• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES?

    2016-04-18 05:44:29SahbiBOUSSANDELFacultdesSciencesdeGab6072ZrigGabCitRiadhTunisiaLaboratoireEDPetApplicationsLR03ES04Tunisia

    Sahbi BOUSSANDELFaculté des Sciences de Gabès 6072 Zrig Gabès Cité Riadh Tunisia-Laboratoire EDP et Applications LR03ES04,Tunisia

    ?

    EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES?

    Sahbi BOUSSANDEL
    Faculté des Sciences de Gabès 6072 Zrig Gabès Cité Riadh Tunisia-Laboratoire EDP et Applications LR03ES04,Tunisia

    E-mail:sahbi.boussandel@yahoo.fr

    AbstractThis paper deals with an abstract periodic gradient system in which the gradient is taken with respect to a variable metric.We obtain an existence and uniqueness result via the application of a global inverse theorem.

    Key wordsexistence and uniqueness;periodic solutions;gradient systems;global inverse theorem

    2010 MR Subject Classi fi cation34K30

    ?Received September 25,2014;revised May 16,2015.

    1 Introduction

    In this paper,we investigate the existence and the uniqueness of solutions for the first order nonlinear periodic differential equation

    where E:RN→R is a twice differentiable functional,?g(t)E denotes the gradient of E with respect to a time-variable inner product〈·,·〉g(t),p≥2 and f∈Lp(0,T;RN).

    The periodic boundary value problems were studied intensively in recent years under several assumptions on the functional E.Many methods and tools were used in order to solve these problems,e.g.,fixed point methods,degree theory,variational methods,the upperlower solutions method and perturbation and iterative techniques.We refer the reader to[7,8,11,14,16,18-23,32,34]and the references therein for more details about these methods and for abstract results and their applications.

    In this paper,the techniques of the proofs are based on the application of the following global inverse functions theorem.

    Theorem 1.1(see[24])Let X and Y be two Banach spaces,and let φ:X→Y be a map.The following assertions are equivalent:

    i)φ is a homeomorphism from X into Y,

    ii)φ is a local homeomorphism and proper.

    Recall that the map φ is proper if φ?1(C)is a compact set in X whenever C is a compact set in Y.

    Several authors obtained existence and uniqueness results for boundary value problems using global inversion theorems;see for example[1-3,5,6,9,12,13,15,17,26-30,33,35,36].

    In order to apply Theorem 1.1,we reformulate problem(1.1)as an algebraic equation

    where φ:X→Y is a mapping from a Banach space X into a Banach space Y,and we prove that φ satisfies assumptions of Theorem 1.1.Under some monotonicity condition on the derivative operator E′and under some nondegeneracy condition on g we prove that problem(1.1)admits a unique solution.In the setting of gradient systems in which the gradient is taken with respect to variable metrics,we refer to[10,Theorem 2.10 and Proof of Theorem 6.1-Part 1]in which the metric depends on the space variable,and to[4,Proof of Theorem 4-Part 1]in which the author considered metrics depending on the time and space variables.The problems considered in[4]and[10]are with initial data.

    2 Functional Setting and Assumptions

    First,we recall from[10]some basic facts and results about Euclidian and Riemannian metrics.Let N∈N?and let E:RN→R be a Fréchet differentiable functional.We denote by〈·,·〉and‖·‖the Euclidian inner product and norm on RN,respectively.The Euclidian gradient of E is the function?E which assigns to every point u∈RNthe unique element ?E(u)∈RNsuch that

    By the Riesz-Fréchet theorem,the euclidian gradient?E is well de fined in the sense that it exists and it is unique.We denote by Inner(RN)the set of all inner products on RN.Let T>0 and let g:[0,T]→Inner(RN)be a function and denote by〈·,·〉g(t)the inner product g(t)at a time t∈[0,T]and by‖·‖g(t)the norm associated with this inner product.For every t∈[0,T],the gradient of E with respect to the inner product〈·,·〉g(t)is the function?g(t)E which assigns to every point u∈RNthe unique element?g(t)E(u)∈RNsuch that

    By the Riesz-Fréchet theorem,the euclidian gradient?g(t)E exists and is unique for every t∈[0,T].

    For every t∈[0,T],let Q(t)∈L(RN)be de fined by

    Then we have

    Remark 2.1We note that if E is of class C2,we can de fi ne,for every t∈[0,T],the functiongiven for every u∈RNby

    where?2E(u)denotes the Hessian matrix of E at the point u.

    We assume that E and g satisfy the following assumptions:

    (H1)E∈C2(RN,R),

    (H3)?c′>0,c′′≥0?u∈RN,〈?E(u),u〉≥c′‖u‖2?c′′‖u‖,

    (H4)for every v,w∈RN,the function t→〈v,w〉g(t)is measurable on[0,T],

    (H5)?c1,c2>0,?u∈RN,?t∈[0,T],c1‖u‖≤‖u‖g(t)≤c2‖u‖.

    Let p∈[2,∞)and Y=Lp(0,T;RN)which is a Banach space for the norm

    If p=2,then L2(0,T;RN)is a Hilbert space for the inner product

    Let further

    which is a Banach space for the norm

    If p=2,then X is a Hilbert space for the inner product

    Recall,from the Sobolev embedding theorem,that

    with continuous embedding,so that the condition u(0)=u(T)which appears in the de finition of the space X makes sense.

    3 Some Preliminary Results

    In this section,we give some preliminary lemmas which turn out essential for the proof of the main result.The first one provides a regularity result for the Nemytskii operator associated to the function?g(·)E.

    Lemma 3.1Let

    be the Nemytskii operator de fined by

    Under assumptions(H1),(H4)and(H5),the Nemytskii operator F is well de fined,continuously differentiable on X and the derivative is given by

    ProofLet

    be the Nemytskii operator de fined by

    Then we have

    The fact that G is continuously differentiable follows similarly as in the proof of[25,Theorem 3.1],and we have

    Since,for every t∈[0,T]and every v,w∈RN,〈v,w〉=〈Q(t)?1v,w〉g(t),we deduce from assumption(H5)that

    and therefore

    It follows that F is well de fined,continuously differentiable on X,and for every u,v∈X,we have

    For the second result,we give su ffi cient conditions that ensure the existence and the uniqueness of solutions for a linear nonautonomous problem with periodic boundary condition.

    Theorem 3.2Assume that p=2.Let(A(t))t∈[0,T]?L(RN)be such that A is measurable on[0,T]and assume that

    (a)?c>0,?t∈[0,T],?x∈RN,〈A(t)x,x〉≥c‖x‖2,

    Then,for every f∈L2(0,T;RN),there exists a unique u∈W1,2(0,T;RN)which is solution of the nonautonomous linear problem

    ProofLet f∈L2(0,T;RN).For every α∈[0,1],we de fi ne the linear operator

    where Id is the identity operator on RN,and we consider the linear nonautonomous problem

    We introduce the set

    For every α∈[0,1],we de fi ne the linear operator Tα:X→Y by

    We note,by assumption(b),that Tαis a bounded operator.We note also that α∈M if and only if the operator Tαis invertible.

    For α=0,eq.(3.2)is a simple ordinary differential equation which has a unique solution u∈X,and henceWe will show that M is an open and closed set in[0,1].Let us prove that M is an open set in[0,1].This is a consequence of assumption(b)and the Neumann Series.Indeed,by assumption(b),there exists C1>0 such that

    where I is the natural embedding from X into Y.Fix an α∈M and denote

    Let β∈[0,1]such that

    and prove that Tβis invertible.By using(3.3)and(3.4),we have

    It follows by the Neumann series that the operatoris invertible.However,

    Now,we prove that M is a closed set in[0,1].Let(αn)be any sequence in M which converges to α∈[0,1].From the de finition of the set M,for every n∈N,there exists a unique un∈W1,2(0,T;RN)which is solution of

    We multiply eq.(3.5)by unwith respect to the inner product of L2(0,T;RN),and we obtain

    By using the periodic boundary condition un(0)=un(T),we have

    and hence by assumption(a),identity(3.6)implies

    Therefore

    where c′=min(1,c).It follows that

    Moreover,by assumption(b)and estimate(3.7),we can deduce from eq.(3.5)that

    and therefore,by combining this last estimate with estimate(3.7)we obtain

    Let h∈X.We use estimate(3.8)in order to obtain

    We let n→∞in this last estimate and we obtain

    From this last estimate it follows that the operator Tα:X→Y is injective and by[31,Lemma 4.47],Tαhas closed range.By[31,Theorem 4.48],it remains to prove that the operator Tα:X→Y is surjective,that is RanTαis dense in Y.Suppose by contradiction that RanTαY.Then,there exists k∈Y{0}such that for every h∈X we have〈Tαh,k〉L2=0.Since the sequenceis bounded in X,and since X is re fl exive,it therefore admits a weakly convergent subsequence(again denoted bywith some weak limit h∈X.Then

    a contradiction to the fact that k0.Hence RanTα=Y,that is Tαis surjective.Since[0,1]is connected,we can deduce that M=[0,1]and the conclusion follows by taking α=1.

    4 The Main Result

    We consider the following gradient system

    The main result of this paper is the following theorem.

    Theorem 4.1Let p∈[2,∞).Under assumptions(H1)-(H5),for every f∈Lp(0,T;RN),problem(4.1)admits a unique solution u∈W1,p(0,T;RN).

    ProofFor the proof,we apply Theorem 1.1.We study the cases p=2 and p>2 separately.

    Case 1p=2.

    Let φ:X→Y be the function de fined by

    The map L:u→u′is linear and bounded from X into Y,therefore continuously differentiable and we have

    Hence by Lemma 3.1,φ is well de fined,continuously differentiable on X and the derivative of φ is given by

    Let u∈X be fixed.We prove that φ′(u)is invertible.This is equivalent to the property that for every e∈L2(0,T;RN),the nonautonomous linear problem

    admits a unique solution.Let

    We have for every t∈[0,T],

    Since,for every t∈[0,T],we have(see the proof of Lemma 3.1),we obtain

    By using the continuous embedding W1,2(0,T;RN)C([0,T];RN),there existssuch that

    Since E is of class C2,there existssuch that

    and consequently,we obtain

    This proves that assumption(b)of Theorem 3.2 is satis fied.Moreover,we have from assumption(H2)

    Therefore,as a consequence of Theorem 3.2,problem(4.2)admits a unique solution and thenφ′(u)is a linear homeomorphism from X into Y.Hence,φ is a local homeomorphism.

    In order to show that φ is a proper map,let C be any compact set of Y and prove thatφ?1(C)is a compact set of X.Let(un)be any sequence of φ?1(C).Then there exists(vn)a sequence in C such that vn=φ(un)for any n∈N,i.e.,

    Since C is compact,we can extract from(vn)a subsequence(which we denote again(vn))such that vn→v in C.

    By multiplying identity(4.3)bywith respect to the inner product〈·,·〉g(t),then by integrating over the interval(0,T),we have

    By using the fact that un(0)=un(T),we have

    and hence we obtain

    From assumption(H5)we have

    and therefore

    Since(vn)is bounded inis bounded in L2(0,T;RN)too.By multiplying identity(4.3)by un(t)with respect to the inner product〈·,·〉g(t),then by integrating over the interval(0,T),we have

    By using assumption(H3),we deduce

    This implies that

    Since?E is continuous on RN,it follows from convergence(4.4)that?E(un)→?E(u)in L2(0,T;RN).Since,for every t∈[0,T],we have?g(·)E(u)in L2(0,T;RN).From identity(4.3),we deduce thatFrom convergence(4.5),we haveand therefore u′= v??g(·)E(u).Hence,un→u in W1,2(0,T;RN),and φ(u)=v∈C.Moreover,we deduce from the fact that un(0)=un(T)and the convergence(4.4)that u(0)=u(T).It follows that un→u in φ?1(C)that is φ?1(C)is a compact set of X.By Theorem 1.1,φ is global homeomorphism from X into Y,and hence problem(4.1)admits a unique solution u∈W1,2(0,T;RN).

    Case 2p>2.

    We prove that this case is a consequence of Case 1.Let f∈Lp(0,T;RN).Since p>2 we have f∈L2(0,T;RN)and by Case 1,there exists a unique u∈W1,2(0,T;RN)which is solution of problem(4.1).Since W1,2(0,T;RN)is a subspace of C([0,T];RN),the function t→?E(u(t))is continuous on[0,T]and then?E(u)∈Lp(0,T;RN).By using the fact that,for every t∈[0,T],we deduce that?g(·)E(u(·))∈Lp(0,T;RN).It follows from eq.(4.1)that u′∈Lp(0,T;RN).Hence,u∈W1,p(0,T;RN)is the unique solution of problem(4.1).

    5 Application

    Let E:RN→R be a twice continuously differentiable functional,let ε>0 and m:[0,T]→be a measurable function.We assume that E satisfies the following assumption:

    (H)?c>0,?u,v∈RN,E′′(u)(v,v)≥c‖v‖2.

    Let further g:[0,T]→Inner(RN)be the function de fined by

    For every t∈[0,T]and every u,v∈RN,we have

    Hence,we have

    We note that assumption(H2)is equivalent to the following property

    It follows that

    so that assumption(H3)is well satis fied.

    It is not difficult to verify that E and g satisfy the other assumptions of Theorem 4.1,so that we obtain the following corollary.

    Corollary 5.1Let p∈[2,∞).For every f∈Lp(0,T;RN),there exists a unique u∈W1,p(0,T;RN)which is solution of

    References

    [1]Ahmad S.An existence theorem for periodically perturbed conservative systems.Michigan Math J,1973,20:385-392

    [2]Amann H.On the unique solvability of semi-linear operator equations in Hilbert spaces.J Math Pures Appl,1982,61:149-175

    [3]Amaral L,Pera M.On periodic solutions of nonconservative systems.Nonlinear Anal,1982,6:733-743

    [4]Boussandel S.Global existence and maximal regularity of gradient systems.J Di ff er Equ,2011,250(2):929-948

    [5]Brown K J.Nonlinear boundary value problems and a global inverse function theorem.Ann Mat Pura Appl,1975,106(4):205-217

    [6]Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse functions theorem.Nonlinear Anal,1980,4:193-201

    [7]Capietto A,Mawhin J,Zanolin F.A continuation approach to superlinear periodic boundary value problems.J Di ff er Equ,1990,88:347-395

    [8]Chen Y,Chen J,Wan Z.Remarks on the periodic boundary value problems for first-order differential equations.Comput Math Appl,1999,37:49-55

    [9]Chen J,O’Regan D.On periodic solutions for even order differential equations.Nonlinear Analysis,2008,69:1138-1144

    [10]Chill R,Fasangová E.Gradient systems.In:13th International Internet Seminar

    [11]Fonda A Sfecci A.A general method for the existence of periodic solutions of differential systems in the plane.J Di ff er Equ,2012,252:1369-1391

    [12]Dalmasso R.An existence and uniqueness theorem for a second order nonlinear system.J Math Anal Appl,2007,327:715-722

    [13]Dalmasso R.Unique solvability for a second order nonlinear system via two global inversion theorems.Ele J Di ff er Equ,2008,(11):1-8

    [14]Lakshmikantham V,Leela S.Existence and monotone method for periodic solutions of first-oder differential equations.J Math Anal Appl,1983,91:237-243

    [15]Lin D,Yang Y Zhu D.Periodic solutions for some ordinary differential equations involving stability.Nonlinear Analysis,2001,45:963-971

    [16]Liu Y.Multiple solutions of periodic boundary value problems for first order differential equations.Comput Math Appl,2007,54:1-8

    [17]Mawhin J.Contractive mappings and periodically perturbed conservative systems.Arch Math,1976,12:67-73

    [18]Mawhin J.Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS-Regional Conf Math 40.Providence,RI:Amer Math Soc,1979

    [19]Mawhin J.First order ordinary differential equations with several periodic solutions.J Appl Math Phy(ZAMP),1987,38:257-265

    [20]Mawhin J,Thompson H B.Periodic or bounded solutions of Caretéodory systems of ordinary differential equations.J Dyn Di ff er Equ,2003,15(2/3):327-334

    [21]Mawhin J.Topological Fixed Point Theory and Nonlinear Di ff erential Equations.Handbook of Topological Fixed Point Theory.Springer,2005

    [22]Nagle R K,Sinkala Z.Existence of 2π-periodic solutions for nonlinear systems of first-order ordinary differential equations at resonance.Nonlinear Analysis,TMA,1995,25:l-16

    [23]Nieto J J,Alvarez-Noriega N.Periodic boundary value problems for nonlinear first order ordinary differential equations.Acta Math Hungar,1996,71(1/2):49-58

    [24]Plastock R.Homeomorphisms between Banach spaces.Trans Amer Math Soc,1974,200:169-183

    [25]Rabier P J,Stuart C A.Boundary value problems for first order systems on the half-line.Topol Methods Nonlinear Anal,2005,25(1):101-133

    [26]Radulescu M,Radulescu S.Global inversion theorems and applications to differential equations.Nonlinear Analysis,TMA,1980,4(4):951-965

    [27]Radulescu M,Radulescu S.An application of Hadamard-Levy theorem to a scalar initial value problem.Proc Amer Math Soc,1989,106(1):139-143

    [28]Radulescu M,Radulescu S.An application of a global inversion theorem to a Dirichlet problem for a second order differential equation.Rev Roumaine Math Pures Appl,1992,37:929-933

    [29]Radulescu M,Radulescu S.Applications of a global inversion theorem to unique solvability of second order Dirichlet problems.An Univ Craiova,Math Comp Sci Ser,2003,30(1):198-203

    [30]Radulescu M,Radulescu S.Global inversion theorems and applications to unique solvability of boundary value theorems for differential equations.Int J Di ff er Equ Appl,2000,1(2):159-166

    [31]Rynne B P,Youngson M A.Linear Functional Analysis.Springer Undergraduate Mathematics Series.Springer,2008

    [32]Tisdell C C.Existence of solutions to first-order periodic boundary value problems.J Math Anal Appl,2006,323:1325-1332

    [33]Trif T.Unique solvability of certain nonlinear boundary value problems via a global inversion theorem of Hadamard-Levy type.Demonstratio Math,2005,38(2):331-340

    [34]Vidossich G.Multiple periodic solutions for first-order ordinary differential equations.J Math Anal Appl,1987,127:459-469

    [35]Li W G.An application of a global inversion theorem to an existence and uniqueness theorem for a class of nonlinear systems of differential equations.Nonlinear Analysis,2009,70:3730-3737

    [36]Yang X.Existence and uniqueness results for periodic solution of nonlinear differential equations.Appl Math Comput,2002,130:213-223

    亚洲一区二区三区色噜噜| 一级a爱片免费观看的视频| 亚洲,欧美精品.| 亚洲性夜色夜夜综合| 日本a在线网址| 国产精品秋霞免费鲁丝片| 看免费av毛片| www.自偷自拍.com| 欧美激情 高清一区二区三区| 亚洲国产精品成人综合色| 欧美中文日本在线观看视频| 久久久久久久久中文| 亚洲电影在线观看av| 久热这里只有精品99| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品国产亚洲av高清涩受| 看免费av毛片| 午夜福利高清视频| 欧美日本中文国产一区发布| videosex国产| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区免费| 99久久99久久久精品蜜桃| 国产欧美日韩一区二区精品| 人人妻人人澡欧美一区二区 | 亚洲欧美日韩另类电影网站| 欧美乱色亚洲激情| 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区mp4| 国产成人欧美| 久久人人精品亚洲av| 久热这里只有精品99| АⅤ资源中文在线天堂| 91av网站免费观看| 老鸭窝网址在线观看| 两性夫妻黄色片| av片东京热男人的天堂| 美国免费a级毛片| 亚洲全国av大片| 99在线人妻在线中文字幕| 青草久久国产| 久久国产亚洲av麻豆专区| 女人被躁到高潮嗷嗷叫费观| 久久久国产精品麻豆| av福利片在线| 久久精品国产综合久久久| 男人舔女人的私密视频| 国产av精品麻豆| 老司机午夜十八禁免费视频| 国产免费男女视频| 在线视频色国产色| 久久久久久久久久久久大奶| 久久国产精品人妻蜜桃| 亚洲欧美激情在线| 久久狼人影院| 人人妻人人澡欧美一区二区 | 美女国产高潮福利片在线看| 国产亚洲精品一区二区www| 一级毛片女人18水好多| 男男h啪啪无遮挡| 一边摸一边抽搐一进一出视频| 国产99白浆流出| 涩涩av久久男人的天堂| 国产私拍福利视频在线观看| 国产精品爽爽va在线观看网站 | 欧美激情极品国产一区二区三区| 香蕉丝袜av| 在线观看免费日韩欧美大片| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 国产高清激情床上av| 老鸭窝网址在线观看| 国产精品永久免费网站| 国产视频一区二区在线看| 午夜福利,免费看| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看 | 亚洲精品国产区一区二| or卡值多少钱| 亚洲欧美精品综合久久99| 757午夜福利合集在线观看| 激情视频va一区二区三区| 国产亚洲欧美在线一区二区| 国产黄a三级三级三级人| 久久精品国产亚洲av高清一级| 中文字幕人妻熟女乱码| 18美女黄网站色大片免费观看| 久久久久久大精品| 亚洲成av片中文字幕在线观看| 一个人免费在线观看的高清视频| 麻豆av在线久日| 免费在线观看亚洲国产| 亚洲国产精品久久男人天堂| 亚洲欧美精品综合久久99| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久精品电影 | 一区二区三区高清视频在线| 婷婷精品国产亚洲av在线| 久久人人精品亚洲av| АⅤ资源中文在线天堂| 满18在线观看网站| 国产欧美日韩一区二区精品| 法律面前人人平等表现在哪些方面| 自拍欧美九色日韩亚洲蝌蚪91| 欧美一级毛片孕妇| 中文字幕久久专区| 精品国产国语对白av| 国产精品电影一区二区三区| 久久久久久免费高清国产稀缺| 亚洲激情在线av| 久久天躁狠狠躁夜夜2o2o| 欧美大码av| 麻豆久久精品国产亚洲av| 91成年电影在线观看| 夜夜夜夜夜久久久久| 中文字幕精品免费在线观看视频| 1024香蕉在线观看| x7x7x7水蜜桃| 亚洲欧美精品综合一区二区三区| 久久久久久久午夜电影| 精品久久久久久成人av| 18禁观看日本| 电影成人av| 精品第一国产精品| 国产av在哪里看| 18禁美女被吸乳视频| 国产片内射在线| 国产99白浆流出| 91成年电影在线观看| 性欧美人与动物交配| 美女国产高潮福利片在线看| 19禁男女啪啪无遮挡网站| 久久这里只有精品19| 欧美乱色亚洲激情| 午夜福利,免费看| 99久久国产精品久久久| 97人妻天天添夜夜摸| 国产成人精品久久二区二区免费| 欧美av亚洲av综合av国产av| 视频在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 波多野结衣av一区二区av| 亚洲精华国产精华精| 9色porny在线观看| 91成人精品电影| 男女下面插进去视频免费观看| 国产片内射在线| 成人av一区二区三区在线看| 精品国产乱码久久久久久男人| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 色综合欧美亚洲国产小说| 国产乱人伦免费视频| 亚洲av成人av| 成人三级做爰电影| 日韩中文字幕欧美一区二区| 搡老妇女老女人老熟妇| 亚洲色图综合在线观看| 中文字幕人成人乱码亚洲影| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 少妇被粗大的猛进出69影院| 国产极品粉嫩免费观看在线| 熟妇人妻久久中文字幕3abv| 欧美午夜高清在线| 在线观看免费午夜福利视频| 9热在线视频观看99| 亚洲男人天堂网一区| 久久这里只有精品19| 亚洲av五月六月丁香网| 色综合站精品国产| 正在播放国产对白刺激| 亚洲国产精品999在线| 一边摸一边抽搐一进一小说| 成人欧美大片| 精品一品国产午夜福利视频| 操出白浆在线播放| 国产精品免费视频内射| 美女高潮到喷水免费观看| 欧美乱妇无乱码| 老司机午夜十八禁免费视频| 视频区欧美日本亚洲| 夜夜爽天天搞| 性少妇av在线| 国产激情欧美一区二区| 999久久久精品免费观看国产| 久久亚洲精品不卡| 亚洲国产欧美一区二区综合| 中出人妻视频一区二区| 无限看片的www在线观看| 久久久国产欧美日韩av| 国产av精品麻豆| 免费在线观看亚洲国产| 咕卡用的链子| 男女做爰动态图高潮gif福利片 | 国产成人精品久久二区二区免费| 亚洲成人国产一区在线观看| 婷婷丁香在线五月| 国产高清视频在线播放一区| 99riav亚洲国产免费| 91在线观看av| 亚洲,欧美精品.| 久久久久久亚洲精品国产蜜桃av| 老汉色∧v一级毛片| 免费观看人在逋| 91大片在线观看| 久久人人精品亚洲av| 在线观看免费日韩欧美大片| 欧美激情久久久久久爽电影 | 亚洲一区二区三区不卡视频| 女生性感内裤真人,穿戴方法视频| 大码成人一级视频| 麻豆久久精品国产亚洲av| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| АⅤ资源中文在线天堂| 久久久久精品国产欧美久久久| 亚洲 国产 在线| 久久精品91无色码中文字幕| 欧美精品啪啪一区二区三区| 国产av精品麻豆| 久久人妻av系列| 美女大奶头视频| 99香蕉大伊视频| 少妇熟女aⅴ在线视频| 免费高清视频大片| 最新美女视频免费是黄的| 精品久久久久久,| 久久午夜亚洲精品久久| 少妇 在线观看| 大陆偷拍与自拍| 国产aⅴ精品一区二区三区波| 午夜福利18| 一边摸一边抽搐一进一小说| 激情在线观看视频在线高清| 亚洲成人国产一区在线观看| 满18在线观看网站| 久久久国产欧美日韩av| 国产精品爽爽va在线观看网站 | 久久久国产欧美日韩av| 国产三级黄色录像| 最近最新免费中文字幕在线| 国产激情久久老熟女| 又黄又爽又免费观看的视频| 97人妻精品一区二区三区麻豆 | 精品乱码久久久久久99久播| 嫁个100分男人电影在线观看| 久久人人爽av亚洲精品天堂| 久久久久久免费高清国产稀缺| 在线天堂中文资源库| 成年人黄色毛片网站| 啦啦啦观看免费观看视频高清 | 禁无遮挡网站| 国产乱人伦免费视频| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| 亚洲精品一卡2卡三卡4卡5卡| 国产精品av久久久久免费| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 亚洲男人的天堂狠狠| 人人妻人人澡欧美一区二区 | 日本欧美视频一区| 97超级碰碰碰精品色视频在线观看| 999久久久精品免费观看国产| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 免费少妇av软件| 制服诱惑二区| 色老头精品视频在线观看| 黄色视频不卡| 9色porny在线观看| 男女做爰动态图高潮gif福利片 | 色在线成人网| 黑丝袜美女国产一区| 脱女人内裤的视频| 老汉色av国产亚洲站长工具| 俄罗斯特黄特色一大片| 精品高清国产在线一区| 国产真人三级小视频在线观看| 在线观看午夜福利视频| 亚洲最大成人中文| АⅤ资源中文在线天堂| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 国产精品秋霞免费鲁丝片| 国产成人欧美| 国产欧美日韩一区二区精品| 国产成人欧美| 久9热在线精品视频| 亚洲最大成人中文| 国产高清有码在线观看视频 | 欧美日韩福利视频一区二区| 国产精品免费视频内射| a级毛片在线看网站| 国产精品野战在线观看| 美女高潮到喷水免费观看| 精品久久久久久久久久免费视频| 午夜福利,免费看| 亚洲第一电影网av| 黄色女人牲交| 久久伊人香网站| 国产xxxxx性猛交| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 可以在线观看的亚洲视频| 亚洲av五月六月丁香网| 国产伦人伦偷精品视频| 99国产精品一区二区三区| 美女高潮到喷水免费观看| 午夜免费鲁丝| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影 | 欧美日韩精品网址| 亚洲伊人色综图| 老司机靠b影院| 久久精品亚洲精品国产色婷小说| 日韩中文字幕欧美一区二区| www.999成人在线观看| 操美女的视频在线观看| 亚洲av成人一区二区三| 在线观看一区二区三区| 99久久国产精品久久久| 国产精品乱码一区二三区的特点 | 老司机午夜十八禁免费视频| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 免费不卡黄色视频| 国产精品免费视频内射| 亚洲av电影在线进入| 欧美国产日韩亚洲一区| 日韩精品青青久久久久久| 国产精品 国内视频| 91精品国产国语对白视频| 日本欧美视频一区| 精品欧美国产一区二区三| av电影中文网址| 丰满的人妻完整版| 操美女的视频在线观看| 日韩中文字幕欧美一区二区| 制服丝袜大香蕉在线| 亚洲天堂国产精品一区在线| av天堂在线播放| 亚洲国产欧美一区二区综合| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 午夜日韩欧美国产| 国产精品久久久久久精品电影 | 两人在一起打扑克的视频| 亚洲五月色婷婷综合| 国产成人精品在线电影| 午夜久久久在线观看| 老熟妇仑乱视频hdxx| 69av精品久久久久久| 丁香六月欧美| 国产精品久久久人人做人人爽| x7x7x7水蜜桃| 亚洲国产高清在线一区二区三 | 亚洲久久久国产精品| 精品日产1卡2卡| 亚洲全国av大片| a级毛片在线看网站| 午夜激情av网站| 日本 欧美在线| 精品福利观看| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 18禁黄网站禁片午夜丰满| 自线自在国产av| 美女 人体艺术 gogo| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区 | 校园春色视频在线观看| 欧美在线黄色| 亚洲国产精品久久男人天堂| 精品乱码久久久久久99久播| 99精品在免费线老司机午夜| 色综合站精品国产| 成人永久免费在线观看视频| cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 日韩大码丰满熟妇| 免费在线观看影片大全网站| x7x7x7水蜜桃| 一级a爱片免费观看的视频| 成人亚洲精品av一区二区| 久久精品aⅴ一区二区三区四区| 成人18禁在线播放| 国产精品一区二区三区四区久久 | 天天一区二区日本电影三级 | 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 亚洲国产毛片av蜜桃av| 日本在线视频免费播放| 男女床上黄色一级片免费看| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 少妇熟女aⅴ在线视频| av网站免费在线观看视频| 久热爱精品视频在线9| 亚洲五月婷婷丁香| 男人舔女人的私密视频| www国产在线视频色| 午夜a级毛片| 日本在线视频免费播放| 国产亚洲精品第一综合不卡| 午夜精品久久久久久毛片777| 我的亚洲天堂| 97超级碰碰碰精品色视频在线观看| 变态另类成人亚洲欧美熟女 | 精品国内亚洲2022精品成人| 国产精品免费一区二区三区在线| 欧洲精品卡2卡3卡4卡5卡区| 国产野战对白在线观看| 麻豆国产av国片精品| 精品国产亚洲在线| 久久亚洲真实| 老司机在亚洲福利影院| 丝袜美腿诱惑在线| 色播在线永久视频| 成人免费观看视频高清| 午夜久久久久精精品| 国产高清激情床上av| 法律面前人人平等表现在哪些方面| 久久国产精品男人的天堂亚洲| 性欧美人与动物交配| 国产男靠女视频免费网站| 久久午夜亚洲精品久久| 成年版毛片免费区| 久久人妻熟女aⅴ| 50天的宝宝边吃奶边哭怎么回事| 两个人免费观看高清视频| 成人国语在线视频| 午夜福利高清视频| 国产亚洲av嫩草精品影院| 国产精品免费视频内射| 男女下面插进去视频免费观看| 97人妻天天添夜夜摸| 欧美日韩中文字幕国产精品一区二区三区 | 男人操女人黄网站| 老熟妇乱子伦视频在线观看| 丝袜美腿诱惑在线| 亚洲av片天天在线观看| 亚洲中文av在线| 午夜久久久久精精品| 亚洲专区国产一区二区| 欧美激情 高清一区二区三区| 在线av久久热| 国产在线观看jvid| 亚洲avbb在线观看| 国产主播在线观看一区二区| 久久伊人香网站| 精品人妻在线不人妻| 日本在线视频免费播放| 在线永久观看黄色视频| 国产精品久久电影中文字幕| 国产又色又爽无遮挡免费看| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 十八禁人妻一区二区| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 好男人电影高清在线观看| 国产成人一区二区三区免费视频网站| 久久人人97超碰香蕉20202| 热99re8久久精品国产| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 亚洲中文字幕一区二区三区有码在线看 | 老汉色av国产亚洲站长工具| 国产精品一区二区免费欧美| 男女做爰动态图高潮gif福利片 | 一边摸一边做爽爽视频免费| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女 | 欧美性长视频在线观看| 俄罗斯特黄特色一大片| 在线国产一区二区在线| 日本精品一区二区三区蜜桃| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 精品久久久久久成人av| 97人妻精品一区二区三区麻豆 | 黄片大片在线免费观看| 一级a爱视频在线免费观看| 99国产精品一区二区蜜桃av| 久久精品亚洲精品国产色婷小说| 国产av精品麻豆| 国产亚洲精品av在线| 女性生殖器流出的白浆| 久久青草综合色| 99热只有精品国产| 国产日韩一区二区三区精品不卡| 国产精品香港三级国产av潘金莲| 色综合欧美亚洲国产小说| 99re在线观看精品视频| 亚洲第一电影网av| 淫秽高清视频在线观看| 曰老女人黄片| 国产极品粉嫩免费观看在线| 亚洲精品久久成人aⅴ小说| 午夜免费鲁丝| 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三 | 午夜久久久久精精品| 一个人免费在线观看的高清视频| 亚洲欧美精品综合一区二区三区| 国产成人一区二区三区免费视频网站| 久久精品国产亚洲av香蕉五月| 免费一级毛片在线播放高清视频 | 不卡一级毛片| 欧美黄色淫秽网站| 亚洲成人国产一区在线观看| 国产亚洲精品一区二区www| 久久久久国内视频| 欧美日本亚洲视频在线播放| xxx96com| 精品免费久久久久久久清纯| 亚洲成人久久性| www国产在线视频色| 国产精品二区激情视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产蜜桃级精品一区二区三区| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o| 此物有八面人人有两片| 欧美国产日韩亚洲一区| 日韩视频一区二区在线观看| 麻豆成人av在线观看| 日本vs欧美在线观看视频| 亚洲激情在线av| 香蕉久久夜色| 一区二区三区精品91| 欧美av亚洲av综合av国产av| 一级毛片女人18水好多| 人成视频在线观看免费观看| 91字幕亚洲| 在线播放国产精品三级| 久久中文字幕人妻熟女| 国产一级毛片七仙女欲春2 | 成年版毛片免费区| 国产成人一区二区三区免费视频网站| 日韩欧美一区二区三区在线观看| 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看 | 久久人妻av系列| 久久人妻熟女aⅴ| 黄色 视频免费看| 欧美日韩亚洲国产一区二区在线观看| 久久精品影院6| 成人国产综合亚洲| 可以在线观看的亚洲视频| 黄色女人牲交| 国产精品亚洲美女久久久| 午夜精品在线福利| 日韩精品免费视频一区二区三区| 中文字幕av电影在线播放| 中亚洲国语对白在线视频| 精品人妻1区二区| 久久人人爽av亚洲精品天堂| 国产高清有码在线观看视频 | 国产熟女xx| 制服诱惑二区| 亚洲片人在线观看| 韩国av一区二区三区四区| 久久午夜亚洲精品久久| 一区福利在线观看| 欧美日本视频| 91国产中文字幕| 啦啦啦免费观看视频1| 国产1区2区3区精品| a级毛片在线看网站| 亚洲成人久久性| 夜夜夜夜夜久久久久| 欧美黑人精品巨大| 黑人欧美特级aaaaaa片| 视频区欧美日本亚洲| 一本大道久久a久久精品| 亚洲黑人精品在线| 麻豆久久精品国产亚洲av| 欧美丝袜亚洲另类 | 亚洲性夜色夜夜综合| 国产精品免费视频内射| 在线观看日韩欧美| 巨乳人妻的诱惑在线观看| xxx96com| 丝袜美腿诱惑在线| 国产精品一区二区精品视频观看| 中文字幕人妻熟女乱码| 巨乳人妻的诱惑在线观看| 91大片在线观看| 露出奶头的视频| 曰老女人黄片| 欧美成狂野欧美在线观看| 国产精品影院久久| 一卡2卡三卡四卡精品乱码亚洲| 午夜a级毛片| 黄片播放在线免费| 女性生殖器流出的白浆| 无限看片的www在线观看| 电影成人av| 999精品在线视频| 国内精品久久久久久久电影| 男女下面进入的视频免费午夜 | 亚洲欧美激情综合另类|