黃興如,張瓊瓊,張瑞杰,郭逍宇*(1.首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048;2.北京市城市環(huán)境過程與數(shù)字模擬重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,北京 100048)
?
再生水補(bǔ)水對河流濕地香蒲根際細(xì)菌群落結(jié)構(gòu)影響研究
黃興如1,2,張瓊瓊1,2,張瑞杰1,2,郭逍宇1,2*(1.首都師范大學(xué)資源環(huán)境與旅游學(xué)院,北京 100048;2.北京市城市環(huán)境過程與數(shù)字模擬重點(diǎn)實(shí)驗(yàn)室-省部共建國家重點(diǎn)實(shí)驗(yàn)室培育基地,北京 100048)
摘要:以典型的再生水補(bǔ)水河流濕地為例,采用末端限制性片段長度多態(tài)性技術(shù)(T-RFLP)分析河道不同空間香蒲根際細(xì)菌群落結(jié)構(gòu)差異,并借助單因素方差分析(one-way ANOVA)、Spearman等級相關(guān)分析和典范對應(yīng)分析(CCA)方法解析麻峪濕地香蒲根際細(xì)菌群落結(jié)構(gòu)空間差異特征的形成原因,以揭示再生水補(bǔ)水過程對河道濕地香蒲根際細(xì)菌群落的影響,并嘗試找出空間差異形成的驅(qū)動因子.結(jié)果表明:隨再生水干擾強(qiáng)度的增加,各類群細(xì)菌群落的豐富度、均勻度及多樣性均呈現(xiàn)不同程度的降低趨勢;其中γ-變形菌門(Gammaproteobacteria)、δ-變形菌門(Deltaproteobacteria)和綠彎菌門(Chloroflexi)、ε-變形菌門(Epsilonproteobacteria)和放線菌門(Actinobacteria)在再生水影響下均顯著降低(P<0.05).Spearman等級相關(guān)分析顯示pH值、DO(溶解氧)、TDS(總?cè)芙夤腆w)、ORP(氧化還原電位)、Sal(鹽度)和NH4+-N(氨氮)與植物根際細(xì)菌群落多樣性空間演替緊密相關(guān).CCA分析結(jié)果進(jìn)一步表明再生水補(bǔ)水口的上游細(xì)菌群落與TN(總氮)、TOC(總有機(jī)碳)及重金屬Cr、Ni、Cu具有密切關(guān)系,這可能與這些污染物累積效應(yīng)有關(guān);補(bǔ)水口附近植物根際細(xì)菌群落則因補(bǔ)水口再生水水質(zhì)不同而具顯著差異,其中第Ⅱa類群主要受到水質(zhì)變量pH值影響較大,而第Ⅱb類群與T(溫度)、ORP和NH4+-N具有較高的相關(guān)性;補(bǔ)水口的下游細(xì)菌群落則因水體內(nèi)源雜質(zhì)及人為活動影響而同樣與TOC及持久性痕量重金屬生物循環(huán)密切相關(guān).
關(guān)鍵詞:再生水;T-RFLP;細(xì)菌群落多樣性;多元統(tǒng)計(jì)分析
* 責(zé)任作者, 副教授, xiaoyucnu@126.com
作為城市化水平提高的直接負(fù)面效應(yīng),我國水資源短缺和水體污染日趨嚴(yán)重.作為保護(hù)城市水體和拓展水源供給的重要途徑,再生水的回用已成為關(guān)注的熱點(diǎn)[1].據(jù)統(tǒng)計(jì)到2013年年底,北京市河湖景觀用水總量5.7億m3,其中有3.7億m3為再生水.但由于再生水水質(zhì)特性決定了其必然會改變河道生態(tài)水文過程和污染物遷移運(yùn)轉(zhuǎn),并通過河道垂向滲漏過程影響周邊地下水水質(zhì)特性和污染物遷移運(yùn)轉(zhuǎn),進(jìn)而產(chǎn)生多種生態(tài)環(huán)境效應(yīng)[2].基于此,以氨氮為河道水體富營養(yǎng)化主控因素的再生水補(bǔ)水河湖濕地水污染防治成為濕地研究的熱點(diǎn)問題之一[3-4].
城市人工濕地不僅具有重要的景觀作用,而且具有良好的環(huán)境污染修復(fù)能力,能有效消除水體氮、磷、各種有機(jī)物質(zhì)、重金屬氧化物及病原菌,降低水體生化需氧量(BOD)和總懸浮固體(TSS)含量[5-6],是集觀賞、娛樂、污水凈化于一體的景觀生態(tài)環(huán)境系統(tǒng)[7],因而在城市景觀河道的水質(zhì)改善中逐漸得到廣泛應(yīng)用[8].人工濕地系統(tǒng)通過基質(zhì)、水生植物和微生物的物理、化學(xué)和生物三重協(xié)同作用實(shí)現(xiàn)對污水的凈化[9-11].其中微生物在水體環(huán)境的修復(fù)過程中扮演著重要的角色,尤其是植物根際微生物.濕地根際微生物具有豐富的數(shù)量和種類,并伴有高效的降解能力[12].一方面,人工濕地中豐富的根際微生物能夠有效地降解轉(zhuǎn)化水體中的有機(jī)物、氮化合物和磷化合物等污染物[13];另一方面,水生植物通過釋放根際分泌物形成“根際效應(yīng)”,促使根際微生物增強(qiáng)人工濕地的承載能力[14].人工濕地中水力條件、廢水特性及各種營養(yǎng)元素的可利用性等條件會直接影響微生物數(shù)量、活性及菌群組成等各方面特性[15-16];外源污染物稀釋、遷移、轉(zhuǎn)化和降解過程伴隨著適應(yīng)性微生物激活及非適應(yīng)性微生物抑制的過程[17].因此,濕地植物根際微生物組成及群落結(jié)構(gòu)的變化能夠敏感地反映出水體質(zhì)量,是評價濕地生態(tài)系統(tǒng)健康狀況的重要指示因子.濕地環(huán)境中的微生物多樣性是整個系統(tǒng)正常運(yùn)行的關(guān)鍵[18],然而,目前關(guān)于再生水河湖景觀補(bǔ)水的相關(guān)研究,尤其是人工濕地回用方面多集中于分析人工濕地對再生水中污染物質(zhì)的去除效率及其凈化狀況評估[19-20],再生水補(bǔ)水對水生植物群落影響等[21-22],而關(guān)于再生水補(bǔ)水對濕地植物根際微生物群落影響鮮有研究.
末端限制性片段長度多態(tài)性分析技術(shù)(Terminal Restriction Fragment Length Polymorphism, T-RFLP)是基于RFLP技術(shù)和熒光標(biāo)記技術(shù)發(fā)展起來的[23],依據(jù)酶切產(chǎn)生的大量酶切片段和傳統(tǒng)的多樣性指數(shù)相結(jié)合可以快速檢測和評價由環(huán)境擾動而產(chǎn)生微生物群落多樣性的變化[24-25].近年來已有學(xué)者初步嘗試借用統(tǒng)計(jì)學(xué)方法在海量數(shù)據(jù)中挖掘數(shù)據(jù)的內(nèi)在規(guī)律方面的優(yōu)勢對T-RFLP分析中酶切片段進(jìn)行分析,均取得顯著成果[26-28].本文嘗試通過基于單因素方差分析(one-way ANOVA)、Spearman等級相關(guān)分析和典范對應(yīng)分析(CCA)相結(jié)合的方法對河道不同空間香蒲根際細(xì)菌群落結(jié)構(gòu)差異及其驅(qū)動環(huán)境因子進(jìn)行分析,研究預(yù)期在多元統(tǒng)計(jì)分析與T-RFLP相結(jié)合的微生物生態(tài)學(xué)問題分析中進(jìn)行有益嘗試,同時揭示再生水補(bǔ)水對城市河流濕地植物根際細(xì)菌群落結(jié)構(gòu)的影響.
1.1 研究區(qū)概況
以北京市永定河城市景觀再生水補(bǔ)水段(上游至三家店,下游至蓮石西路)為研究區(qū),該區(qū)段地處北京市城區(qū)西部,全長約10km,于2011年建成.該研究區(qū)位于歐亞大陸東部中緯度地帶(116°5'E~116°10'E, 39°53'N~39°57'N),處在東部濕潤區(qū)和西部干燥區(qū)之間,大陸性氣候明顯.整個流域平均年降雨量約為556~560mm,區(qū)域降雨多集中在6~9月.研究區(qū)段兩岸主要設(shè)有兩個再生水補(bǔ)水口(中門寺溝補(bǔ)水口和高井排洪渠補(bǔ)水口),年補(bǔ)水總量約200 萬m3.研究區(qū)內(nèi)水生植物主要包括香蒲、蘆葦、水蔥、浮萍等,植被覆蓋率可達(dá)70%~90%,其中香蒲最為普遍.
1.2 樣品采集及理化性質(zhì)分析
本研究分析的樣品于2012年9月采自門頭溝區(qū)永定河段麻峪濕地上游至下游典型的城市河段,實(shí)驗(yàn)樣品為研究區(qū)內(nèi)城市河道香蒲根際新鮮土壤樣品.依據(jù)《永定河生態(tài)功能區(qū)劃》合理布點(diǎn)采樣,其中X1和X2采樣斷面位于再生水補(bǔ)水口上游河段,X3、X4和X5采樣斷面則分別設(shè)在中門寺溝和高井排洪渠補(bǔ)水口附近,X6、X7 和X8采樣斷面選定在補(bǔ)水口下游約2000m處,詳見圖1.
圖1 研究區(qū)采樣點(diǎn)位置示意Fig.1 Location and distribution of the sampling points in study area
每一斷面從中間至兩岸濕地植物根際均勻采樣,混合均勻后置于無菌密封袋中保存,冷藏帶回實(shí)驗(yàn)室處理.同時用Hydrolab Datasonde5 5X水質(zhì)儀進(jìn)行現(xiàn)場水質(zhì)監(jiān)測,包括T (℃)、pH值、氧化還原電位(ORP)、鹽度(Sal)、總?cè)芙庑怨腆w(TDS)、溶解氧(DO)等參數(shù).帶回實(shí)驗(yàn)室樣品分兩部分處理,其中一部分進(jìn)行常規(guī)理化指標(biāo)分析,其中總氮(TN)、總磷(TP)、總有機(jī)碳(TOC)均采用國標(biāo)法測定,NH4+-N采用2mol/L KCl浸提—靛酚藍(lán)比色法測定,重金屬采用原子吸收光譜法來測定.剩余根際土壤樣品于-20℃下保存,用于微生物群落結(jié)構(gòu)分析.各樣點(diǎn)理化性質(zhì)測定結(jié)果見表1.
表1 水質(zhì)及香蒲根際沉積物理化性質(zhì)Table 1 Water quality and physicochemical properties of cattail rhizosphere sediment
1.3 基于T-RFLP的微生物群落多樣性分析
1.3.1 DNA提取 采用PowerSoil DNA IsolationKit 12888-50(MOBIO提供)提取植物根際沉積物樣品細(xì)菌總DNA,操作步驟按照使用說明書進(jìn)行.提取總DNA經(jīng)0.8%(m/V)瓊脂糖凝膠電泳分離鑒定,得到的DNA樣品放置于-20 ℃溫度條件下保存、備用.
1.3.2 細(xì)菌16S rDNA的PCR擴(kuò)增 用5'端經(jīng)6-FAM修飾的引物27f(5'-AGAGTTTGATCCTGGCTCAG-3')和無修飾的1492r(5'-GGTTACCTTG TTACGACTT-3')對總細(xì)菌16S rDNA進(jìn)行PCR擴(kuò)增.25μL擴(kuò)增體系包含2μL DNA 模板,12.5μL 2×Taq PCR Master Mix,1μL 10μmol/L 27f 和10μmol/L 1492r,8.5μL ddH2O.PCR擴(kuò)增程序設(shè)置條件為:95℃預(yù)變性5min;95℃變性50s, 55℃退火50s,72℃延伸1min,30個循環(huán);最后72℃延伸7min,4℃保存.熒光PCR產(chǎn)物采用0.8%的瓊脂糖凝膠電泳檢測后,用錫紙密封包裹避光置于4℃保存,以備酶切消化.
1.3.3 末端限制性片段長度多態(tài)性(T-RFLP)分析 分別采用限制性內(nèi)切酶MspⅠ、HhaⅠ和RsaⅠ對16S rDNA PCR產(chǎn)物酶切.酶切反應(yīng)體系(10μL): PCR產(chǎn)物5μL,MspⅠ/HhaⅠ/Rsa Ⅰ0.5μL, 10× buffer 1μL,ddH2O 3.5μL,將體系混勻后,置于恒溫培養(yǎng)箱37℃反應(yīng)4h.在65℃條件下水浴15min使限制性內(nèi)切酶失活,終止消化反應(yīng).隨后將酶切產(chǎn)物送至天根生物工程有限公司進(jìn)行基因掃描(GeneScan),獲得TRFLP圖譜.
1.3.4 數(shù)據(jù)處理與分析 (1) T-RFLP數(shù)據(jù)預(yù)處理 T-RFLP譜圖用Peak Scanner進(jìn)行分析.舍去小于50bp和大于500bp的片段.對于細(xì)菌,由于相對數(shù)量過小的限制性末端片段(T-RFs)不會對群落的特性產(chǎn)生明顯的影響[29-31],故在本分析中舍去了相對數(shù)量<1%的T-RFs,然后分別計(jì)算圖譜中每一個峰的峰面積與所有峰總面積的比值,最終形成8個樣品的224個T-RFs類型的相對峰面積組成的原始數(shù)據(jù)矩陣.
(2) 分類與排序 將每個T-RF所占的百分比作為權(quán)重導(dǎo)入Primer軟件,聚類方法選擇組間平均距離法,距離選擇平方歐氏距離,做出聚類分析圖,同時進(jìn)行MDS排序.
(3) 細(xì)菌群落多樣性分析 每一個T-RF類型至少代表一種細(xì)菌類群,以各T-RF類型的豐富度及其對應(yīng)的相對豐度計(jì)算細(xì)菌群落物種的香儂指數(shù)(Shannon index H′)、辛普森指數(shù)(Simpson index 1/D)和均勻度指數(shù)(Eveness index J′),分析濕地植物根際細(xì)菌多樣性的空間差異.其中
式中:pi代表片段的相對豐度;D是辛普森優(yōu)勢度指數(shù),其與多樣性成反比;S是T-RFs的總數(shù),可用以表示物種豐度( richness).
(4) 基于傳統(tǒng)T-RFs片段與多元統(tǒng)計(jì)相結(jié)合分析 將MspⅠ、HhaⅠ和RsaⅠ3種限制性內(nèi)切酶消化的T-RFLP圖譜屬性數(shù)據(jù)上傳到Phylogenetic Assignment Tool (PAT, https://secure. limnology.wisc. edu/trflp/newuser.jsp)網(wǎng)站,并結(jié)合網(wǎng)站MiCA (http://mica.ibest.uidaho.edu/pat. php)通過Virtual Digest (ISPaR)模塊產(chǎn)生的基礎(chǔ)數(shù)據(jù)庫對起主要作用T-RFs類型的系統(tǒng)發(fā)育分類進(jìn)行推測.之后應(yīng)用單因素方差分析、Spearman等級相關(guān)分析、典范對應(yīng)分析(CCA)等多種統(tǒng)計(jì)分析方法對河道不同空間香蒲根際細(xì)菌群落結(jié)構(gòu)差異及其驅(qū)動環(huán)境因子進(jìn)行分析研究.各類統(tǒng)計(jì)方法由Office Excel 2007和SPSS18.0實(shí)現(xiàn).
2.1 不同內(nèi)切酶消化多樣性比較
表2為8個樣品經(jīng)不同限制性內(nèi)切酶MspⅠ、HhaⅠ和RsaⅠ消化所獲得的T-RFLP圖譜文件信息.同一個樣品經(jīng)MspⅠ、HhaⅠ和RsaⅠ消化后,反映出的總T-RFs數(shù)和總峰面積具一定的差異.經(jīng)比對發(fā)現(xiàn),MspⅠ和HhaⅠ消化后的T-RFs多樣性明顯優(yōu)于RsaⅠ,即MspⅠ和HhaⅠ酶切結(jié)果能夠揭示更高的豐富度.基于此,后續(xù)的多元統(tǒng)計(jì)分析均基于MspⅠ和HhaⅠ消化結(jié)果進(jìn)行分析.
表2 香蒲根際樣品細(xì)菌經(jīng)MspⅠ、HhaⅠ和RsaⅠ限制性內(nèi)切酶消化結(jié)果總匯Table 2 Data summery of cattail rhizosphere bacterial samples with MspⅠ、HhaⅠand RsaⅠdigestion
2.2 基于T-RFLP圖譜的聚類及MDS排序分析
圖2 基于T-RFLP圖譜的香蒲根際細(xì)菌群落結(jié)構(gòu)聚類分析及MDS排序Fig.2 Dendrogram of hierarchical cluster analysis and MDS ordination of cattail rhizosphere bacteria based on the T-RFLP profiles
聚類分析能夠反映樣品間細(xì)菌群落的相似性及差異性.如圖2所示,細(xì)菌群落結(jié)構(gòu)在再生水河道補(bǔ)水口和上下游均發(fā)生較明顯的變化.以聚類相似性50%為標(biāo)準(zhǔn),并結(jié)合排序結(jié)果將所采集的樣點(diǎn)劃分為四大類:第Ⅰ類由再生水河道補(bǔ)水口上游X1與X2樣點(diǎn)組成,再生水補(bǔ)水口附近X3樣點(diǎn)為第Ⅱa類,X4和X5樣點(diǎn)為第Ⅱb類,而第Ⅲ類則包括再生水補(bǔ)水口下游約2000m外的X6、X7和X8樣點(diǎn).綜合分類和排序結(jié)果可以看出,隨再生水干擾程度減弱,各類群樣點(diǎn)沿排序圖左上角至右下角呈現(xiàn)明顯的變化規(guī)律.類Ⅱ樣點(diǎn)根際細(xì)菌群落結(jié)構(gòu)與其他各樣點(diǎn)間相似性存在較大差異,說明補(bǔ)水口附近底泥的生物物理化學(xué)過程顯著區(qū)別于主河道底泥,需進(jìn)一步結(jié)合微生物組成成分解析;其中排污口附近樣點(diǎn)類Ⅱa和類Ⅱb因不同補(bǔ)水口再生水水質(zhì)差異影響而在排序圖中具較廣分布格局,第Ⅲ類樣點(diǎn)隨距補(bǔ)水口距離遠(yuǎn)近差異同樣較第Ⅰ類樣點(diǎn)具相對較廣分布格局,同時發(fā)現(xiàn)類Ⅲ與類Ⅰ具有相對較高的相似性.
2.3 基于單一酶切片段多樣性表征參數(shù)變異特征
根據(jù)MspⅠ、HhaⅠ和RsaⅠ酶切結(jié)果,計(jì)算了不同酶切樣品中各片段的豐度,并定義T-RFs片段豐度值>4%的類型為優(yōu)勢菌群,而片段豐度值<1%的類型為偶見菌群,其余為非優(yōu)勢菌群[32],采用多樣性指數(shù)、菌群豐度和菌群T-RFs片段數(shù)表征各樣點(diǎn)細(xì)菌群落多樣性特征,具體見表3、表4. 3種酶切結(jié)果均顯示隨再生水干擾強(qiáng)度的增加細(xì)菌群落各多樣性指數(shù)均出現(xiàn)不同程度的降低趨勢.再生水補(bǔ)水口附近樣點(diǎn)(X3、X4、X5)因其受補(bǔ)水水質(zhì)影響,具有最高優(yōu)勢菌群豐度和最低優(yōu)勢菌群片段數(shù),同時具有相對較低的偶見菌群豐度和偶見菌群片段數(shù),二者綜合作用導(dǎo)致其細(xì)菌群落具最低均勻度和豐富度.而位于再生水補(bǔ)水口上游的樣點(diǎn)(X1、X2)因其細(xì)菌群落具最低優(yōu)勢菌群豐度和相對較高的優(yōu)勢菌群片段數(shù),因而群落具最高均勻度和豐富度.不同酶切類型相比較,HhaⅠ和MspⅠ酶切片段的豐富度及其多樣性指數(shù)明顯優(yōu)于基于RsaⅠ酶切的多樣性.不同菌群類型相比較,不同環(huán)境條件下優(yōu)勢菌群基于不同酶切類型間變異規(guī)律更為一致,而偶見菌群則受酶切類型的影響規(guī)律各異.
2.4 細(xì)菌群落多樣性與環(huán)境因子的相關(guān)分析
通過單因素方差分析對表1中各理化性質(zhì)指標(biāo)進(jìn)行差異性檢驗(yàn),結(jié)果表明理化指標(biāo)ORP、TOC 和NH4+-N在不同分類樣點(diǎn)間具顯著差異(P<0.05),而Sal、TDS和DO則呈極顯著差異(P<0.01).由表1可見,理化指標(biāo)Sal和TDS在補(bǔ)水口附近顯著變化,而后趨于穩(wěn)定;而DO顯著降低的同時,ORP緩慢增加,而后又在樣點(diǎn)X4處急劇下降,這可能是由于再生水補(bǔ)水引起底泥擾動,從而促使根際土壤中ORP略微增加.除此之外,NH4+-N在補(bǔ)水口附近顯著增加,而在下游明顯降低,可見濕地對氨氮的去除發(fā)揮重要作用.相對于其他位點(diǎn),補(bǔ)水口上游的營養(yǎng)指標(biāo)TN,TP和TOC最高,這可能是由于該采樣點(diǎn)位于三家店水庫,緩慢的水流致使有機(jī)物和其他物質(zhì)沉積所致.
為進(jìn)一步分析濕地凈化系統(tǒng)中香蒲根際細(xì)菌多樣性與環(huán)境因子間的響應(yīng)關(guān)系,將植物根際細(xì)菌多樣性表征參數(shù)與環(huán)境因子進(jìn)行Spearman等級相關(guān)分析,結(jié)果見表5.從表5可看出,pH值、Sal、TDS、DO、ORP和NH4+-N六項(xiàng)指標(biāo)與植物根際細(xì)菌多樣性空間演替具有密切關(guān)系.研究者們一再證明, pH 值是細(xì)菌多樣性和群落結(jié)構(gòu)演替的重要決定因子,并且驅(qū)動細(xì)菌群落的空間分布,其微小波動就可能誘使原始固有優(yōu)勢菌群組成發(fā)生改變[33-35].該研究區(qū)水質(zhì)為堿性(pH:9.26~10.63),受再生水補(bǔ)水影響pH值有所上升,升高的pH值可通過影響不同種類細(xì)菌的生長狀況(包括絕滅、繁衍、種的形成等),直接影響多樣性;也可通過影響湖泊生態(tài)系統(tǒng)中的其他環(huán)境因子(如有機(jī)物質(zhì)的分子結(jié)構(gòu))來間接影響水體細(xì)菌群落的結(jié)構(gòu)和多樣性[36-38].微生物的呼吸作用和發(fā)酵過程是有機(jī)污染物的重要去除機(jī)制,其去除過程依賴于ORP,寬泛的ORP范圍有利于多種污染物的去除[11];而DO是改善濕地氧化還原環(huán)境的重要環(huán)境因子,是微生物群落演替的關(guān)鍵因子[39];由此可見,在再生水補(bǔ)水的影響下,DO及ORP的降低易致使細(xì)菌群落特征發(fā)生改變.諸多研究表明鹽度同樣是影響細(xì)菌群落組成和多樣性的一個重要因素,在細(xì)菌群落演替中扮演重要角色[40-41];且發(fā)現(xiàn)細(xì)菌豐度在不同鹽度水體呈生態(tài)學(xué)上經(jīng)典的“單峰模型”,即在相同營養(yǎng)水平下,細(xì)菌在中等鹽度的水體中擁有最多的生態(tài)位,細(xì)菌豐度最高[42-43].這也就映證了在該研究中,低鹽度淡水生態(tài)系統(tǒng)濕地植物根際細(xì)菌的豐度及多樣性均與水體的鹽度顯著正相關(guān).Wu等[43]通過研究位于青藏高原青海–西藏段上16個高山湖泊,發(fā)現(xiàn)鹽度是控制浮游細(xì)菌豐度與群落組成的主導(dǎo)環(huán)境因子,鹽度含量高的湖泊,細(xì)菌的豐度也高;湖泊水體細(xì)菌多樣性隨著水體鹽度增加并未呈現(xiàn)減少趨勢.這一結(jié)論與該研究區(qū)濕地植物根際細(xì)菌分布規(guī)律相一致.氨氮與細(xì)菌群落結(jié)構(gòu)組成呈現(xiàn)最大相關(guān)性,是微生物群落結(jié)構(gòu)變化的主要影響因子[44];尤其是水中厭氧氨氧化細(xì)菌的豐度和多樣性與NH4+-N含量具顯著相關(guān)性[45].
2.5 基于CCA排序的群落結(jié)構(gòu)變異的環(huán)境解釋
利用MspⅠ酶切的8個樣點(diǎn)和環(huán)境因子進(jìn)行趨勢對應(yīng)分析(CCA),進(jìn)一步分析再生水補(bǔ)水濕地凈化系統(tǒng)中香蒲根際細(xì)菌群落結(jié)構(gòu)特征及其成因.排序結(jié)果表明,CCA 排序圖第一軸AX1和第二軸AX2的特征值累計(jì)占總特征值的66.9%,排序圖包含了大部分的信息,排序效果良好,結(jié)果見圖3(a).該研究區(qū)的8個樣點(diǎn)在CCA軸上得到了很好的分布,總的來看,與第一排序軸相關(guān)性高的環(huán)境因子是pH值、TDS和Sal,在x軸方向上表現(xiàn)出第Ⅱa類與其他群落類型之間的差異;而與第二排序軸相關(guān)性最高的環(huán)境因子是NH4+-N,其次是ORP、T、TOC、DO及重金屬Ni、Cr、Cu,基于分類的各類型樣點(diǎn)在y軸方向上從下到上表現(xiàn)為“類Ⅰ>類Ⅲ>類Ⅱa>類Ⅱb”的變化趨勢,這種變化趨勢與多樣性指數(shù)變化趨勢一致,同時也與再生水補(bǔ)水干擾強(qiáng)弱相呼應(yīng).類Ⅱa和Ⅱb分別獨(dú)立于其他類群位于圖最上方和最右方,表明其具獨(dú)特的微生物生態(tài)特征,其中類Ⅱa受環(huán)境因子pH影響較大,而類Ⅱb與T、ORP、 NH4+-N具有較高的相關(guān)性,即第Ⅱb類群與氨氮生物循環(huán)具密切關(guān)系;環(huán)境因子ORP、NH4+-N、TOC、DO以及重金屬Cr、Ni、Cu對類Ⅰ和類Ⅲ群落空間分布貢獻(xiàn)較大,其中ORP、NH4+-N表現(xiàn)負(fù)效應(yīng),TOC、DO以及重金屬Cr、Ni、Cu表現(xiàn)正效應(yīng),表明第Ⅰ類群和第Ⅲ類群群落與TOC和持久性痕量重金屬生物循環(huán)密切相關(guān).由圖3(b)可知,以MspⅠ酶切CCA聚類圖和以HhaⅠ酶切CCA聚類圖具有相似的結(jié)果.
表3 細(xì)菌群落多樣性分析Table 3 Diversity analysis of cattail rhizosphere bacterial community
表4 細(xì)菌群落結(jié)構(gòu)特征分析Table 4 Structural characters of cattail rhizosphere bacterial community
表5 香蒲根際細(xì)菌特性指標(biāo)與環(huán)境因子的相關(guān)性Table 5 Relationship between the bacteria characteristic parameters and the wetland chemical properties using Spearman’s correlation analysis
圖3 再生水補(bǔ)水河道植物根際采樣點(diǎn)與環(huán)境因子的CCA排序Fig.3 CCA sequence diagram of the sample point and environmental factors on Reclaimed water in river plant rhizosphere
2.6 基于Mica對比的群落結(jié)構(gòu)分析
2.6.1 優(yōu)勢菌群分析 通過Virtual Digest (ISPAR)模塊產(chǎn)生的基礎(chǔ)數(shù)據(jù)庫對起主要作用T-RFs類型的系統(tǒng)發(fā)育分類進(jìn)行推測,其中有將近20%暫不能確定,顯示為非培養(yǎng).另外,有個別的T-RFs類型在數(shù)據(jù)中無匹配.之后通過計(jì)算其細(xì)菌T-RFs的比例,以占據(jù)整個T-RF的4%以上為優(yōu)勢菌種,篩選結(jié)果見表6.
依據(jù)T-RFLP片段的Mica比對結(jié)果,試圖通過優(yōu)勢菌群結(jié)構(gòu)特征來反映濕地植物根際細(xì)菌群落空間差異.由表6可知,反應(yīng)再生水典型特征的第Ⅱb類群優(yōu)勢菌屬包含熱袍菌屬(Thermotoga sp.),即說明類Ⅱb細(xì)菌群落受溫度影響較大,同時CCA排序分析也具有相似結(jié)論.僅出現(xiàn)在第Ⅲ類的優(yōu)勢菌屬為Bacillus sp.和Lautropia sp.,有報道稱Bacillus sp.可迅速降解包括魚的排泄物、殘余飼料、浮游藻類尸體和池底淤泥在內(nèi)的有機(jī)物,使之生成硝酸鹽、磷酸鹽、硫酸鹽等無機(jī)鹽類,從而降低水中COD、BOD的含量,維持良好的水域生態(tài)環(huán)境[46];而Lautropia sp.常分布于人體口腔內(nèi)[47],據(jù)此可初步推測該樣點(diǎn)細(xì)菌群落受水體內(nèi)源雜質(zhì)及人為活動影響較大.Flavobacterium sp.為類Ⅰ和類Ⅲ共有的優(yōu)勢菌屬,據(jù)文獻(xiàn)可知,其常聚集于富含硝酸鹽的富營養(yǎng)水體中,可有效降低水體中氮的含量,并能夠分解代謝水體中的有機(jī)物質(zhì)[41,48-49],長期存在于該凈化系統(tǒng)中,對凈化系統(tǒng)的生態(tài)環(huán)境穩(wěn)定性起重要作用.除此之外,第Ⅰ類優(yōu)勢菌屬還包括Pseudomonas sp.、Geitlerinema sp.、Sulfurospirillum sp.、Delftia sp.和Acidovorax sp.;Pseudomonas sp.是一種有機(jī)污染中普遍存在的菌屬,可以利用包括單碳在內(nèi)的許多有機(jī)物作為自身的能量和碳源,以有機(jī)氮或無機(jī)氮為氮源進(jìn)行化能營養(yǎng)生活[50];而Geitlerinema sp.是專性屬于底棲生物環(huán)境,隸屬于藍(lán)菌門(Cyanophyta)的顫藻目(Oscillatoriales),與水環(huán)境中氮的循環(huán)具有密切關(guān)系已得到普遍的認(rèn)同[51]; Sulfurospirillum sp.屬于異養(yǎng)反硝化細(xì)菌,可有效降解硫酸鹽和硝酸鹽[52];而Delftia sp.可降解苯胺,塑化劑以及六價鉻[53];由此可見,第Ⅰ類細(xì)菌群落受TN、TOC及重金屬Cr影響較大,這與CCA排序分析結(jié)果較為一致.
表6 不同類群中植物根際細(xì)菌群落可能優(yōu)勢屬Table 6 Possible dominant genera of plant rhizosphere bacteria community based on different classification
2.6.2 基于多酶切綜合比對細(xì)菌群落多樣性變異分析 為進(jìn)一步分析基于門水平的不同樣點(diǎn)間植物根際細(xì)菌群落多樣性變異特征,利用PAT多酶切比對結(jié)果,依據(jù)屬數(shù)量分析各類細(xì)菌群落門水平的多樣性,并進(jìn)一步通過單因素方差分析篩選出各類群落間多樣性具有顯著差異的門,結(jié)果見圖4.由圖4可看出隨再生水干擾強(qiáng)度的增加,各位點(diǎn)屬數(shù)量呈現(xiàn)出“類Ⅰ>類Ⅲ>類Ⅱa>類Ⅱb”的變化趨勢.這與基于單一酶切片段多樣性變異特征分析結(jié)果相符,即再生水補(bǔ)水口的上游細(xì)菌群落多樣性與下游細(xì)菌群落趨于相似,而顯著區(qū)別于補(bǔ)水口附近樣點(diǎn).說明再生水補(bǔ)水直接影響到麻峪濕地微生物群落結(jié)構(gòu)的變化以及微生物群落組成,使得補(bǔ)水口附近細(xì)菌群落多樣性顯著降低;而下游相對升高的細(xì)菌群落多樣性則可能是由于受再生水補(bǔ)水影響的細(xì)菌群落在下游得以逐漸恢復(fù),亦或是因?yàn)閷δ婢钞a(chǎn)生抗性的一種表現(xiàn).
單因素方差分析結(jié)果表明,多樣性在各類群落間具有顯著差異的γ-變形菌門(Gammaproteobacteria)、δ-變形菌門(Deltaproteobacteria),綠彎菌門(Chloroflexi), ε-變形菌門(Epsilonproteobacteria)和放線菌門(Actinobacteria)主要在再生水補(bǔ)水口的上游富集,下游次之,補(bǔ)水口附近最少,這種分布特征除與再生水水質(zhì)特征相關(guān)外,還可能與河流水體本身所含營養(yǎng)物質(zhì)有關(guān).再生水補(bǔ)水口的上游(X1,X2)因累積效應(yīng)含有相對較高的營養(yǎng)指標(biāo)TN,TP和TOC;下游(X6,X7,X8)則因內(nèi)、外部原因也同樣含有大量的有機(jī)物.與此同時,研究發(fā)現(xiàn)Gammaproteobacteria多存在于富營養(yǎng)環(huán)境[54];Actinobacteria屬于淡水水體中的優(yōu)勢菌,傾向于存在靜水水體中[41],且有機(jī)物、氮和磷含量較高的污染水體易產(chǎn)生大量放線菌屬的細(xì)菌[55];Deltaproteobacteria多數(shù)為厭氧硫酸鹽還原菌,能夠分解多種有機(jī)化合物;Chloroflexi屬于綠色非硫細(xì)菌,常分布于水合物較少而有機(jī)質(zhì)豐富的熱液沉積物中,可見上游生境中豐富的有機(jī)質(zhì)為該門細(xì)菌的生長提供了底物[56].綜合CCA排序分析結(jié)果及優(yōu)勢菌群分布特征,解析了濕地香蒲根際細(xì)菌群落結(jié)構(gòu)空間差異特征的形成原因.
圖4 再生水補(bǔ)水影響下基于門水平的香蒲根際細(xì)菌群落多樣性分類Fig.4 Barchart of bacterial community diversity in cattail rhizosphere classification based on phylum level “**”和“*”分別表示再生水補(bǔ)水影響下基于門類水平的同一菌門在不同類群中的極顯著差異分布和顯著差異分布
3.1 污水處理廠的再生水直接影響到麻峪濕地微生物群落結(jié)構(gòu)的變化以及微生物群落組成,濕地植物根際細(xì)菌群落多樣性隨著再生水干擾強(qiáng)度的增加呈下降趨勢“類Ⅰ>類Ⅲ>類Ⅱa>類Ⅱb”,即再生水補(bǔ)水口的上游細(xì)菌群落多樣性與下游細(xì)菌群落趨于相似,而顯著區(qū)別于補(bǔ)水口附近樣點(diǎn).
3.2 細(xì)菌群落多樣性與環(huán)境因子相關(guān)分析表明,水質(zhì)變量pH、DO、TDS、ORP、Sal和NH4+-N六項(xiàng)指標(biāo)與植物根際細(xì)菌多樣性空間演替具有密切的關(guān)系.
3.3 再生水補(bǔ)水口的上游細(xì)菌群落(X1,X2)與 TN、TOC及重金屬Cr、Ni、Cu具有密切關(guān)系, 這可能與這些污染物累積效應(yīng)有關(guān);補(bǔ)水口附近植物根際細(xì)菌群落(X3,X4,X5)則因補(bǔ)水口再生水水質(zhì)不同而具顯著差異,其中第Ⅱa類群受水質(zhì)變量pH影響較大,而第Ⅱb類群與T、ORP和NH4+-N具較高的相關(guān)性;補(bǔ)水口下游細(xì)菌群落(X6,X7,X8)則因水體內(nèi)源雜質(zhì)及人為活動影響而同樣與TOC及持久性痕量重金屬生物循環(huán)密切相關(guān).
參考文獻(xiàn):
[1] Crook J, Surampalli R Y. Water reclamation and reuse criteria in the US [J]. Water Science and Technology, 1996,33(10):451-462.
[2] 劉 克.北京市典型河湖再生水補(bǔ)水生態(tài)環(huán)境效應(yīng)研究 [D].北京:首都師范大學(xué), 2012.
[3] 李 兵,林煒鐵.一株好氧反硝化芽孢桿菌的脫氮特性研究 [J].水生態(tài)學(xué)雜志, 2009,2(3):48-51.
[4] 曾 薇,李 磊,楊瑩瑩,等.A2O工藝處理生活污水短程硝化反硝化的研究 [J]. 中國環(huán)境科學(xué), 2010,30(5):625-632.
[5] Zhao S M, Hu N, Chen Z J, et al. Bioremediation of reclaimed wastewater used as landscape water by using the denitrifying bacterium Bacillus cereus [J]. Bulletin of Environmental Contamination and Toxicology, 2009,83(3):337-340.
[6] Thurston J A, Gerba C P, Foster K E, et al. Fate of indicator microorganisms, giardia and cryptosporidium in subsurface flow constructed wetlands [J]. Water Research, 2001,35(6):1547-1551.
[7] 熊 薇.城市濕地植物根際細(xì)菌群落多樣性時空變異及其水環(huán)境解釋 [D]. 北京:首都師范大學(xué), 2013.
[8] Cui F, Yuan B, Wang Y. Constructed Wetland as an Alternative Solution to Maintain Urban Landscape Lake Water Quality: Trial of Xing-Qing Lake in Xi’an City [J]. Procedia Environmental Sciences, 2011,10:2525-2532.
[9] Malecki-Brown L M, White J R, Reddy K R. Soil Biogeochemical Characteristics Influenced by Alum Application in a Municipal Wastewater Treatment Wetland [J]. Journal of Environmental Quality, 2007,36(6):1904-13.
[10] Sundberg C, Stendahl J S K, Tonderski K, et al. Overland flow systems for treatment of landfill leachates: Potential nitrification and structure of the ammonia-oxidising bacterial community during a growing season [J]. Soil Biology and Biochemistry, 2007, 39(1):127-138.
[11] 籍國東,倪晉仁.人工濕地廢水生態(tài)處理系統(tǒng)的作用機(jī)制 [J].環(huán)境污染治理技術(shù)與設(shè)備, 2004,5(6):71-75.
[12] Feng C L, Li K L, Li Y. Community characteristics and purification mechanism of microbial in wetland [J]. Journal of Central South University of Forestry Technology, 2012,32:1673-923x.
[13] 陸開宏,胡智勇,梁晶晶,等.富營養(yǎng)水體中2種水生植物的根際微生物群落特征 [J]. 中國環(huán)境科學(xué), 2010,30(11):1508-1515.
[14] Xiang X M, Song C X, Li Y S, et al. Microorganism features of Typha latifolia and Phragmites australis at rhizosphere [J]. Journal of Environmental Protection Science, 2004,30(8):35-38.
[15] Marika T, Jaanis J, Jaak T, et al. Microbial biomass, activity and community composition in constructed wetlands [J]. Science of the Total Environment, 2009,407(13):3958-3971.
[16] Ren L J, Wu Y N, Ren N Q, et al. Microbial community structure in an integrated A/O reactor treating diluted livestock wastewater during start-up period [J]. Journal of Environmental Sciences, 22(5):656-662.
[17] 王 瑩.污染河流中微生物群落結(jié)構(gòu)的空間變化解析 [D]. 吉林: 東北師范大學(xué), 2008.
[18] 殷 峻,聞 岳,周 琪.人工濕地中微生物生態(tài)的研究進(jìn)展 [J].環(huán)境科學(xué)與技術(shù), 2007,30(1):108-110.
[19] Rousseau D P L, Lesage E. Constructed wetlands for water reclamation [J]. Desalination, 2008,218(1):181-189.
[20] Greenway M. The role of constructed wetlands in secondary effluent treatment and water reuse in subtropical and arid Australia [J]. Ecological Engineering, 2005,25(5):501-509.
[21] 卜夢嬌,馮雪冰,楊小靜,等.北京市再生水補(bǔ)水公園濕地水生植物群落調(diào)查 [J]. 濕地科學(xué), 2012,10(2):223-227.
[22] Crowe A U, Plant A L, Kermode A R. Effects of an industrial effluent on plant colonization and on the germination and post-germinative growth of seeds of terrestrial and aquatic plant species [J]. Environmental Pollution, 2002,117(1):179-189.
[23] Marsh T L. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products [J]. Current Opinion in Microbiology, 1999,2(3):323-327.
[24] 宋洪寧,杜秉海.環(huán)境因素對東平湖沉積物細(xì)菌群落結(jié)構(gòu)的影響[J]. 微生物學(xué)報, 2010,50(8):1065-1071.
[25] Tipaynoa S, Kimb C G, Saa T. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation [J]. Applied Soil Ecology, 2012,61:137–146.
[26] Ginige M P, Kekkonen A H, Morris C, et al. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water [J]. FEMS Microbiology Ecology, 2013,85(3):553-567.
[27] 黃 藝,舒中亞.基于浮游細(xì)菌生物完整性指數(shù)的河流生態(tài)系統(tǒng)健康評價——以滇池流域?yàn)槔?[J]. 環(huán)境科學(xué), 2013,34(8): 3010-3018.
[28] Ding T, Palmer M W, Melcher U. Community terminal restriction fragment length polymorphisms reveal insights into the diversityand dynamics of leaf endophytic bacteria [J]. BMC Microbiology, 2013,13(1):1.
[29] Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [J]. Applied and Environmental Microbiology, 1997,63(11):4516-4522.
[30] Mayrand P E, Corcoran K P, Ziegle J S, et al. The use of fluorescence detection and internal lane standards to size PCR products automatically [J]. Applied and Theoretical Electrophoresis, 1992,3(1):1-11.
[31] Ziegle J S, Su Y, Corcoran K P, et al. Application of automated DNA sizing technology for genotyping microsatellite loci [J]. Genomics, 1992,14(4):1026-1031.
[32] Zhang R, Thiyagarajan V, Qian P Y. Evaluation of terminalrestriction fragment length polymorphism analysis in contrasting marine environments [J]. FEMS Microbiology Ecology, 2008,65(1):169–178.
[33] De Figueiredo D R, Pereira M J, Moura A, et al. Bacterial community composition over a dry winter in meso- and eutrophic Portuguese water bodies [J]. FEMS Microbiology Ecology, 2007, 59(3):638–650.
[34] Xiong J, Liu Y, Zhang H, et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau [J]. Environmental Microbiology, 2012,14(9):2457–2466.
[35] Shen C, Xiong J, Zhang H, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain [J]. Soil Biology and Biochemistry, 2013,57:204-211.
[36] 任麗娟,何 聃,邢 鵬,等.湖泊水體細(xì)菌多樣性及其生態(tài)功能研究進(jìn)展 [J]. 生物多樣性, 2013,21(4):421–432.
[37] Langenheder S, Lindstr?m E S, Tranvik L J. Structure and function of bacterial communities emerging from different sources under identical conditions [J]. Applied and Environmental Microbiology, 2006,72:212–220.
[38] Yannarell A C, Triplett E W. Geographic and environmental sources of variation in lake bacterial community composition [J]. Applied and Environmental Microbiology, 2005,71:227–239.
[39] Yan Q M, Zhang X X, Zhang T, Fang H H P. Seasonal microbial community shift in a saline sewage treatment plant [J]. Frontiers of Environmental Science and Engineering in China, 2011,5(1): 40-47.
[40] Jiang H, Dong H, Yu B, et al. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau [J]. Environmental Microbiology, 2007,9(10):2603–2621.
[41] Herlemann D P R, Labrenz M, Jurgens K, et al. Transitions in bacterial communities along the 2000km salinity gradient of the Baltic Sea [J]. International Society for Microbial Ecology, 2011, 5:1571–1579.
[42] Hamdan L J, Jonas R B. Seasonal and interannual dynamics of free-living bacterioplankton and microbially labile organic carbon along the salinity gradient of the Potomac River [J]. Estuaries and Coasts, 2006,29(1):40-53.
[43] Wu Q L, Zwart G, Schauer M, et al. Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau [J]. Applied and Environmental Microbiology, 2006,72(8):5478-5485.
[44] Yan Q Y, Yu Y H, Feng W S. Plankton community composition in the Three Gorges Reservoir Region revealed by PCR-DGGE and its relationships with environmental factors [J]. Journal of Environmental Sciences, 2008,20(6):732-738.
[45] 孫 巍.東江微生物的群落結(jié)構(gòu)及其在氨氮轉(zhuǎn)化中的作用特點(diǎn)[D]. 廣州:華南理工大學(xué), 2011年.
[46] Fu T X, Wei K J, Xu G H. The research and application of bacillus in aquaculture [J]. Reservoir Fisheries, 2007,27(3):102-104.
[47] Gerner-Smidt P, Keiser-Nielsen H, Dorsch M, et al. Lautropia mirabilis gen. nov., sp. nov., a Gram-negative motile coccus with unusual morphology isolated from the human mouth [J]. Microbiology, 1994,140(7):1787-1797.
[48] Kisand V, Cuadros R, Wikner J. Phylogeny of culturable estuarine bacteria catabolizing riverine organic matter in the Northern Baltic Sea [J]. Applied and Environmental Microbiology, 2002,68(1):379-388.
[49] Nijburg J W, Laanbroek H J. The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community [J]. FEMS Microbiology Ecology, 1997,22(1):57-63.
[50] Moore E R B, Tindall B J, Dos Santos V A P M, Pieper D H, Ramos J L, Palleroni N J. Nonmedical: pseudomonas [M]//The Prokaryotes. Springer New York, 2006:646-703.
[51] Andrianasolo E H, Goeger D, Gerwick W H. Mitsoamide: A cytotoxic linear lipopeptide from the Madagascar marine cyanobacterium Geitlerinema sp [J]. Pure and applied chemistry, 2007,79(4):593-602.
[52] Chen C, Ren N, Wang A, et al. Microbial community of granules in expanded granular sludge bed reactor for simultaneous biological removal of sulfate, nitrate and lactate [J]. Applied microbiology and biotechnology, 2008,79(6):1071-1077.
[53] Ubalde M C, Bra?a V, Sueiro F, et al. The versatility of Delftia sp. isolates as tools for bioremediation and biofertilization technologies [J]. Current microbiology, 2012,64(6):597-603.
[54] Eiler A, Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes [J]. Environmental Microbiology, 2004,6(12): 1228-1243.
[55] Figueiredo D R, Pereira M J, Moura A, et al. Bacterial community composition over a drywinter in meso- and eutrophic Portuguese water bodies [J]. FEMS Microbiology Ecology, 2007,59(3):638-650.
[56] 魏曼曼,陳新華,周洪波.深海熱液噴口微生物群落研究進(jìn)展 [J].海洋科學(xué), 2012,36(6):113-121.
致謝:本實(shí)驗(yàn)的現(xiàn)場采樣和實(shí)驗(yàn)工作由實(shí)驗(yàn)室同學(xué)趙霏、黃迪及馬棟山等協(xié)助幫忙完成,在此表示感謝.
Influence of reclaimed water on bacterial community structure of cattail rhizosphere from riverine wetland.
HUANG Xing-ru1,2, ZHANG Qiong-qiong1,2, ZHANG Rui-jie1,2, GUO Xiao-yu1,2*(1.College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China;2.Urban Environmental Processes and Digital Modeling Laboratory, Beijing 100048, China). China Environmental Science, 2016,36(2):569~580
Abstract:Water reclamation and reuse have been actively promoted in Beijing, but the potential influences of reclaimed water on the microbial community structures are still poorly understood. Therefore, bacterial community structures in cattail rhizosphere between the samples of reclaimed water outfall and far from the reclaimed water outfall in the Mayu Wetland of Yongding River, Beijing were compared. Terminal restriction fragment length polymorphism (T-RFLP) was conducted to quantitatively detect the changes of bacterial community structures. Several statistical methods including one-way analysis of variance (ANOVA), spearman’s correlation analysis and canonical correspondence analysis (CCA) were united to find out which were the key environmental factors to drive the bacterial community structure shifts. The result showed that microbial richness, evenness and diversity decreased with the increase of the reclaimed water interference intensity. The diversity of Gammaproteobacteria, Deltaproteobacteria, Chloroflexi, Epsilonproteobacteria and Actinobacteria were decreased significantly near the reclaimed water outfall. Spearman’s correlation analysis indicated that pH, DO, TDS, ORP, Sal and NH4+-N play an important role in the diversity spatial variation of plant rhizosphere microbial community. CCA indicated that TN, TOC, and Cr、Ni、Cu were significantly correlated with microbial communities structures of the upstream of reclaimed water outfall. Plant rhizosphere bacterial communities near the outfall were significantly different due to the reclaimed water quality difference. Group IIa and IIb were mainly affected by pH and T、ORP、NH4+-N, respectively. While the bacterial communities in the downstream were also significantly correlated with TOC and some heavy metals due to water internal impurities and human activity influence.
Key words:reclaimed water;T-RFLP;bacterial community diversity;multivariate statistical analysis
作者簡介:黃興如(1988-),男,安徽阜陽人,首都師范大學(xué)碩士研究生,主要從事環(huán)境微生物研究.
基金項(xiàng)目:國家自然科學(xué)基金(40901281);北京市教育委員會科技計(jì)劃面上項(xiàng)目(KM201310028012)
收稿日期:2015-07-25
中圖分類號:X172
文獻(xiàn)標(biāo)識碼:A
文章編號:1000-6923(2016)02-0569-12