顧 超,張奇春,徐晨光
(浙江省亞熱帶土壤與植物營(yíng)養(yǎng)重點(diǎn)實(shí)驗(yàn)室/污染環(huán)境修復(fù)與生態(tài)健康教育部重點(diǎn)實(shí)驗(yàn)室/浙江大學(xué)環(huán)境與資源學(xué)院,310058)
土壤中以抗生素為單一碳源的抗性細(xì)菌
顧 超,張奇春*,徐晨光
(浙江省亞熱帶土壤與植物營(yíng)養(yǎng)重點(diǎn)實(shí)驗(yàn)室/污染環(huán)境修復(fù)與生態(tài)健康教育部重點(diǎn)實(shí)驗(yàn)室/浙江大學(xué)環(huán)境與資源學(xué)院,310058)
通過(guò)單一碳源選擇性培養(yǎng)基(sole carbon source,SCS),從4種不同利用類型的土壤中分離得到2株以青霉素為碳源的菌株(p4,p5)以及3株以四環(huán)素為碳源的菌株(t1,t5,t9),5種菌株均為革蘭陰性菌.研究結(jié)果表明抗生素能刺激相應(yīng)抗性菌株的生長(zhǎng).分別將p4,t5,t9菌株接種到100 mg/L相應(yīng)抗生素SCS培養(yǎng)液中,30 d后培養(yǎng)液中抗生素質(zhì)量濃度與不接種菌株的培養(yǎng)液相比分別下降19.5%,29.1%,24.9%.通過(guò)系統(tǒng)發(fā)育分析,5種菌株分別屬于溶桿菌屬(Lysobacter)、貪噬菌屬(Variovorax)、假單胞菌屬(Pseudomona)、噬幾丁質(zhì)菌屬(Chitinophaga)和慢生根瘤菌屬(Bradyrhizobium),說(shuō)明土壤中以抗生素為單一碳源分離的抗性細(xì)菌具有群落結(jié)構(gòu)多樣性,甚至有菌株與機(jī)會(huì)致病菌相關(guān),應(yīng)引起重視.
抗生素;單一碳源;系統(tǒng)發(fā)育分析
SummaryResistance genes and strains were increased significantly with antibiotic accumulation in soil.Some resistant strains showed multiple drug resistance.Resistance genes can not only transfer between different species of bacteria,but also to humans by edible crops.Thus,the harm of resistant strains to the environment and human health is alarming.Studies showed that many microorganisms grew in an extreme environment and could degrade toxic substances,therefore,there must be some bacteria living with antibiotics as carbon sources for growth in the environment.Although many studies reported antibiotic resistant strains,little effort had been found in the literature to isolate strains with antibiotics for carbon sources.With the aim to promote domestic antibiotic resistance genes related research development of new antimicrobial agent,we studied growth characteristics and phylogenetic positions for strains with penicillin or tetracycline as the sole carbon source.
We collected four kinds of soil(forest soil,tea garden soil,farm soil,and hospital nearby soil)with a potential antibiotic accumulation for the experiment.Sole carbon source medium with penicillin or tetracycline was used to isolate strains.The pu__rity of each reagent in the medium was more than 99.5%.Morphological observation andgram staining were carried out after inoculating culture.Growth curves of strains and antibiotic concentrations in the medium were analyzed to understand the characteristics of the strains using antibiotics.Primers 27F and 1492R were used for strains 16S r RNA genes amplification to determine phylogenetic positions of strains.
We isolated five soil bacterial strains(p4,p5,t1,t5,t9)from soil with the capacity to grow on antibiotic as sole carbon source.The strains of p4,p5are resistant to penicillin and the other three are to tetracycline.The strain of t1was isolated from the tea garden and other four strains were isolated from the forest soil.Five strains were all gram-negative bacteria.The results showed that antibiotics were limiting factors for these bacteria and antibiotic could stimulate the strains growth.The concentration of penicillin and tetracycline degraded 22.6%and 16.5%,respectively,after inoculation compared with the control in 100 mg/L sole carbon source(SCS)antibiotic medium. It showed that the isolates could use antibiotics as carbon sources to support their own growth.The bacterial isolates were identified based on analysis of the 16S r RNA gene sequences.They were placed into a phylogenetic tree and were considered to be surprisingly diverse.They were classified into five distinct genera,Lysobacter genus,Variovorax genus,Pseudomona genus,Chitinophaga genus and Brad yrhizobium genus,respectively.It is concluded that there are a considerable number of microbes in soil that can grow with antibiotics as the sole carbon source,unlike previous resistant bacteria,and the increase of concentration of antibiotics can stimulate the growth of strains.In theory,the strain can degrade antibiotics in soil,but as a kind of environmental pollutants,the ecological risk of isolated strains still needs further study.Although the mechanism of strains resistance is not obvious,we are sure that these strains are diverse in phylogenetic positions.
抗生素已被廣泛地用來(lái)保護(hù)人類的健康,此外由于抗生素成本低,在畜禽業(yè)及水產(chǎn)養(yǎng)殖業(yè)中,用作動(dòng)物的疾病預(yù)防劑及生長(zhǎng)促進(jìn)劑來(lái)提高生長(zhǎng)速率獲得較大的經(jīng)濟(jì)效益[1].中國(guó)是世界上最大的抗生素生產(chǎn)和消費(fèi)國(guó),年產(chǎn)21萬(wàn)t[2],每年有2.8萬(wàn)t的青霉素和1萬(wàn)t的土霉素生產(chǎn),分別占世界總產(chǎn)量的60%和65%[3].大多數(shù)醫(yī)藥抗生素被設(shè)計(jì)成能夠迅速?gòu)捏w內(nèi)排出,因此,通常多達(dá)30%~90%的抗生素以母體化合物排出體外[4].長(zhǎng)期服用抗生素的養(yǎng)殖動(dòng)物,其腸道菌群產(chǎn)生耐藥菌株,耐藥基因隨糞便進(jìn)入環(huán)境;另外,水產(chǎn)養(yǎng)殖廢水、制藥廠廢水和醫(yī)院廢水等排放致使環(huán)境中抗生素污染物不斷積聚進(jìn)而誘導(dǎo)耐藥基因.研究表明,自1940—2008年,土壤中的抗生素耐藥基因數(shù)量急劇增長(zhǎng)[5].
土壤生態(tài)系統(tǒng)是高度復(fù)雜的,包含了多種細(xì)菌和真菌的物種[6].THIELE[7]研究表明,土壤環(huán)境受抗生素類污染物的影響而發(fā)生顯著的微生物活性和抗性群落變化,絕大多數(shù)的土壤微生物還沒(méi)有被認(rèn)知,而且關(guān)于土壤微生物群落結(jié)構(gòu)與土壤性能之間的理論較少.DANTAS,等[8]在沒(méi)有明顯受到抗生素影響的土壤中分離出許多超高耐藥細(xì)菌,這些耐藥菌甚至可以利用抗生素為碳源來(lái)維持自己的生長(zhǎng),而且呈現(xiàn)出耐藥菌落的多樣性,系統(tǒng)發(fā)育中的親緣關(guān)系十分廣泛,但是關(guān)于它們的傳播模式和擴(kuò)散機(jī)制目前還很不清晰,國(guó)內(nèi)也未見(jiàn)有此類菌株的相關(guān)報(bào)道.青霉素和四環(huán)素都是人畜共用藥物,不僅可以在臨床上用來(lái)殺菌,而且還可以作為生長(zhǎng)促進(jìn)劑飼養(yǎng)動(dòng)物[1].因此,本研究試圖從不同類型土壤中分離出能以青霉素或四環(huán)素為單一碳源生長(zhǎng)的抗性細(xì)菌,并對(duì)其進(jìn)行系統(tǒng)發(fā)育鑒定.
1.1 供試土壤
分別選取茶園、森林、養(yǎng)殖場(chǎng)、醫(yī)院周邊作為土樣采集點(diǎn).茶園位于杭州市龍井村,為丘陵地,植被為茶樹(shù),長(zhǎng)年施用有機(jī)肥;森林位于龍井八景丘陵上,植被為多年生林木,樹(shù)種主要有柳樹(shù)等;養(yǎng)殖場(chǎng)位于浙江大學(xué)華家池校區(qū);醫(yī)院位于浙江大學(xué)紫金港校區(qū)校醫(yī)院.在各點(diǎn)周邊,隨機(jī)取20個(gè)表層(0~20 cm)土樣,采集后揀去植物殘?bào)w混合,分成2部分,一部分鮮土直接過(guò)2 mm篩用于抗性細(xì)菌的分離;另一部分土樣風(fēng)干后,研磨分別過(guò)2 mm和0.25 mm篩,用于土壤理化性狀的測(cè)定.供試土壤的基本性質(zhì)采用常規(guī)分析方法進(jìn)行測(cè)定[9],基本性質(zhì)見(jiàn)表1.
1.2 單一碳源(sole carbon source,SCS)培養(yǎng)基配制
根據(jù)DANTAS,等[8]研究中的配方配制基礎(chǔ)培養(yǎng)液,然后用NaOH或稀HCl調(diào)節(jié)p H至6.2~6.5,放入高壓滅菌鍋中滅菌后冷卻,加入已過(guò)0.22 μm微孔濾膜一定量質(zhì)量濃度的青霉素或四環(huán)素溶液即得溶液SCS抗生素培養(yǎng)基;取p H 6.2~6.5的基礎(chǔ)培養(yǎng)基,按15 g/L加入瓊脂,然后放入高壓滅菌鍋滅菌15 min,冷卻至40~45℃時(shí)加入已過(guò)0.22μm微孔濾膜一定質(zhì)量濃度的青霉素或四環(huán)素母液,配成不同質(zhì)量濃度的固體SCS抗生素培養(yǎng)基.
表1 4種供試土樣基本理化性質(zhì)Table1 Basic physical and chemical properties of the four tested soils
1.3 以抗生素為單一碳源菌株的篩選
稱取1 g鮮土加入盛有高壓滅菌后的50 m L磷酸鹽緩沖溶液(PBS:1.44 g/L Na2HPO4·2 H2O,0.24 g/L KH2PO4,8.00 g/L NaCl和0.20 g/L KCl的混合溶液)的三角瓶中,用手搖動(dòng)三角瓶1 min以混勻.然后吸取1 m L上述土壤溶液加入到裝有9 m L抗生素SCS(含抗生素為1 000 mg/L)培養(yǎng)液的試管中,培養(yǎng)1周后,重復(fù)操作1次,稀釋4次后,用移液槍吸取稀釋液200μL接種到含抗生素1 000 mg/L的固體SCS-抗生素培養(yǎng)基中,用涂布棒涂勻,倒置放入28℃培養(yǎng)箱中培養(yǎng)(以上實(shí)驗(yàn)過(guò)程中所用的槍頭、試管,固體和液體培養(yǎng)基等均經(jīng)過(guò)高壓滅菌),直至固體抗性培養(yǎng)基表面長(zhǎng)出菌落,再通過(guò)平板劃線得到純培養(yǎng)物.
1.4 菌株生長(zhǎng)曲線繪制
取分離菌平板,無(wú)菌操作挑取1環(huán)菌落,接入含有1 000 mg/L青霉素抗生素SCS液體培養(yǎng)基中,靜置培養(yǎng)18 h作種子培養(yǎng)液.每個(gè)菌種準(zhǔn)備8個(gè)盛有相同體積液體培養(yǎng)基的三角瓶(培養(yǎng)基分為含有抗生素100和1 000 mg/L的SCS-抗生素液體培養(yǎng)基),定量接入種子液,28℃振蕩培養(yǎng),分別于1:00、4:00、8:00、12:00、16:00、20:00、24:00取出,立即放入冰箱貯存,待培養(yǎng)結(jié)束進(jìn)行光密度值(D)測(cè)定,以未接種的培養(yǎng)基作對(duì)照,600 nm波長(zhǎng)分光光度計(jì)上調(diào)零點(diǎn).
1.5 SCS培養(yǎng)液中抗生素質(zhì)量濃度的測(cè)定
分別將分離的菌株接種到含抗生素質(zhì)量濃度為100 mg/L的SCS培養(yǎng)液中進(jìn)行培養(yǎng),分別在培養(yǎng)第1天、第10天、第20天和第30天時(shí)用無(wú)菌槍頭吸出培養(yǎng)液10 m L進(jìn)行抗生素分析.
青霉素測(cè)定方法:青霉素的測(cè)定采用高效液相色譜串聯(lián)質(zhì)譜法測(cè)定.將吸出的SCS-青霉素培養(yǎng)液準(zhǔn)確稀釋1 000倍.吸取稀釋后樣品2 m L于10-m L塑料離心管中,精確加入4 m L乙腈,1 000 r/min渦旋振蕩2 min,2 800 r/min離心4 min,精密移取5 m L上清液至另一10-m L塑料離心管中,加入2.5 m L正己烷,2 000 r/min渦旋振蕩1 min,靜置,待分層后棄去上層溶液,下層溶液于45℃水浴中氮?dú)獯蹈桑? m L 水-乙腈(90∶10)溶解殘?jiān)?.45μm微孔濾膜濾過(guò),濾液再用0.2μm微孔濾膜濾過(guò),作為供試液,供LC-MS/MS檢測(cè)[10].
四環(huán)素測(cè)定方法:采用高效液相色譜法測(cè)定培養(yǎng)液中的四環(huán)素.將吸出的SCS-四環(huán)素培養(yǎng)液精確稀釋1 000倍.用C18吸附柱固相萃取法提取水樣.分別用10 m L甲醇和10 m L EDTA(2 g/L),以3.0 m L/min速度對(duì)C18吸附柱進(jìn)行活化處理.吸取稀釋后培養(yǎng)液8 m L用稀硫酸調(diào)至p H<3,以10.00 m L/ min的速度流過(guò)CL8吸附柱,用5 mL純水以5.0 mL/ min速度清洗小柱,以除去EDTA,然后用氮?dú)獯滴街?0 min以除去吸附柱上的水分,用8 m L含0.01 moL/L草酸的甲醇以1.0 m L/min速度淋洗吸附柱(其中2 m L先浸泡吸附柱),收集淋洗液[11].
1.6 菌株觀察和染色
菌株的肉眼和光學(xué)顯微鏡觀察參照《伯杰細(xì)菌鑒定手冊(cè)》[12].革蘭染色參考《微生物學(xué)實(shí)驗(yàn)》[13].
1.7 分子生物學(xué)鑒定
所分離的抗生素耐藥菌按照傳統(tǒng)方法進(jìn)行DNA的提取,采用細(xì)菌通用引物27F(5′-AGAGTTTGAT CCTGGCTCAG-3′),1492R(5′-TACCTTGTTAC GACTT-3′)分別對(duì)菌株總DNA中的細(xì)菌16S r DNA片段進(jìn)行擴(kuò)增.20μL反應(yīng)體系如下:10倍PCR緩沖液2μL,dNTP混合液(各2.5 mmol/L)1.6μL,MgCl2(25 mmol/L)1.2μL,引物27F(10 μmol/L)1μL,引物1492R(10μmol/L)1μL,DNA模板1μL,Taq酶(5 U/μL)0.1μL,dd H2O 12.1 μL.PCR反應(yīng)條件:94℃預(yù)變性5 min;94℃變性30 s,55℃退火45 s,72℃延伸45 s,35個(gè)循環(huán);最后72℃延伸7 min.擴(kuò)增產(chǎn)物直接送上海生工生物工程公司進(jìn)行測(cè)序.
1.8 數(shù)據(jù)分析
采用Microsoft Excel 2007軟件對(duì)數(shù)據(jù)進(jìn)行處理和繪圖,采用MEGA5.0,用鄰接法構(gòu)建系統(tǒng)發(fā)育樹(shù).
2.1 以青霉素或四環(huán)素為單一碳源的生長(zhǎng)抗性細(xì)菌篩選
從4個(gè)不同利用類型的土壤中共篩選到以青霉素為碳源生長(zhǎng)的菌株2株(p4,p5),均分離自森林土壤;以四環(huán)素為碳源生長(zhǎng)的菌株3株(t1,t5,t9),其中t1分離自茶園土壤,t5和t9分離自森林土壤.各菌株革蘭染色和形態(tài)觀察結(jié)果(表2)表明,5種菌株均為革蘭陰性菌,菌落大小在0.1~2 mm,菌落均為圓形且表面凸起.目前,在全球范圍內(nèi),革蘭陰性致病菌感染引起的致病率和病死率占主導(dǎo)地位[14].可見(jiàn),浙江土壤中存在能以抗性素為單一碳源生長(zhǎng)的抗性細(xì)菌,雖然相對(duì)數(shù)量較小,但是根據(jù)研究報(bào)道這些能以抗性素為碳源的細(xì)菌具有耐藥的多樣性,而且許多與致病性相關(guān)[15].有趣的是,雖然養(yǎng)殖場(chǎng)和醫(yī)院用地土壤由于抗生素的應(yīng)用抗性基因增加,本次實(shí)驗(yàn)中卻未分離到相關(guān)微生物,而森林土壤未受到干擾卻分離到了以抗生素為碳源生長(zhǎng)的抗性細(xì)菌.相關(guān)研究表明大多數(shù)產(chǎn)抗生素菌株都攜帶對(duì)其抗生素的耐藥性基因[16],自然界中的風(fēng)、水流、野鳥(niǎo)等都是抗生素抗性基因傳播的重要驅(qū)動(dòng)力[17],因此即使是未受人為影響的森林土,其土著微生物都有可能獲得耐藥性基因而變成耐藥菌.本研究結(jié)果說(shuō)明土壤即使未受干擾的林地存在能以抗生素為單一碳源的菌株,是耐藥菌的儲(chǔ)存庫(kù),應(yīng)引起足夠的重視.
表2 革蘭染色和菌落形態(tài)觀察Table2 Gram staining and the morphology observation of the five strains
2.2 菌株的生長(zhǎng)特性分析
為了解菌株的生長(zhǎng)特性與培養(yǎng)液中抗生素的關(guān)系,分別將p4、p5接種到青霉素質(zhì)量濃度為100和1 000 mg/L的SCS培養(yǎng)基中,將t1、t5、t9接種到四環(huán)素質(zhì)量濃度為100和1 000 mg/L的SCS培養(yǎng)基中.生長(zhǎng)曲線結(jié)果(圖1)表明,5個(gè)菌株在監(jiān)測(cè)的60 h內(nèi)都呈現(xiàn)了完整的生長(zhǎng)過(guò)程(遲緩區(qū)、對(duì)數(shù)區(qū)、穩(wěn)定期、衰亡期).p4,p5菌株在100 mg/L青霉素SCS中40 h時(shí)吸光值最大,而在1 000 mg/L抗生素時(shí)生長(zhǎng)速度明顯加快,在20 h時(shí)D(600 nm)值達(dá)到最大,并且菌株穩(wěn)定期更長(zhǎng).t1,t5,t9在2種質(zhì)量濃度抗生素培養(yǎng)液中的生長(zhǎng)曲線規(guī)律與p4,p5類似,3種菌株在較低質(zhì)量濃度抗生素培養(yǎng)液中遲緩期和對(duì)數(shù)期時(shí)間較短,在較高質(zhì)量濃度抗生素吸光值增加較快,衰亡期持續(xù)時(shí)間較長(zhǎng).5種抗生素在不同質(zhì)量濃度培養(yǎng)液中的生長(zhǎng)曲線表明,抗生素是菌株生長(zhǎng)的限制因素,抗生素質(zhì)量濃度增加可刺激菌株生長(zhǎng).
圖1 菌株在不同抗生素質(zhì)量濃度培養(yǎng)液中的生長(zhǎng)曲線Fig.1 Growth curves of strains in different antibiotic concentration culture
2.3 培養(yǎng)液抗生素質(zhì)量濃度變化分析
為進(jìn)一步求證所分離菌株為以抗生素為單一碳源菌株,將平板上保存的菌株接種到抗生素單一碳源培養(yǎng)液中,研究抗生素質(zhì)量濃度變化,考慮到抗生素的自身降解同時(shí)做空白實(shí)驗(yàn)(即不接種菌株).由圖2可知,青霉素和四環(huán)素會(huì)發(fā)生自身降解,培養(yǎng)30 d時(shí),青霉素和四環(huán)素的自身降解率分別為22.6%和16.5%.向培養(yǎng)液中接種菌株后,培養(yǎng)液中抗生素的質(zhì)量濃度顯著低于同期對(duì)照.其中接種p4培養(yǎng)第30天時(shí),溶液中的青霉素質(zhì)量濃度比同期空白降低19.5%,通過(guò)統(tǒng)計(jì)分析差異呈極顯著水平(P<0.01).同樣,接種t5和t9后四環(huán)素質(zhì)量濃度同樣比對(duì)照顯著降低,培養(yǎng)30 d時(shí),溶液中四環(huán)素質(zhì)量濃度比對(duì)照分別降低29.1%和24.9%.結(jié)果說(shuō)明分離的菌株利用培養(yǎng)液中抗生素的碳源實(shí)現(xiàn)了自身生長(zhǎng).
圖2 接種菌株后培養(yǎng)液中抗生素質(zhì)量濃度變化Fig.2 Antibiotic concentration changes after strains inoculated in medium
2.4 分子生物學(xué)鑒定結(jié)果分析
從抗性平板上分離得到的5株抗性細(xì)菌分別進(jìn)行總DNA提取、16S r RNA基因擴(kuò)增,克隆測(cè)序后提交GenBank,獲得序列號(hào)為KF898093、KF898094、KF898095、KF898096、KF898097.應(yīng)用MEGA 5.0軟件采用Neighbor-Joining法Bootstrap為1000構(gòu)建系統(tǒng)發(fā)育樹(shù),確定其進(jìn)化地位(圖3).
從圖3可以看出,5種菌株(p4,p5,t1,t5,t9)處于5個(gè)不同的分支.p4菌株與1株從根際土壤分離的菌株(SNNU513,JF445288)相似性達(dá)到了99%,結(jié)合形態(tài)觀察可初步確定p4菌株屬于溶桿菌屬(Lysobacter)的產(chǎn)酶溶桿菌(Lysobacter enzymogenes).溶桿菌屬的微生物為化能異養(yǎng)革蘭陰性桿菌,好氧,生長(zhǎng)p H范圍為5~10,能產(chǎn)水溶性的棕色色素,對(duì)幾丁質(zhì)及其他多糖有降解作用[8].p5菌株與分離自溴苯腈辛酸酯廢水處理池1株溴苯腈辛酸酯降解菌株(XB3,HQ845986)相似性為100%,該菌株為爭(zhēng)論貪噬菌(Variovorax paradoxus),因此p5屬于貪噬菌屬(Variovorax),與爭(zhēng)論貪噬菌Variovorax paradoxus的親緣關(guān)系較近.Variovorax paradoxus能夠分解利用多種有機(jī)硫化物、芳香烴、金屬離子和其他化合物[18].
t1與分離自印度水樣的Pseudomonas monteilii菌株(PCWCW13,GQ284481)和分離自活性污泥產(chǎn)聚羥基脂肪酸的Pseudomonas taiwanensis菌株(EPAn59,JF911383)相似性同為99%,因此t1菌株大致可確定為假單胞菌屬(Pseudomona).李顯志,等[19]對(duì)假單胞菌屬細(xì)菌的研究表明,假單胞菌作為1種機(jī)會(huì)致病菌,可以介導(dǎo)多種抗生素獲得耐藥性.同樣,DANTAS,等[8]研究分離到的75株以抗生素為單一碳源的抗性菌株中有24%屬于假單胞菌屬(Pseudomona).t5與分離自鉀質(zhì)粗面巖的2個(gè)Chitinophaga eiseniae菌株(JN251,KF150488)和(JN246,KF150484)相似性同為99%,由此可確定t5屬于噬幾丁質(zhì)菌屬(Chitinophaga).t9與1株慢生根瘤菌屬(Bradyrhizobium)的菌株(PeniS4C4,JQ897948)相似性為99%,可初步確定t9為慢生根瘤菌屬(Brad yrhizobium).可見(jiàn),分離到的以抗生素為碳源生長(zhǎng)的抗性細(xì)菌具有群落多樣性.
圖3 菌株16S r RNA基因的系統(tǒng)發(fā)育樹(shù)Fig.3 Phylogenetic tree of strain 16S r RNA gene sequences
通過(guò)青霉素或四環(huán)素單一碳源選擇性培養(yǎng)基(SCS),從未受干擾的森林土壤和長(zhǎng)期施有機(jī)肥的茶園土壤中共分離出5株生長(zhǎng)良好、菌落特征不同的菌株,均為革蘭陰性菌.抗生素是抗性菌株生長(zhǎng)的限制因素,抗生素質(zhì)量濃度增加可以刺激菌株生長(zhǎng).分子生物學(xué)鑒定結(jié)果表明分離的菌株具有群落結(jié)構(gòu)多樣性,分別屬于溶桿菌屬(Lysobacter)、貪噬菌屬(Variovorax)、假單胞菌屬(Pseudomona)、噬幾丁質(zhì)菌屬(Chitinophaga)和慢生根瘤菌屬(Brad yrhizobium),這些菌株與一些復(fù)雜化合物難降解菌和機(jī)會(huì)致病菌的系統(tǒng)發(fā)育比較接近,應(yīng)引起重視.
(References):
[1] SARMAH A K,MEYER M T,BOXALL A.A global perspective on the use,sales,exposure pathways,occurrence,fate and effects of veterinary antibiotics(VAs)in the environment.Chemosphere,2006,65(5):725-759.
[2] HVISTENDAHL M.China takes aim at rampant antibiotic resistance.Science,2012,336(6083):795-795.
[3] RICH ARDSON B J,LAM P K,MARTIN M.Emerging chemicals of concern:pharmaceuticals and personal careproducts(PPCPs)in Asia,with particular reference to Southern China.Marine Pollution Bulletin,2005,50(9): 913-920.
[4] ALCOCK R E,SWEETMAN A,JONES K C.Assessment of organic contaminant fate in waste water treatment plants I:selected compounds and physicochemical properties. Chemosphere,1999,38(10):2247-2262.
[5] KNAPP C W,DOLFING J,EHLERT P A,et al.Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940.Environmental Science&Technology,2010,44(2):580-587.
[6] TORSVIK V,GOKSOYR J,DAAE F L.High diversity in DNA of soil bacteria.Applied and Environmental Microbiology,1990,56(3):782-787.
[7] THIELE S.Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess chernozem.Journal of Plant Nutrition and Soil Science,2000,163(6):589-594.
[8] DANTAS G,SOMMER M O A,OLUWASEGUN R D,et al.Bacteria subsisting on antibiotics.Science,2008,320(5872):100-103.
[9] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法.北京:中國(guó)農(nóng)業(yè)科技出版社,2000.
LU R K.Analytical Method of Soil Agricultural Chemistry.Beijing:Chinese Agricultural Science and Technology Press,2000.(in Chinese)
[10] 趙維,杜鋼,李向榮.高效液相色譜-串聯(lián)質(zhì)譜法測(cè)定牛奶中9種青霉素類藥物的殘留量.浙江大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2012(2): 11.
ZHAO W,DU G,LI X R.Determination of nine penicillin residues in milk by high-performance liquid chromatography-mass spectrometry.Journal of Zhejiang University(Medical Sciences),2012(2):11.(in Chinese with English abstract)
[11] 胡冠九,王冰,孫成.高效液相色譜法測(cè)定環(huán)境水樣中5種四環(huán)素類抗生素殘留.環(huán)境化學(xué),2007,26(1):106-107.
HU G J,WANG B,SUN C.Determination of five tetracycline residues in environmental water samples by highperformance liquid chromatography.Environmental Chemistry,2007,26(1):106-107.(in Chinese with English abstract)
[12] 中國(guó)科學(xué)院微生物研究所.伯杰細(xì)菌鑒定手冊(cè):8版.北京:科學(xué)出版社,1984:274-313.
Institute of Microbiology Chinese Academy of Science. Berger Bacterial Identification Manual:8th.Beijing: Science Press,1984:274-313.(in Chinese)
[13] 肖明,王雨凈.微生物學(xué)實(shí)驗(yàn).北京:科學(xué)出版社,2008:50-57.
XIAO M,WANG Y J.Microbiology Ex periment.Beijing: Science Press,2008:50-57.(in Chinese)
[14] ZOWAWI H M,BALKHY H H,WALSH T R,et al.βlactamase production in key gram-negative pathogen isolates from the Arabian Peninsula.Clinical Microbiology Reviews,2013,26(3):361-380.
[15] ABDELM Y,MONIB M,HAZEM A.Chloramphenicol,a simultaneous carbon and nitrogen source for Streptomyes sp. from Egyptian soil.Nature,1961,189(476):775-776.
[16] HOPWOOD D A.How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them?Molecular Microbiology,2007,63(4): 937-940.
[17] ALLEN H K,DONATO J,WANG H H,et al.Call of the wild:antibiotic resistance genes in natural environments. Nature Reviews Microbiology,2010,8(4):251-259.
[18] SATOLA S W,F(xiàn)ARLEY M M,ANDERSON K F,et al. Comparison of detection methods for heteroresistant vancomycin-intermediate Staphylococcus aureus,with the population analysis profile method as the reference method. Journal of Clinical Microbiology,2011,49(1):177-183.
[19] 李顯志.銅綠假單胞菌主動(dòng)外排泵介導(dǎo)的多重抗生素耐藥性.中國(guó)抗生素雜志,2003,28(10):577-596.
LI Z X.Efflux-mediated multiple antibiotic resistance in Pseudomonas aeruginosa.Chinese Journal of Antibiotics,2003,28(10):577-596.(in Chinese with English abstract)
Resistant bacteria subsisting on antibiotic as sole carbon source in soil.Journal of Zhejiang University(Agric.&Life Sci.),2016,42(5):582- 588
GU Chao,ZHANG Qichun*,XU Chenguang
(Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition/Key Laboratory of Environment Remediation and Ecological Health of the Ministry of Education/College of Environmental and Resource Sciences,Zhejiang University,Hangzhou 310058,China)
antibiotics;sole carbon source;phylogenetic analysis
S 154
A
10.3785/j.issn.1008-9209.2016.03.171
國(guó)家自然科學(xué)基金(41401266);浙江省科技廳公益項(xiàng)目(2016C32084);教育部留學(xué)回國(guó)人員科研啟動(dòng)基金(教外司留[2014]1685號(hào)).
*通信作者(Corresponding author):張奇春(http://orcid.org/0000-0002-8984-7413),E-mail:qczhang@zju.edu.cn
聯(lián)系方式:顧超(http://orcid.org/0000-0002-3370-320X),E-mail:21414101@zju.edu.cn
(Received):2016 03 17;接受日期(Accepted):2016 06 06;
日期(Published online):2016 09 18
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160918.1536.014.html