国产| 久久青草综合色| 妹子高潮喷水视频| 国产成人精品在线电影| 成人国产av品久久久| 亚洲国产精品国产精品| 性高湖久久久久久久久免费观看| 国产精品无大码| 国产日韩一区二区三区精品不卡| 精品少妇一区二区三区视频日本电影 | 黄片小视频在线播放| 男女边摸边吃奶| 久久久久国产一级毛片高清牌| av国产久精品久网站免费入址| 美女视频免费永久观看网站| 色94色欧美一区二区| 少妇人妻久久综合中文| 国产在视频线精品| avwww免费| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| 国语对白做爰xxxⅹ性视频网站| 亚洲美女搞黄在线观看| 国产欧美亚洲国产| 成人国产av品久久久| 中文字幕人妻丝袜制服| 国产精品人妻久久久影院| 美女国产高潮福利片在线看| 尾随美女入室| 亚洲国产av影院在线观看| 欧美日韩国产mv在线观看视频| 91成人精品电影| 中文字幕人妻丝袜制服| 中国国产av一级| 中文乱码字字幕精品一区二区三区| 人妻 亚洲 视频| 最新的欧美精品一区二区| 我的亚洲天堂| 欧美 日韩 精品 国产| 亚洲成色77777| 国产精品亚洲av一区麻豆 | 国产 一区精品| 一区二区三区四区激情视频| 波多野结衣av一区二区av| 男女之事视频高清在线观看 | 丰满迷人的少妇在线观看| 999精品在线视频| 欧美最新免费一区二区三区| 欧美国产精品一级二级三级| 嫩草影视91久久| 欧美日韩综合久久久久久| 精品午夜福利在线看| 国产精品免费视频内射| 久久久久久久久久久免费av| 免费av中文字幕在线| 麻豆精品久久久久久蜜桃| 99re6热这里在线精品视频| 别揉我奶头~嗯~啊~动态视频 | 黑人欧美特级aaaaaa片| 日日啪夜夜爽| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜爱| videos熟女内射| 成人毛片60女人毛片免费| 久久午夜综合久久蜜桃| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 天天躁夜夜躁狠狠久久av| 中国国产av一级| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 国产精品欧美亚洲77777| 国产黄色视频一区二区在线观看| 成人亚洲精品一区在线观看| 男女国产视频网站| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 欧美精品av麻豆av| 亚洲少妇的诱惑av| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| av在线app专区| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 国产精品久久久久久久久免| 国产有黄有色有爽视频| 国产激情久久老熟女| 国产亚洲av高清不卡| 久久鲁丝午夜福利片| 日韩制服骚丝袜av| 天堂俺去俺来也www色官网| 免费高清在线观看日韩| 欧美中文综合在线视频| 久久精品久久久久久久性| 国产欧美亚洲国产| 男女边吃奶边做爰视频| 久久久久久人人人人人| 伊人亚洲综合成人网| 久久综合国产亚洲精品| 男人舔女人的私密视频| 国产精品 国内视频| 国产成人啪精品午夜网站| 国产成人欧美| 亚洲国产欧美一区二区综合| 美女福利国产在线| 考比视频在线观看| 99久久精品国产亚洲精品| av不卡在线播放| 久久久欧美国产精品| 十八禁人妻一区二区| 午夜日韩欧美国产| 亚洲视频免费观看视频| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 国产伦人伦偷精品视频| 中国国产av一级| 亚洲专区中文字幕在线 | 欧美成人午夜精品| 美女脱内裤让男人舔精品视频| 成人三级做爰电影| 国产精品一区二区精品视频观看| 久久久久久久久久久免费av| 人人澡人人妻人| 99久久人妻综合| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 日韩欧美一区视频在线观看| 国产麻豆69| 国产精品一区二区精品视频观看| 你懂的网址亚洲精品在线观看| 一级片'在线观看视频| 一本久久精品| 亚洲国产精品999| 别揉我奶头~嗯~啊~动态视频 | 久久久久国产一级毛片高清牌| 麻豆精品久久久久久蜜桃| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 自线自在国产av| 日韩人妻精品一区2区三区| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲色图 男人天堂 中文字幕| 一本大道久久a久久精品| 人妻一区二区av| 成人国语在线视频| 狠狠精品人妻久久久久久综合| 欧美日韩一区二区视频在线观看视频在线| 日日爽夜夜爽网站| 国产精品二区激情视频| 国产亚洲最大av| 中文字幕亚洲精品专区| 1024视频免费在线观看| 日韩欧美精品免费久久| 99re6热这里在线精品视频| av网站在线播放免费| 久久久久久人人人人人| 中文欧美无线码| 亚洲精品国产av成人精品| 尾随美女入室| 久久久久精品国产欧美久久久 | 欧美久久黑人一区二区| 高清在线视频一区二区三区| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 91老司机精品| 男女无遮挡免费网站观看| 日韩伦理黄色片| 97精品久久久久久久久久精品| 国产精品av久久久久免费| 久久热在线av| 久久毛片免费看一区二区三区| 看非洲黑人一级黄片| 国产精品99久久99久久久不卡 | 国产精品一区二区精品视频观看| 亚洲欧美精品自产自拍| 99九九在线精品视频| 国产又色又爽无遮挡免| 一区二区av电影网| 丰满饥渴人妻一区二区三| 男女免费视频国产| 亚洲国产最新在线播放| 大香蕉久久网| 我的亚洲天堂| 午夜福利,免费看| 一边亲一边摸免费视频| 午夜福利视频在线观看免费| 国产极品粉嫩免费观看在线| 国产精品久久久久久久久免| 国产黄色免费在线视频| 不卡av一区二区三区| 岛国毛片在线播放| 欧美另类一区| 国产xxxxx性猛交| 又大又黄又爽视频免费| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 欧美日韩视频高清一区二区三区二| 午夜福利视频在线观看免费| 日本wwww免费看| 久热爱精品视频在线9| 国产伦人伦偷精品视频| 亚洲婷婷狠狠爱综合网| 女性生殖器流出的白浆| 国产av国产精品国产| 国产一卡二卡三卡精品 | 嫩草影视91久久| 如日韩欧美国产精品一区二区三区| 亚洲国产精品成人久久小说| 亚洲人成77777在线视频| 人人澡人人妻人| 国产精品香港三级国产av潘金莲 | 午夜福利视频精品| 午夜福利,免费看| 2018国产大陆天天弄谢| 91成人精品电影| 别揉我奶头~嗯~啊~动态视频 | 高清欧美精品videossex| av有码第一页| 看免费av毛片| 黄片小视频在线播放| 亚洲欧洲日产国产| 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 欧美在线黄色| 啦啦啦在线观看免费高清www| 日韩制服丝袜自拍偷拍| 日韩伦理黄色片| 亚洲精品中文字幕在线视频| 中文欧美无线码| 亚洲五月色婷婷综合| 欧美xxⅹ黑人| 欧美国产精品va在线观看不卡| 天天添夜夜摸| 天天躁日日躁夜夜躁夜夜| 国产一区二区激情短视频 | 一边亲一边摸免费视频| 国产xxxxx性猛交| 色吧在线观看| 国产成人系列免费观看| 亚洲一级一片aⅴ在线观看| 亚洲伊人色综图| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 哪个播放器可以免费观看大片| 亚洲精品第二区| 久久免费观看电影| 精品少妇一区二区三区视频日本电影 | 色吧在线观看| 少妇精品久久久久久久| 日韩大片免费观看网站| 在线观看人妻少妇| 国产精品秋霞免费鲁丝片| 999久久久国产精品视频| 日本色播在线视频| 美女视频免费永久观看网站| av福利片在线| 亚洲图色成人| 桃花免费在线播放| 丁香六月天网| 久久久久国产一级毛片高清牌| 在线观看人妻少妇| 亚洲av男天堂| 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 日本av手机在线免费观看| 国产黄色视频一区二区在线观看| 大码成人一级视频| 韩国高清视频一区二区三区| 亚洲精品美女久久av网站| 大码成人一级视频| 亚洲av综合色区一区| 精品福利永久在线观看| 成人影院久久| 亚洲精品国产区一区二| 国产精品av久久久久免费| 亚洲国产精品一区三区| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 午夜免费观看性视频| 久久这里只有精品19| 韩国av在线不卡| 欧美日韩亚洲综合一区二区三区_| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 国产精品无大码| 中文乱码字字幕精品一区二区三区| 少妇被粗大的猛进出69影院| 亚洲国产av影院在线观看| 性色av一级| 叶爱在线成人免费视频播放| 天美传媒精品一区二区| 免费少妇av软件| 99热国产这里只有精品6| 少妇人妻精品综合一区二区| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 午夜福利乱码中文字幕| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 国产精品 国内视频| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 国产精品 欧美亚洲| 一级黄片播放器| 波野结衣二区三区在线| 高清不卡的av网站| 中文字幕人妻丝袜一区二区 | 久久精品国产a三级三级三级| 久久久久精品久久久久真实原创| 亚洲成人一二三区av| 日韩一本色道免费dvd| 美国免费a级毛片| 欧美黑人欧美精品刺激| 狂野欧美激情性xxxx| 麻豆精品久久久久久蜜桃| av网站免费在线观看视频| 又黄又粗又硬又大视频| 在线天堂中文资源库| 男女边吃奶边做爰视频| 成年av动漫网址| 久久天躁狠狠躁夜夜2o2o | 夫妻午夜视频| 一级爰片在线观看| 99精国产麻豆久久婷婷| 天美传媒精品一区二区| 十八禁高潮呻吟视频| 久久久亚洲精品成人影院| 久久久久久久精品精品| 亚洲国产精品999| 欧美久久黑人一区二区| kizo精华| 精品午夜福利在线看| 欧美日韩亚洲高清精品| 日本av免费视频播放| 中文字幕精品免费在线观看视频| 如何舔出高潮| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美| 91aial.com中文字幕在线观看| 我要看黄色一级片免费的| 亚洲欧美成人精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 午夜福利网站1000一区二区三区| 咕卡用的链子| 性高湖久久久久久久久免费观看| 久久热在线av| 国产精品香港三级国产av潘金莲 | 成年女人毛片免费观看观看9 | 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 男女之事视频高清在线观看 | 男人操女人黄网站| 亚洲成人一二三区av| www.av在线官网国产| 欧美精品av麻豆av| 日韩制服丝袜自拍偷拍| 欧美人与善性xxx| 亚洲精品国产一区二区精华液| 国产野战对白在线观看| 欧美日韩一级在线毛片| 亚洲欧美日韩另类电影网站| 欧美激情高清一区二区三区 | 国产成人一区二区在线| 国产精品免费大片| 丝瓜视频免费看黄片| 国产福利在线免费观看视频| 女性被躁到高潮视频| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品电影小说| 一级片免费观看大全| 最近手机中文字幕大全| 亚洲中文av在线| 日本av手机在线免费观看| 一本一本久久a久久精品综合妖精| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品| 亚洲免费av在线视频| 久久久国产欧美日韩av| 日本wwww免费看| 亚洲av成人不卡在线观看播放网 | 国产淫语在线视频| 亚洲av成人精品一二三区| 欧美 日韩 精品 国产| 母亲3免费完整高清在线观看| 久久精品亚洲熟妇少妇任你| 丝袜美腿诱惑在线| 午夜91福利影院| 久久女婷五月综合色啪小说| 男男h啪啪无遮挡| 欧美黑人欧美精品刺激| 9色porny在线观看| 99re6热这里在线精品视频| 国产精品 欧美亚洲| 久久精品aⅴ一区二区三区四区| 国产一区亚洲一区在线观看| 亚洲欧美色中文字幕在线| 在线观看三级黄色| 日韩精品免费视频一区二区三区| 一级片'在线观看视频| 欧美日韩亚洲高清精品| 欧美日韩一级在线毛片| 成年av动漫网址| 亚洲伊人久久精品综合| 丁香六月天网| 亚洲国产欧美在线一区| avwww免费| av一本久久久久| 国产伦理片在线播放av一区| 午夜激情久久久久久久| 亚洲欧美色中文字幕在线| 亚洲综合色网址| 男女无遮挡免费网站观看| 免费av中文字幕在线| 蜜桃在线观看..| www.精华液| 亚洲第一青青草原| 精品第一国产精品| 久久久久精品人妻al黑| 99久久综合免费| 肉色欧美久久久久久久蜜桃| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 国产片特级美女逼逼视频| 黄频高清免费视频| 97人妻天天添夜夜摸| 国产黄色免费在线视频| 青春草国产在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av综合色区一区| 99热国产这里只有精品6| 女人高潮潮喷娇喘18禁视频| 亚洲精品视频女| 国产精品一区二区精品视频观看| 只有这里有精品99| 国产精品久久久久久久久免| 久久精品久久久久久噜噜老黄| 97在线人人人人妻| av网站在线播放免费| 午夜免费观看性视频| 男女高潮啪啪啪动态图| av视频免费观看在线观看| 中文字幕最新亚洲高清| 国产一区二区三区综合在线观看| 久久97久久精品| 成年人免费黄色播放视频| av卡一久久| 99国产综合亚洲精品| 我要看黄色一级片免费的| 久久久久久久久久久久大奶| 青春草国产在线视频| 日本色播在线视频| 自线自在国产av| 可以免费在线观看a视频的电影网站 | 亚洲人成77777在线视频| 99九九在线精品视频| 久久99一区二区三区| 一边摸一边做爽爽视频免费| 婷婷色综合大香蕉| 自线自在国产av| 精品午夜福利在线看| 男女无遮挡免费网站观看| 欧美少妇被猛烈插入视频| 中文字幕人妻丝袜一区二区 | 99精国产麻豆久久婷婷| 老司机亚洲免费影院| 这个男人来自地球电影免费观看 | 别揉我奶头~嗯~啊~动态视频 | 男女国产视频网站| 国产精品久久久人人做人人爽| 亚洲精品国产色婷婷电影| 波野结衣二区三区在线| 午夜免费鲁丝| 捣出白浆h1v1| 久久精品国产综合久久久| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 国产精品av久久久久免费| 毛片一级片免费看久久久久| 天天操日日干夜夜撸| 国产精品免费视频内射| 波多野结衣一区麻豆| 精品亚洲成a人片在线观看| 久久久国产一区二区| 亚洲成人国产一区在线观看 | 欧美 亚洲 国产 日韩一| 国产精品 国内视频| 一区二区三区激情视频| 99香蕉大伊视频| 亚洲欧美色中文字幕在线| 欧美中文综合在线视频| 不卡视频在线观看欧美| 午夜福利视频精品| 亚洲av日韩在线播放| 一边摸一边做爽爽视频免费| 最黄视频免费看| 国产免费又黄又爽又色| 亚洲国产中文字幕在线视频| 欧美日本中文国产一区发布| 好男人视频免费观看在线| 精品免费久久久久久久清纯 | 国产1区2区3区精品| 欧美日韩亚洲综合一区二区三区_| 欧美日韩av久久| 国产精品偷伦视频观看了| 日韩制服丝袜自拍偷拍| 久久久久国产一级毛片高清牌| 亚洲第一青青草原| 午夜日韩欧美国产| 高清黄色对白视频在线免费看| 黄网站色视频无遮挡免费观看| bbb黄色大片| 国产免费又黄又爽又色| 丰满迷人的少妇在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲一区中文字幕在线| 波多野结衣一区麻豆| 亚洲第一av免费看| 9色porny在线观看| 99国产综合亚洲精品| 在线免费观看不下载黄p国产| 制服诱惑二区| 精品亚洲成a人片在线观看|