• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES?

    2016-04-18 05:44:29SahbiBOUSSANDELFacultdesSciencesdeGab6072ZrigGabCitRiadhTunisiaLaboratoireEDPetApplicationsLR03ES04Tunisia

    Sahbi BOUSSANDELFaculté des Sciences de Gabès 6072 Zrig Gabès Cité Riadh Tunisia-Laboratoire EDP et Applications LR03ES04,Tunisia

    ?

    EXISTENCE AND UNIQUENESS OF PERIODIC SOLUTIONS FOR GRADIENT SYSTEMS IN FINITE DIMENSIONAL SPACES?

    Sahbi BOUSSANDEL
    Faculté des Sciences de Gabès 6072 Zrig Gabès Cité Riadh Tunisia-Laboratoire EDP et Applications LR03ES04,Tunisia

    E-mail:sahbi.boussandel@yahoo.fr

    AbstractThis paper deals with an abstract periodic gradient system in which the gradient is taken with respect to a variable metric.We obtain an existence and uniqueness result via the application of a global inverse theorem.

    Key wordsexistence and uniqueness;periodic solutions;gradient systems;global inverse theorem

    2010 MR Subject Classi fi cation34K30

    ?Received September 25,2014;revised May 16,2015.

    1 Introduction

    In this paper,we investigate the existence and the uniqueness of solutions for the first order nonlinear periodic differential equation

    where E:RN→R is a twice differentiable functional,?g(t)E denotes the gradient of E with respect to a time-variable inner product〈·,·〉g(t),p≥2 and f∈Lp(0,T;RN).

    The periodic boundary value problems were studied intensively in recent years under several assumptions on the functional E.Many methods and tools were used in order to solve these problems,e.g.,fixed point methods,degree theory,variational methods,the upperlower solutions method and perturbation and iterative techniques.We refer the reader to[7,8,11,14,16,18-23,32,34]and the references therein for more details about these methods and for abstract results and their applications.

    In this paper,the techniques of the proofs are based on the application of the following global inverse functions theorem.

    Theorem 1.1(see[24])Let X and Y be two Banach spaces,and let φ:X→Y be a map.The following assertions are equivalent:

    i)φ is a homeomorphism from X into Y,

    ii)φ is a local homeomorphism and proper.

    Recall that the map φ is proper if φ?1(C)is a compact set in X whenever C is a compact set in Y.

    Several authors obtained existence and uniqueness results for boundary value problems using global inversion theorems;see for example[1-3,5,6,9,12,13,15,17,26-30,33,35,36].

    In order to apply Theorem 1.1,we reformulate problem(1.1)as an algebraic equation

    where φ:X→Y is a mapping from a Banach space X into a Banach space Y,and we prove that φ satisfies assumptions of Theorem 1.1.Under some monotonicity condition on the derivative operator E′and under some nondegeneracy condition on g we prove that problem(1.1)admits a unique solution.In the setting of gradient systems in which the gradient is taken with respect to variable metrics,we refer to[10,Theorem 2.10 and Proof of Theorem 6.1-Part 1]in which the metric depends on the space variable,and to[4,Proof of Theorem 4-Part 1]in which the author considered metrics depending on the time and space variables.The problems considered in[4]and[10]are with initial data.

    2 Functional Setting and Assumptions

    First,we recall from[10]some basic facts and results about Euclidian and Riemannian metrics.Let N∈N?and let E:RN→R be a Fréchet differentiable functional.We denote by〈·,·〉and‖·‖the Euclidian inner product and norm on RN,respectively.The Euclidian gradient of E is the function?E which assigns to every point u∈RNthe unique element ?E(u)∈RNsuch that

    By the Riesz-Fréchet theorem,the euclidian gradient?E is well de fined in the sense that it exists and it is unique.We denote by Inner(RN)the set of all inner products on RN.Let T>0 and let g:[0,T]→Inner(RN)be a function and denote by〈·,·〉g(t)the inner product g(t)at a time t∈[0,T]and by‖·‖g(t)the norm associated with this inner product.For every t∈[0,T],the gradient of E with respect to the inner product〈·,·〉g(t)is the function?g(t)E which assigns to every point u∈RNthe unique element?g(t)E(u)∈RNsuch that

    By the Riesz-Fréchet theorem,the euclidian gradient?g(t)E exists and is unique for every t∈[0,T].

    For every t∈[0,T],let Q(t)∈L(RN)be de fined by

    Then we have

    Remark 2.1We note that if E is of class C2,we can de fi ne,for every t∈[0,T],the functiongiven for every u∈RNby

    where?2E(u)denotes the Hessian matrix of E at the point u.

    We assume that E and g satisfy the following assumptions:

    (H1)E∈C2(RN,R),

    (H3)?c′>0,c′′≥0?u∈RN,〈?E(u),u〉≥c′‖u‖2?c′′‖u‖,

    (H4)for every v,w∈RN,the function t→〈v,w〉g(t)is measurable on[0,T],

    (H5)?c1,c2>0,?u∈RN,?t∈[0,T],c1‖u‖≤‖u‖g(t)≤c2‖u‖.

    Let p∈[2,∞)and Y=Lp(0,T;RN)which is a Banach space for the norm

    If p=2,then L2(0,T;RN)is a Hilbert space for the inner product

    Let further

    which is a Banach space for the norm

    If p=2,then X is a Hilbert space for the inner product

    Recall,from the Sobolev embedding theorem,that

    with continuous embedding,so that the condition u(0)=u(T)which appears in the de finition of the space X makes sense.

    3 Some Preliminary Results

    In this section,we give some preliminary lemmas which turn out essential for the proof of the main result.The first one provides a regularity result for the Nemytskii operator associated to the function?g(·)E.

    Lemma 3.1Let

    be the Nemytskii operator de fined by

    Under assumptions(H1),(H4)and(H5),the Nemytskii operator F is well de fined,continuously differentiable on X and the derivative is given by

    ProofLet

    be the Nemytskii operator de fined by

    Then we have

    The fact that G is continuously differentiable follows similarly as in the proof of[25,Theorem 3.1],and we have

    Since,for every t∈[0,T]and every v,w∈RN,〈v,w〉=〈Q(t)?1v,w〉g(t),we deduce from assumption(H5)that

    and therefore

    It follows that F is well de fined,continuously differentiable on X,and for every u,v∈X,we have

    For the second result,we give su ffi cient conditions that ensure the existence and the uniqueness of solutions for a linear nonautonomous problem with periodic boundary condition.

    Theorem 3.2Assume that p=2.Let(A(t))t∈[0,T]?L(RN)be such that A is measurable on[0,T]and assume that

    (a)?c>0,?t∈[0,T],?x∈RN,〈A(t)x,x〉≥c‖x‖2,

    Then,for every f∈L2(0,T;RN),there exists a unique u∈W1,2(0,T;RN)which is solution of the nonautonomous linear problem

    ProofLet f∈L2(0,T;RN).For every α∈[0,1],we de fi ne the linear operator

    where Id is the identity operator on RN,and we consider the linear nonautonomous problem

    We introduce the set

    For every α∈[0,1],we de fi ne the linear operator Tα:X→Y by

    We note,by assumption(b),that Tαis a bounded operator.We note also that α∈M if and only if the operator Tαis invertible.

    For α=0,eq.(3.2)is a simple ordinary differential equation which has a unique solution u∈X,and henceWe will show that M is an open and closed set in[0,1].Let us prove that M is an open set in[0,1].This is a consequence of assumption(b)and the Neumann Series.Indeed,by assumption(b),there exists C1>0 such that

    where I is the natural embedding from X into Y.Fix an α∈M and denote

    Let β∈[0,1]such that

    and prove that Tβis invertible.By using(3.3)and(3.4),we have

    It follows by the Neumann series that the operatoris invertible.However,

    Now,we prove that M is a closed set in[0,1].Let(αn)be any sequence in M which converges to α∈[0,1].From the de finition of the set M,for every n∈N,there exists a unique un∈W1,2(0,T;RN)which is solution of

    We multiply eq.(3.5)by unwith respect to the inner product of L2(0,T;RN),and we obtain

    By using the periodic boundary condition un(0)=un(T),we have

    and hence by assumption(a),identity(3.6)implies

    Therefore

    where c′=min(1,c).It follows that

    Moreover,by assumption(b)and estimate(3.7),we can deduce from eq.(3.5)that

    and therefore,by combining this last estimate with estimate(3.7)we obtain

    Let h∈X.We use estimate(3.8)in order to obtain

    We let n→∞in this last estimate and we obtain

    From this last estimate it follows that the operator Tα:X→Y is injective and by[31,Lemma 4.47],Tαhas closed range.By[31,Theorem 4.48],it remains to prove that the operator Tα:X→Y is surjective,that is RanTαis dense in Y.Suppose by contradiction that RanTαY.Then,there exists k∈Y{0}such that for every h∈X we have〈Tαh,k〉L2=0.Since the sequenceis bounded in X,and since X is re fl exive,it therefore admits a weakly convergent subsequence(again denoted bywith some weak limit h∈X.Then

    a contradiction to the fact that k0.Hence RanTα=Y,that is Tαis surjective.Since[0,1]is connected,we can deduce that M=[0,1]and the conclusion follows by taking α=1.

    4 The Main Result

    We consider the following gradient system

    The main result of this paper is the following theorem.

    Theorem 4.1Let p∈[2,∞).Under assumptions(H1)-(H5),for every f∈Lp(0,T;RN),problem(4.1)admits a unique solution u∈W1,p(0,T;RN).

    ProofFor the proof,we apply Theorem 1.1.We study the cases p=2 and p>2 separately.

    Case 1p=2.

    Let φ:X→Y be the function de fined by

    The map L:u→u′is linear and bounded from X into Y,therefore continuously differentiable and we have

    Hence by Lemma 3.1,φ is well de fined,continuously differentiable on X and the derivative of φ is given by

    Let u∈X be fixed.We prove that φ′(u)is invertible.This is equivalent to the property that for every e∈L2(0,T;RN),the nonautonomous linear problem

    admits a unique solution.Let

    We have for every t∈[0,T],

    Since,for every t∈[0,T],we have(see the proof of Lemma 3.1),we obtain

    By using the continuous embedding W1,2(0,T;RN)C([0,T];RN),there existssuch that

    Since E is of class C2,there existssuch that

    and consequently,we obtain

    This proves that assumption(b)of Theorem 3.2 is satis fied.Moreover,we have from assumption(H2)

    Therefore,as a consequence of Theorem 3.2,problem(4.2)admits a unique solution and thenφ′(u)is a linear homeomorphism from X into Y.Hence,φ is a local homeomorphism.

    In order to show that φ is a proper map,let C be any compact set of Y and prove thatφ?1(C)is a compact set of X.Let(un)be any sequence of φ?1(C).Then there exists(vn)a sequence in C such that vn=φ(un)for any n∈N,i.e.,

    Since C is compact,we can extract from(vn)a subsequence(which we denote again(vn))such that vn→v in C.

    By multiplying identity(4.3)bywith respect to the inner product〈·,·〉g(t),then by integrating over the interval(0,T),we have

    By using the fact that un(0)=un(T),we have

    and hence we obtain

    From assumption(H5)we have

    and therefore

    Since(vn)is bounded inis bounded in L2(0,T;RN)too.By multiplying identity(4.3)by un(t)with respect to the inner product〈·,·〉g(t),then by integrating over the interval(0,T),we have

    By using assumption(H3),we deduce

    This implies that

    Since?E is continuous on RN,it follows from convergence(4.4)that?E(un)→?E(u)in L2(0,T;RN).Since,for every t∈[0,T],we have?g(·)E(u)in L2(0,T;RN).From identity(4.3),we deduce thatFrom convergence(4.5),we haveand therefore u′= v??g(·)E(u).Hence,un→u in W1,2(0,T;RN),and φ(u)=v∈C.Moreover,we deduce from the fact that un(0)=un(T)and the convergence(4.4)that u(0)=u(T).It follows that un→u in φ?1(C)that is φ?1(C)is a compact set of X.By Theorem 1.1,φ is global homeomorphism from X into Y,and hence problem(4.1)admits a unique solution u∈W1,2(0,T;RN).

    Case 2p>2.

    We prove that this case is a consequence of Case 1.Let f∈Lp(0,T;RN).Since p>2 we have f∈L2(0,T;RN)and by Case 1,there exists a unique u∈W1,2(0,T;RN)which is solution of problem(4.1).Since W1,2(0,T;RN)is a subspace of C([0,T];RN),the function t→?E(u(t))is continuous on[0,T]and then?E(u)∈Lp(0,T;RN).By using the fact that,for every t∈[0,T],we deduce that?g(·)E(u(·))∈Lp(0,T;RN).It follows from eq.(4.1)that u′∈Lp(0,T;RN).Hence,u∈W1,p(0,T;RN)is the unique solution of problem(4.1).

    5 Application

    Let E:RN→R be a twice continuously differentiable functional,let ε>0 and m:[0,T]→be a measurable function.We assume that E satisfies the following assumption:

    (H)?c>0,?u,v∈RN,E′′(u)(v,v)≥c‖v‖2.

    Let further g:[0,T]→Inner(RN)be the function de fined by

    For every t∈[0,T]and every u,v∈RN,we have

    Hence,we have

    We note that assumption(H2)is equivalent to the following property

    It follows that

    so that assumption(H3)is well satis fied.

    It is not difficult to verify that E and g satisfy the other assumptions of Theorem 4.1,so that we obtain the following corollary.

    Corollary 5.1Let p∈[2,∞).For every f∈Lp(0,T;RN),there exists a unique u∈W1,p(0,T;RN)which is solution of

    References

    [1]Ahmad S.An existence theorem for periodically perturbed conservative systems.Michigan Math J,1973,20:385-392

    [2]Amann H.On the unique solvability of semi-linear operator equations in Hilbert spaces.J Math Pures Appl,1982,61:149-175

    [3]Amaral L,Pera M.On periodic solutions of nonconservative systems.Nonlinear Anal,1982,6:733-743

    [4]Boussandel S.Global existence and maximal regularity of gradient systems.J Di ff er Equ,2011,250(2):929-948

    [5]Brown K J.Nonlinear boundary value problems and a global inverse function theorem.Ann Mat Pura Appl,1975,106(4):205-217

    [6]Brown K J,Lin S S.Periodically perturbed conservative systems and a global inverse functions theorem.Nonlinear Anal,1980,4:193-201

    [7]Capietto A,Mawhin J,Zanolin F.A continuation approach to superlinear periodic boundary value problems.J Di ff er Equ,1990,88:347-395

    [8]Chen Y,Chen J,Wan Z.Remarks on the periodic boundary value problems for first-order differential equations.Comput Math Appl,1999,37:49-55

    [9]Chen J,O’Regan D.On periodic solutions for even order differential equations.Nonlinear Analysis,2008,69:1138-1144

    [10]Chill R,Fasangová E.Gradient systems.In:13th International Internet Seminar

    [11]Fonda A Sfecci A.A general method for the existence of periodic solutions of differential systems in the plane.J Di ff er Equ,2012,252:1369-1391

    [12]Dalmasso R.An existence and uniqueness theorem for a second order nonlinear system.J Math Anal Appl,2007,327:715-722

    [13]Dalmasso R.Unique solvability for a second order nonlinear system via two global inversion theorems.Ele J Di ff er Equ,2008,(11):1-8

    [14]Lakshmikantham V,Leela S.Existence and monotone method for periodic solutions of first-oder differential equations.J Math Anal Appl,1983,91:237-243

    [15]Lin D,Yang Y Zhu D.Periodic solutions for some ordinary differential equations involving stability.Nonlinear Analysis,2001,45:963-971

    [16]Liu Y.Multiple solutions of periodic boundary value problems for first order differential equations.Comput Math Appl,2007,54:1-8

    [17]Mawhin J.Contractive mappings and periodically perturbed conservative systems.Arch Math,1976,12:67-73

    [18]Mawhin J.Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS-Regional Conf Math 40.Providence,RI:Amer Math Soc,1979

    [19]Mawhin J.First order ordinary differential equations with several periodic solutions.J Appl Math Phy(ZAMP),1987,38:257-265

    [20]Mawhin J,Thompson H B.Periodic or bounded solutions of Caretéodory systems of ordinary differential equations.J Dyn Di ff er Equ,2003,15(2/3):327-334

    [21]Mawhin J.Topological Fixed Point Theory and Nonlinear Di ff erential Equations.Handbook of Topological Fixed Point Theory.Springer,2005

    [22]Nagle R K,Sinkala Z.Existence of 2π-periodic solutions for nonlinear systems of first-order ordinary differential equations at resonance.Nonlinear Analysis,TMA,1995,25:l-16

    [23]Nieto J J,Alvarez-Noriega N.Periodic boundary value problems for nonlinear first order ordinary differential equations.Acta Math Hungar,1996,71(1/2):49-58

    [24]Plastock R.Homeomorphisms between Banach spaces.Trans Amer Math Soc,1974,200:169-183

    [25]Rabier P J,Stuart C A.Boundary value problems for first order systems on the half-line.Topol Methods Nonlinear Anal,2005,25(1):101-133

    [26]Radulescu M,Radulescu S.Global inversion theorems and applications to differential equations.Nonlinear Analysis,TMA,1980,4(4):951-965

    [27]Radulescu M,Radulescu S.An application of Hadamard-Levy theorem to a scalar initial value problem.Proc Amer Math Soc,1989,106(1):139-143

    [28]Radulescu M,Radulescu S.An application of a global inversion theorem to a Dirichlet problem for a second order differential equation.Rev Roumaine Math Pures Appl,1992,37:929-933

    [29]Radulescu M,Radulescu S.Applications of a global inversion theorem to unique solvability of second order Dirichlet problems.An Univ Craiova,Math Comp Sci Ser,2003,30(1):198-203

    [30]Radulescu M,Radulescu S.Global inversion theorems and applications to unique solvability of boundary value theorems for differential equations.Int J Di ff er Equ Appl,2000,1(2):159-166

    [31]Rynne B P,Youngson M A.Linear Functional Analysis.Springer Undergraduate Mathematics Series.Springer,2008

    [32]Tisdell C C.Existence of solutions to first-order periodic boundary value problems.J Math Anal Appl,2006,323:1325-1332

    [33]Trif T.Unique solvability of certain nonlinear boundary value problems via a global inversion theorem of Hadamard-Levy type.Demonstratio Math,2005,38(2):331-340

    [34]Vidossich G.Multiple periodic solutions for first-order ordinary differential equations.J Math Anal Appl,1987,127:459-469

    [35]Li W G.An application of a global inversion theorem to an existence and uniqueness theorem for a class of nonlinear systems of differential equations.Nonlinear Analysis,2009,70:3730-3737

    [36]Yang X.Existence and uniqueness results for periodic solution of nonlinear differential equations.Appl Math Comput,2002,130:213-223

    国产欧美日韩一区二区精品| 国产成人精品无人区| 淫秽高清视频在线观看| 久久久水蜜桃国产精品网| 国产一卡二卡三卡精品| 日本欧美视频一区| 久久狼人影院| 美女大奶头视频| 久久国产精品男人的天堂亚洲| 亚洲美女黄片视频| 日韩免费av在线播放| 女人高潮潮喷娇喘18禁视频| 99国产极品粉嫩在线观看| 国产精品影院久久| 自线自在国产av| 国产男靠女视频免费网站| 午夜福利18| 国产av在哪里看| 成人三级黄色视频| 一a级毛片在线观看| 在线观看一区二区三区| 国产主播在线观看一区二区| 久久狼人影院| 在线观看免费视频网站a站| 色综合亚洲欧美另类图片| 男女床上黄色一级片免费看| 美女高潮喷水抽搐中文字幕| 美女高潮到喷水免费观看| 午夜福利免费观看在线| 丝袜美腿诱惑在线| 免费搜索国产男女视频| 久久精品国产亚洲av高清一级| 免费搜索国产男女视频| 精品国产亚洲在线| 欧美日韩瑟瑟在线播放| 少妇熟女aⅴ在线视频| 国语自产精品视频在线第100页| av免费在线观看网站| 亚洲专区国产一区二区| 黄色成人免费大全| 一边摸一边做爽爽视频免费| 精品国产亚洲在线| 97碰自拍视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美一区视频在线观看| 午夜福利一区二区在线看| 久久精品aⅴ一区二区三区四区| 在线永久观看黄色视频| 欧美激情 高清一区二区三区| 男女做爰动态图高潮gif福利片 | 99国产综合亚洲精品| 亚洲七黄色美女视频| 亚洲黑人精品在线| 丝袜人妻中文字幕| 久久香蕉激情| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9| 日本三级黄在线观看| 亚洲在线自拍视频| 免费一级毛片在线播放高清视频 | 琪琪午夜伦伦电影理论片6080| 久久久久久大精品| 国产精品av久久久久免费| 色播亚洲综合网| 91国产中文字幕| 美女 人体艺术 gogo| 久久草成人影院| 国产av一区在线观看免费| 久久久久久久久免费视频了| 看片在线看免费视频| 日韩精品中文字幕看吧| 日韩中文字幕欧美一区二区| 国产精品综合久久久久久久免费 | 免费人成视频x8x8入口观看| 久久性视频一级片| 精品国产一区二区久久| 老司机午夜福利在线观看视频| 老司机午夜福利在线观看视频| 久久国产精品人妻蜜桃| 热re99久久国产66热| 成年版毛片免费区| 精品一区二区三区视频在线观看免费| www.自偷自拍.com| 一a级毛片在线观看| 亚洲av成人av| 久久人妻熟女aⅴ| 丝袜人妻中文字幕| 国产麻豆69| 亚洲avbb在线观看| 精品国产乱子伦一区二区三区| 精品卡一卡二卡四卡免费| 激情在线观看视频在线高清| 999久久久精品免费观看国产| 999久久久国产精品视频| 男人舔女人下体高潮全视频| www.999成人在线观看| 日韩欧美免费精品| 久久久久国内视频| 亚洲人成伊人成综合网2020| 中出人妻视频一区二区| 黑人欧美特级aaaaaa片| 美国免费a级毛片| 亚洲欧美日韩另类电影网站| 久久人人97超碰香蕉20202| 亚洲精品久久成人aⅴ小说| 一二三四社区在线视频社区8| 国产精品av久久久久免费| 在线观看午夜福利视频| 国产麻豆69| 日韩欧美国产在线观看| 在线国产一区二区在线| 97人妻天天添夜夜摸| 欧美一区二区精品小视频在线| 一a级毛片在线观看| 久久久久久国产a免费观看| 亚洲aⅴ乱码一区二区在线播放 | 精品国产一区二区三区四区第35| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 国产欧美日韩一区二区精品| 自拍欧美九色日韩亚洲蝌蚪91| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久免费高清国产稀缺| 亚洲少妇的诱惑av| 在线永久观看黄色视频| av在线天堂中文字幕| 国产精华一区二区三区| 国产97色在线日韩免费| 精品国产乱子伦一区二区三区| 久久精品亚洲熟妇少妇任你| 黄色 视频免费看| 欧美在线黄色| 国产午夜精品久久久久久| av超薄肉色丝袜交足视频| 无人区码免费观看不卡| 高清在线国产一区| 好看av亚洲va欧美ⅴa在| 欧美日韩黄片免| 搡老岳熟女国产| 一级a爱片免费观看的视频| 国产精品一区二区三区四区久久 | av欧美777| 久久久国产精品麻豆| 久久久久国内视频| 欧美中文日本在线观看视频| 人人澡人人妻人| 无限看片的www在线观看| 亚洲国产高清在线一区二区三 | 变态另类成人亚洲欧美熟女 | 国产成人av教育| 中文字幕最新亚洲高清| 国产成+人综合+亚洲专区| 国产高清视频在线播放一区| 欧美黑人精品巨大| 久久人妻福利社区极品人妻图片| 后天国语完整版免费观看| 成熟少妇高潮喷水视频| 麻豆一二三区av精品| 国产精品亚洲一级av第二区| 久久国产乱子伦精品免费另类| 长腿黑丝高跟| 中亚洲国语对白在线视频| 国产区一区二久久| 看免费av毛片| 777久久人妻少妇嫩草av网站| av天堂在线播放| АⅤ资源中文在线天堂| 啪啪无遮挡十八禁网站| aaaaa片日本免费| 高潮久久久久久久久久久不卡| 一边摸一边抽搐一进一出视频| 日韩精品青青久久久久久| 日本精品一区二区三区蜜桃| 国产精品 国内视频| 女人被狂操c到高潮| 国产精品野战在线观看| 中文亚洲av片在线观看爽| 国产又爽黄色视频| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 大码成人一级视频| 国产1区2区3区精品| 午夜两性在线视频| 在线观看一区二区三区| 国产亚洲精品久久久久5区| 国产欧美日韩综合在线一区二区| 九色国产91popny在线| av免费在线观看网站| 日本欧美视频一区| 一个人免费在线观看的高清视频| 国产精华一区二区三区| 色综合欧美亚洲国产小说| 搡老熟女国产l中国老女人| 久久婷婷成人综合色麻豆| 久久中文看片网| 久久久久久久久久久久大奶| 狂野欧美激情性xxxx| 精品久久久精品久久久| 亚洲av成人不卡在线观看播放网| 亚洲久久久国产精品| 在线观看午夜福利视频| 亚洲国产中文字幕在线视频| 熟妇人妻久久中文字幕3abv| 此物有八面人人有两片| 啦啦啦 在线观看视频| 两性夫妻黄色片| www.熟女人妻精品国产| 久久久久国产精品人妻aⅴ院| 久久人人精品亚洲av| 欧美日韩中文字幕国产精品一区二区三区 | 色在线成人网| 亚洲无线在线观看| 真人一进一出gif抽搐免费| 天堂影院成人在线观看| 亚洲色图av天堂| 国产真人三级小视频在线观看| 欧美日韩乱码在线| 99久久精品国产亚洲精品| 国产精品野战在线观看| 一区二区三区高清视频在线| 精品乱码久久久久久99久播| 最近最新免费中文字幕在线| www.精华液| 国产精品国产高清国产av| 亚洲国产精品999在线| 亚洲九九香蕉| 亚洲欧美激情综合另类| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 天堂√8在线中文| 欧美人与性动交α欧美精品济南到| 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 日本 av在线| 国产精品久久久久久人妻精品电影| 欧美中文日本在线观看视频| 欧美乱色亚洲激情| 美女大奶头视频| 久久精品国产亚洲av高清一级| 亚洲成国产人片在线观看| 一本大道久久a久久精品| 久久久国产欧美日韩av| 日本免费a在线| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 日韩欧美免费精品| 可以免费在线观看a视频的电影网站| 亚洲一区二区三区不卡视频| 日本五十路高清| 黄色视频,在线免费观看| 十分钟在线观看高清视频www| 午夜日韩欧美国产| 久久欧美精品欧美久久欧美| 国产成人精品在线电影| aaaaa片日本免费| 无限看片的www在线观看| 97人妻精品一区二区三区麻豆 | 长腿黑丝高跟| 波多野结衣一区麻豆| 国产亚洲欧美98| 欧美日本视频| 人人妻人人澡欧美一区二区 | 人妻丰满熟妇av一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费| 中文字幕人妻丝袜一区二区| 国产亚洲av嫩草精品影院| 中文字幕久久专区| 午夜视频精品福利| 黄色视频不卡| 欧美日韩一级在线毛片| 丁香六月欧美| 亚洲专区中文字幕在线| 一个人免费在线观看的高清视频| e午夜精品久久久久久久| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 日韩视频一区二区在线观看| 操美女的视频在线观看| 日韩国内少妇激情av| 亚洲精品久久成人aⅴ小说| 久久精品成人免费网站| 国产成人av激情在线播放| 少妇粗大呻吟视频| or卡值多少钱| 中文字幕色久视频| 九色亚洲精品在线播放| 88av欧美| 一进一出抽搐动态| 咕卡用的链子| 一a级毛片在线观看| 又大又爽又粗| 欧美一级a爱片免费观看看 | 老司机午夜福利在线观看视频| 亚洲色图av天堂| 国产精品,欧美在线| 国产精华一区二区三区| 国产精品野战在线观看| 涩涩av久久男人的天堂| 99国产精品一区二区蜜桃av| 国产精品一区二区在线不卡| 在线观看www视频免费| 国产精品日韩av在线免费观看 | 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 国产在线精品亚洲第一网站| 精品电影一区二区在线| 亚洲九九香蕉| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 长腿黑丝高跟| 日韩一卡2卡3卡4卡2021年| 不卡av一区二区三区| 日韩欧美一区视频在线观看| 国产av又大| 亚洲一区二区三区不卡视频| 一a级毛片在线观看| 午夜福利视频1000在线观看 | 久久香蕉国产精品| 女人精品久久久久毛片| 黄色成人免费大全| 日韩三级视频一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲av五月六月丁香网| 88av欧美| e午夜精品久久久久久久| 一级a爱视频在线免费观看| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 久久精品亚洲熟妇少妇任你| 欧美激情 高清一区二区三区| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区三| 可以在线观看的亚洲视频| 少妇熟女aⅴ在线视频| 亚洲av美国av| 极品人妻少妇av视频| 成年版毛片免费区| 岛国视频午夜一区免费看| 国产精品秋霞免费鲁丝片| 国产精品乱码一区二三区的特点 | 高清在线国产一区| 国产精品综合久久久久久久免费 | 免费久久久久久久精品成人欧美视频| 成人特级黄色片久久久久久久| 久久香蕉国产精品| 精品欧美一区二区三区在线| 动漫黄色视频在线观看| av在线天堂中文字幕| 国产高清videossex| 亚洲全国av大片| 亚洲国产精品成人综合色| 久久午夜综合久久蜜桃| 神马国产精品三级电影在线观看 | 嫩草影视91久久| 久久亚洲真实| 一级毛片女人18水好多| 日韩成人在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 91精品国产国语对白视频| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 不卡av一区二区三区| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 一边摸一边做爽爽视频免费| 色综合站精品国产| 自拍欧美九色日韩亚洲蝌蚪91| 不卡一级毛片| а√天堂www在线а√下载| 欧美一级a爱片免费观看看 | 一级毛片精品| 国产xxxxx性猛交| 真人一进一出gif抽搐免费| 欧美国产精品va在线观看不卡| 国产精品免费一区二区三区在线| 国产熟女午夜一区二区三区| 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 免费久久久久久久精品成人欧美视频| 手机成人av网站| 天堂√8在线中文| 久久草成人影院| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 两个人看的免费小视频| 亚洲伊人色综图| 男人的好看免费观看在线视频 | 免费看十八禁软件| 国产亚洲精品综合一区在线观看 | 国产伦一二天堂av在线观看| 国产一卡二卡三卡精品| 欧美丝袜亚洲另类 | 久久国产精品影院| 欧美日本中文国产一区发布| 亚洲avbb在线观看| 日韩欧美国产一区二区入口| 亚洲精品久久国产高清桃花| 亚洲国产日韩欧美精品在线观看 | 欧美一区二区精品小视频在线| 母亲3免费完整高清在线观看| netflix在线观看网站| 欧美激情 高清一区二区三区| 久久草成人影院| 男人舔女人的私密视频| 99riav亚洲国产免费| 欧美性长视频在线观看| 欧美日本中文国产一区发布| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 久9热在线精品视频| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 久久久久久久久免费视频了| 男女下面进入的视频免费午夜 | 日韩大码丰满熟妇| 成人永久免费在线观看视频| 一二三四社区在线视频社区8| 法律面前人人平等表现在哪些方面| 乱人伦中国视频| 久久性视频一级片| 美女国产高潮福利片在线看| 久久久久久国产a免费观看| 亚洲欧洲精品一区二区精品久久久| av中文乱码字幕在线| 好男人在线观看高清免费视频 | 国产成人欧美| 久久亚洲真实| 搞女人的毛片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一电影网av| 国产在线观看jvid| bbb黄色大片| 亚洲电影在线观看av| 免费搜索国产男女视频| 制服人妻中文乱码| 波多野结衣巨乳人妻| 18禁观看日本| 国产成年人精品一区二区| 亚洲人成电影观看| 亚洲色图 男人天堂 中文字幕| 怎么达到女性高潮| ponron亚洲| 日韩视频一区二区在线观看| 午夜老司机福利片| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 香蕉国产在线看| 在线观看舔阴道视频| 91麻豆精品激情在线观看国产| 欧美日韩一级在线毛片| 9热在线视频观看99| 国产一区二区在线av高清观看| 欧美中文综合在线视频| 97碰自拍视频| 18禁裸乳无遮挡免费网站照片 | 亚洲av电影在线进入| 国产单亲对白刺激| 一二三四在线观看免费中文在| 国产精品九九99| 久久久久精品国产欧美久久久| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品98久久久久久宅男小说| 久久中文字幕人妻熟女| 亚洲在线自拍视频| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 男女下面插进去视频免费观看| 成人av一区二区三区在线看| 国产欧美日韩精品亚洲av| 中出人妻视频一区二区| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 一级毛片女人18水好多| 日韩精品免费视频一区二区三区| 好男人在线观看高清免费视频 | 久久久国产成人精品二区| 久久香蕉精品热| 免费高清在线观看日韩| 成人18禁在线播放| 99国产极品粉嫩在线观看| 日韩高清综合在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美乱色亚洲激情| 亚洲视频免费观看视频| av片东京热男人的天堂| 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 国产1区2区3区精品| 免费av毛片视频| 十分钟在线观看高清视频www| 黄色 视频免费看| 高清黄色对白视频在线免费看| 精品久久久久久久人妻蜜臀av | 男人的好看免费观看在线视频 | 国产亚洲av嫩草精品影院| 在线十欧美十亚洲十日本专区| 国产黄a三级三级三级人| 午夜久久久在线观看| 国产欧美日韩一区二区三区在线| av超薄肉色丝袜交足视频| 精品久久久精品久久久| 视频区欧美日本亚洲| 国产1区2区3区精品| 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 欧美在线黄色| 国产精品 欧美亚洲| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站| 色婷婷久久久亚洲欧美| 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 国产成人系列免费观看| 国产麻豆69| 日本免费一区二区三区高清不卡 | 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 国产激情久久老熟女| 欧美日本亚洲视频在线播放| 国产麻豆成人av免费视频| 久久婷婷成人综合色麻豆| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 午夜免费观看网址| 精品日产1卡2卡| 久久久久亚洲av毛片大全| 成人手机av| 曰老女人黄片| 嫩草影院精品99| 日韩大尺度精品在线看网址 | 国产单亲对白刺激| 乱人伦中国视频| 久9热在线精品视频| 女同久久另类99精品国产91| 免费女性裸体啪啪无遮挡网站| 亚洲色图综合在线观看| 免费av毛片视频| 午夜久久久在线观看| 美女免费视频网站| 老司机午夜十八禁免费视频| 在线观看www视频免费| 电影成人av| 不卡av一区二区三区| 男女床上黄色一级片免费看| 国产亚洲欧美精品永久| 自线自在国产av| 男人操女人黄网站| 一边摸一边做爽爽视频免费| cao死你这个sao货| 亚洲最大成人中文| 天天添夜夜摸| 九色国产91popny在线| 日韩欧美一区视频在线观看| 国产精品美女特级片免费视频播放器 | 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美国产一区二区入口| 在线观看日韩欧美| 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| 亚洲成人精品中文字幕电影| 久久久精品国产亚洲av高清涩受| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 久久婷婷成人综合色麻豆| 在线观看免费午夜福利视频| 一区二区三区高清视频在线| 午夜老司机福利片| 久久欧美精品欧美久久欧美| 精品一区二区三区四区五区乱码| 久久欧美精品欧美久久欧美| e午夜精品久久久久久久| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 一级a爱片免费观看的视频| 99久久综合精品五月天人人| 99re在线观看精品视频| 欧美中文综合在线视频| 国产91精品成人一区二区三区| 多毛熟女@视频| 国产免费av片在线观看野外av| 午夜久久久在线观看| 一进一出好大好爽视频| www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片 | 精品久久久久久久人妻蜜臀av | a在线观看视频网站| 欧美激情久久久久久爽电影 | 国产熟女xx| 国产精品精品国产色婷婷| 精品久久久久久久人妻蜜臀av | 别揉我奶头~嗯~啊~动态视频| 久久人人97超碰香蕉20202| x7x7x7水蜜桃| 国产亚洲精品第一综合不卡| 成人国语在线视频| 国产又爽黄色视频| 国产亚洲欧美精品永久| 色综合亚洲欧美另类图片| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 久久影院123| 免费在线观看完整版高清| 久久午夜综合久久蜜桃|