任 娟,張 磊,曾令藻,吳勞生,施加春
(浙江大學(xué)環(huán)境與資源學(xué)院土水資源與環(huán)境研究所,杭州310058)
養(yǎng)殖氧化塘周邊地下水氨氧化細(xì)菌分布及環(huán)境因子的影響
任 娟,張 磊,曾令藻,吳勞生,施加春*
(浙江大學(xué)環(huán)境與資源學(xué)院土水資源與環(huán)境研究所,杭州310058)
為了研究畜禽養(yǎng)殖場的廢水氧化塘對周邊地下水的影響,我們通過在海鹽縣某養(yǎng)豬場氧化塘周邊區(qū)域布井,采集相應(yīng)點位的地下水,并采用分子生物學(xué)手段實時熒光定量核酸擴增檢測(real-time quantitative PCR detecting system,qPCR)和水質(zhì)理化性質(zhì)分析手段,研究氧化塘周邊相應(yīng)位點地下水中的氨氧化細(xì)菌(ammoniaoxidizing bacteria,AOB)的豐度和水質(zhì)情況,并結(jié)合相關(guān)系數(shù),探究AOB豐度與環(huán)境因子之間的關(guān)系.結(jié)果表明:在相應(yīng)位點的地下水中AOB的豐度與相應(yīng)地下水中氨氮、硝氮和總氮的質(zhì)量濃度呈顯著正相關(guān),特別是AOB豐度與硝氮呈極顯著正相關(guān)關(guān)系(P<0.01);同時也發(fā)現(xiàn)AOB豐度受p H影響,當(dāng)p H>7.8時,AOB豐度較大,但AOB豐度和p H線性相關(guān)性不顯著.
地下水;氨氧化細(xì)菌(AOB);環(huán)境因子;Pearson相關(guān)系數(shù)
SummaryGroundwater is a precious natural resource,which is used as potable water,industrial water and agricultural water.With the development of breeding industry,lots of waste water and solid wastes were discharged to the environment,which has caused serious groundwater safety problems,especially high nitrogen concentration. Groundwater is a kind of comparatively well living environment for micro-organisms.Because it has abundant nutrition,water,adaptive temperature and p H and all these conditions are beneficial for growth and reproduction of micro-organisams.In water nitrate cycle,micro-organisms play a significant role.The first and rate limiting step of nitrification is ammoxidation,and the functional gene is ammonia monooxygenase,which existed in ammoniaoxidizing bacteria and ammonia-oxidizing archaea.
However,the factors affecting ammonia-oxidizing bacteria distribution pattern in groundwater and the influence mode are still not clear enough.This study attempted to improve the understanding of groundwater ammoniaoxidizing bacteria(_____AOB)abundance distribution and the correlations between the distribution and environmentalfactors around the livestock farm's hog-waste lagoon in Haiyan County,Zhejiang,China.
The amount of AOB and the nitrate concentrations were tested respectively by real-time PCR and continuous flow analyzer.The correlations among environmental factors,AOB abundance and relative abundance of AOB were analyzed by Pearson correlation coefficient.
The results indicated that NH4+-N concentration was ranged from 0.35- 18.98 mg/L,most of which was much higher than 0.5 mg/L in groundwater quality standard(GB/T 14848—93).And NH4+-N,the main pollution in this site,accounted for a large proportion in total nitrogen.All the water samples were weak base with p H ranged from 7.17- 7.87.Due to the shallow buried depth of groundwater in Zhejiang Province,all the water samples temperature were close to air temperature ranged from 22- 25℃.Total nitrogen had a similar distribution pattern with NH4+-N,of which samples beside lagoon No.2>samples beside lagoon No.1 and others.The result of No.2 was built nearly half a year later than No.1 and had a less stable boundary condition.Meanwhile,W18and W24had both high nitrogen concentration and high total organic carbon concentration.This may be caused by the same reason.Principal component analysis(PCA)result showed that the concentrations of NH4+-N and NO3--N are the two principal components of environmental factors with contribution rates are respectively 45.7%and 25.1%.AOB abundance also had a similar distribution pattern with NH4+-N.Besides,in the center of site,W11and W15also had relatively higher AOB abundance.AOB was the dominant bacteria in W11,W15,W24and W25,whose relative abundance was larger than 25%.It was also observed that p H could influence the AOB abundance. AOB abundance of water sample with p H>7.8 was strongly larger than that of water sample with p H<7.3.AOB abundance and AOB relative abundance had a significantly positive correlation with NO3--N(P<0.01). Meanwhile,they had positive correlation with NH4+-N and total nitrogen(P<0.05).
The main findings from this study are that both AOB abundance and AOB relative abundance show positive correlations with nitrogen concentration,including NH4+-N,NO3--N and total nitrogen.The AOB abundance and relative abundance are significantly positive correlated with NO3--N(P<0.01).When p H>7.8,the AOB abundance is significantly larger than the abundance when p H<7.3.However,the AOB abundance is not correlated with p H value.
畜禽養(yǎng)殖業(yè)是浙江省海鹽縣的農(nóng)業(yè)支柱產(chǎn)業(yè)之一.然而,長期的畜禽養(yǎng)殖過程中,對養(yǎng)殖場的周圍環(huán)境,包括水環(huán)境、土壤環(huán)境、大氣環(huán)境等都會造成嚴(yán)重的污染[1].大量的養(yǎng)殖廢棄物、養(yǎng)殖場淋洗液等隨著水分遷徙或生物代謝等物理生物過程,使氨氮污染物進(jìn)一步通過淋溶、滲濾,轉(zhuǎn)移至地下水環(huán)境,對本不易遭受污染的地下水造成污染[23].地下水作為人類重要的飲用水來源,受污染的地下水極有可能經(jīng)過生物鏈或者直接攝取的途徑長期危害人體健康.
地下水具備微生物生長繁殖的營養(yǎng)、水分、酸堿度和溫度等條件,是微生物良好的生存環(huán)境[4].地下水中存在氮相關(guān)微生物參與氮循環(huán)過程,尤其是當(dāng)?shù)叵滤艿降廴?,水中的氮含量升高對微生物有一定馴化作用.
氨氧化是氮循環(huán)(圖1)中硝化過程的第一步,也是決定硝化反應(yīng)速率的關(guān)鍵性步驟[5].在氨氧化過程中,功能酶為具有amo A基因編碼的氨單加氧酶(ammonia monooxgenase,AMO),其α亞基能催化NH3到NH2OH[6].因此amo A基因是研究氨氧化過程的著力點.具有這種基因的微生物種類包括氨氧化細(xì)菌(ammonia-oxidizing bacteria,AOB)以及氨氧化古菌(ammonia-oxidizing archaea,AOA).
圖1 主要生物氮轉(zhuǎn)化途徑[7]Fig.1 Major biological nitrogen transformation pathways[7]
目前對于地下水氨氧化細(xì)菌分布及其環(huán)境因子之間的關(guān)系研究尚不清楚.因此本研究主要探索地下水中氮相關(guān)微生物AOB的分布規(guī)律及其與環(huán)境因子的關(guān)系.
1.1 試驗地點與采樣點分布
試驗地點位于浙江省海鹽縣某養(yǎng)殖場地周邊氧化塘(120°57′33″E,30°35′36″N).經(jīng)過前期場地水文地質(zhì)勘查調(diào)查得知,土壤類型為水稻土土屬黃斑田土種;地下水埋深較淺,實測水位深度為0.3~0.6 m,年變化幅度0.5~1.5 m;由于地下水埋深較淺,地下水溫度易受氣溫影響,隨季節(jié)變化幅度較大;地下水p H范圍為7.0~8.7,水質(zhì)呈弱堿性.
地下水樣全部采自養(yǎng)殖場氧化塘(No.1和No.2)周邊的26口監(jiān)測井,監(jiān)測井分布見圖2.
圖2 試驗地點監(jiān)測井分布圖Fig.2 Distribution of the sample points
共有26口監(jiān)測井,全部為機械鉆探孔,其中孔深10 m的17口監(jiān)測井為W1,W2,W3,W4,W5,W6,W7,W8,W12,W13,W17,W18,W22,W23,W24,W25,W26;孔深4 m的9口監(jiān)測井為W9,W10,W11,W14,W15,W16,W19,W20,W21.
2014年9月,采集養(yǎng)殖場氧化塘周邊區(qū)域的26口監(jiān)測井中對應(yīng)位點的地下水樣,放于-4℃冰盒中,帶回實驗室對水樣進(jìn)行水質(zhì)分析,并提取水樣DNA.
1.2 水樣項目測定與分析
1.2.1 基本理化性質(zhì)
參照《水和廢水監(jiān)測分析方法》第四版[8]
溫度(T),采用顛倒溫度計法;
p H,采用玻璃電極法測定;
總有機碳(total organic carbon,TOC),采用燃燒氧化-非分散紅外吸收法測定;
電導(dǎo)率(specific conductance,SPC),采用實驗室電導(dǎo)率儀法測定
1.2.2 無機氮測定方法
根據(jù)地下水取樣規(guī)范要求(HJ495—2009)取樣后,在實驗室用雙圈定性濾紙過濾水樣,如濾液仍渾濁則重復(fù)過濾至濾液澄清無懸浮物,取適量濾液用連續(xù)流動分析儀(SAN++,SKALAR,The Netherlands)法測定[9],分析過程所用試劑均為優(yōu)級純,所用水均為超純水.
1.2.3 水樣AOB及總菌豐度測量方法
1.2.3.1 水樣DNA提取
水樣DNA用Fast DNA?SPIN kit for soil(MP Biomedicals LLC)試劑盒提取.提取方法參考該試劑盒給出的土壤樣品提取方法,具體如下:
①用注射器取水樣10 m L,用0.22μm有機濾膜過濾,取濾膜,晾干后用剪刀盡可能剪碎,稱取5 g剪碎待測樣品加入裂解管中,加入978μL磷酸鈉緩沖溶液和122μL MT緩沖溶液.
②用Fast Prep核酸提取儀以6 m/s的速率裂解細(xì)胞40 s.
③裂解結(jié)束后,將離心管置于高速冷凍離心機中,4℃14 000 g離心15 min,將上清液轉(zhuǎn)移到2 m L離心管中.
④將離心管置于離心機,4℃14 000 g冷凍離心10 min,沉淀殘渣.
⑤轉(zhuǎn)移上清液至2-m L離心管,加入250μL聚苯硫醚(polyphenylene sulfide,PPS),正反搖晃10次,搖勻,繼續(xù)4℃14 000 g離心5 min,再次沉淀.
⑥轉(zhuǎn)移上清液至15-m L離心管中,搖勻Binding Matrix并取1 m L加入15-m L離心管中,渦旋振蕩2 min,使DNA與其充分結(jié)合,靜置3 min.
⑦小心移除500μL上清液后混勻管中剩余物,取600μL到過濾柱收集管中,14 000 g離心1 min,將所收集濾液棄置,再取600μL離心管中混合物至過濾柱收集管中,再次離心(重復(fù)操作至離心管中混合物全部轉(zhuǎn)移為止).
⑧加入500μLSEWS-M(提前用100mL 100%乙醇稀釋),14000g離心1min,棄置濾液,14000g再次離心2min,完全去除SEWS-M,然后保留過濾柱,換上新的收集管.
⑨室溫下風(fēng)干5min.
⑩14000g離心1min,將DNA洗脫至干凈收集管,棄置過濾柱,-20℃保存.
1.2.3.2 熒光定量PCR
提取DNA所用試劑盒為大連寶生物工程有限公司的SYBR?PremixExTaqTMkit,提取純化后-20℃保存.然后以amoA-1F,amoA-2R為引物(表1),擴增AOB的amoA基因.
根據(jù)XIE,等[10]的方法,得到AOBamoA基因的重組質(zhì)粒,根據(jù)已知質(zhì)粒和阿伏伽德羅常數(shù)(6.02×1023分子數(shù)/mol)分別計算各自基因拷貝數(shù).分別以10倍梯度稀釋各重組質(zhì)粒,獲得各自的標(biāo)準(zhǔn)曲線,然后根據(jù)標(biāo)準(zhǔn)曲線計算出樣品中的基因拷貝數(shù),每個樣品3次重復(fù).實時熒光定量PCR的反應(yīng)體系為20μL,包含10μLSYBR?PremixEx TaqTMMix,前后引物各0.4μL,7.2μLPCR-H2O和2μLDNA模板.于CFX96Real-TimePCR System擴增儀上進(jìn)行定量分析.
表1 實時熒光定量所用引物和反應(yīng)條件Table1 Primersandreactionconditionsforreal-timePCR
1.3 數(shù)據(jù)分析
應(yīng)用軟件SPSS16.0進(jìn)行Pearson相關(guān)性分析,評估了AOB豐度和相對豐度與不同環(huán)境因子間的相關(guān)關(guān)系.AOB豐度進(jìn)行了以10為底的對數(shù)轉(zhuǎn)換.
對水樣進(jìn)行檢測后發(fā)現(xiàn)部分水樣檢測指標(biāo)明顯異常.經(jīng)過對現(xiàn)場監(jiān)測井進(jìn)行仔細(xì)檢查,結(jié)果表明,部分監(jiān)測井由于場地管道改建、自然天氣災(zāi)害等原因已受到不同程度的損壞,造成井水來源復(fù)雜,不再是單純地下水,所以在后續(xù)結(jié)果分析中不再對受損監(jiān)測井水樣進(jìn)行分析.
2.1 試驗場地水樣的基本理化性質(zhì)
場地的環(huán)境因子分布見表2,氨氮質(zhì)量濃度范圍在0.35~18.98mg/L之間,大部分樣品的氨氮遠(yuǎn)高于地下水質(zhì)量標(biāo)準(zhǔn)(GB/T14848—93)中V類水所規(guī)定的0.50mg/L;pH變化范圍小,呈弱堿性,較適合AOB類微生物表現(xiàn)硝化活性[12];由總氮(totalnitrogen,TN)和氨氮值可以看出來,整個場地中,氮污染物主要以氨氮的形式存在,總氮與氨氮的分布規(guī)律相似;不同采樣井的TOC/TN值相差較遠(yuǎn),范圍從0.63~43.76,最大可相差2個數(shù)量級;電導(dǎo)率較高的點分別為W18、W24和W25,都達(dá)到了2ms/cm以上;溫度范圍為22~25℃,推斷是由于江浙地區(qū)地下水埋深較淺,地下水受地表影響大,所以溫度接近地表溫度.
氨氮質(zhì)量濃度較高的采樣井為W15、W18和W24;硝氮質(zhì)量濃度較高的采樣井為W15和W24;TOC和TN質(zhì)量濃度較高的采樣井均為W18和W24,由圖2可知,除采樣井W15外,W18和W24都分布在No.2氧化塘邊.分析其原因可能是由于No.2氧化塘的修建時間晚于No.1氧化塘近半年,所以塘邊界條件較No.1更不穩(wěn)定,所以有大量的污染物經(jīng)由No.2氧化塘堤壩滲漏到地表和地下水,導(dǎo)致周邊地下水污染.
對所得到的全部環(huán)境因子數(shù)據(jù)進(jìn)行主成分分析(PCA),提取到2個主因子氨氮和硝氮,貢獻(xiàn)率分別是45.7%和25.1%(圖3),主因子累積貢獻(xiàn)率為70.8%,由此認(rèn)為這2個主成分可以表征地下水中主要環(huán)境因子.因此結(jié)合考慮2個主因子,對采樣點進(jìn)行3個Cluster聚類分組.ClusterⅠ為W1,W2,W3,W4,W5;ClusterⅡ為W9,W10,W12,W13,W22,W23;ClusterⅢ為W18和W24.
對比監(jiān)測井分布可得各分組的分布特點: ClusterⅠ分布于No.1氧化塘邊;ClusterⅡ分布于遠(yuǎn)離氧化塘的區(qū)域,ClusterⅢ分布于No.2氧化塘邊(圖4).整體氮素污染物質(zhì)量濃度ClusterⅢ>ClusterⅡ>ClusterⅠ.
表2 地下水樣理化性質(zhì)Table2 Chemical properties of the groundwater samples
圖3 環(huán)境因子分布PCA分析結(jié)果Fig.3 PCA result of environmental factors distribution
2.2 AOB豐度
各采樣井水樣中的amo A功能基因拷貝數(shù)見圖5.結(jié)合環(huán)境因子分布來看,amoA功能基因拷貝數(shù)的數(shù)量分布類似于環(huán)境因子中碳氮污染的分布規(guī)律,靠近No.2氧化塘的W18,W24和W25水樣中AOB數(shù)量較多.同時,W11和W15水樣的amo A基因拷貝數(shù)也較多,查看了蔬菜大棚的施肥記錄發(fā)現(xiàn),采樣前14 d,大棚內(nèi)曾在W15的位置施肥1次,肥料種類為復(fù)合型氮肥,可能對周圍區(qū)域地下水的氨氮含量及amoA基因數(shù)量影響較大.
圖4 試驗地點監(jiān)測井分組Fig.4 Sampling points grouping
利用Arc-GIS做出AOB amo A基因拷貝數(shù)分布圖見圖6,可得到與PCA主因子聚類分組相似,AOB amo A基因的分布也可以分為3個Clusters. ClusterⅢ區(qū)域基因拷貝數(shù)最高,其次是ClusterⅡ區(qū)域,ClusterⅠ區(qū)域amo A基因拷貝數(shù)最少.
圖5 各水樣中的氨氧化細(xì)菌的豐度Fig.5 Abundance of AOB in different water samples
圖6 AOB amoA基因拷貝數(shù)位置分布Fig.6 Biogeography of AOB amo A gene copy numbers
AOB的相對豐度即含amo A基因的細(xì)菌量與總菌量的比值,總菌量及相對豐度見圖7和圖8.由圖可以得到,總菌量≥107的采樣點基本集中在No.2氧化塘邊和W15施肥點周圍.同時,W11、W15、W24和W25的4個采樣井中,AOB占據(jù)了主導(dǎo)地位,大于等于總菌量的25%.
2.3 Pearson相關(guān)系數(shù)
AOB豐度及相對豐度和環(huán)境因子的相關(guān)關(guān)系見表3.AOB豐度和相對豐度都和硝氮質(zhì)量濃度呈極顯著正相關(guān)(P<0.01);AOB豐度與氨氮、總氮質(zhì)量濃度及AOB相對豐度與氨氮質(zhì)量濃度也均呈顯著正相關(guān)(P<0.05).說明AOB豐度以及相對豐度都受到水中氮污染物的影響,氮污染物質(zhì)量濃度越高,則AOB的豐度及相對豐度更大;尤其是硝氮質(zhì)量濃度和AOB相對豐度呈極顯著正相關(guān)(P<0.01).
圖7 各水樣中細(xì)菌的總量Fig.7 Total bacteria amount in different water samples
圖8 各水樣中氨氧化細(xì)菌/細(xì)菌總量的相對豐度Fig.8 Relative abundance of AOB/total amount of bacteria in different water samples
表3 AOB豐度和相對豐度與環(huán)境因子的相關(guān)關(guān)系Table3 Correlations between AOB abundance,relative abundance and environmental factors
氨氧化是地球生物循環(huán)的一個重要步驟[13],在氨氧化過程中,amo A基因是核心基因.作為氨氧化的第一步,amo A基因的數(shù)量直接關(guān)系到硝化過程的速率,進(jìn)而影響到整個氮循環(huán)過程的速率.
amo A基因受多種環(huán)境因子的影響[14]. KOWCALCHUK,等[15]的研究表明p H是AOB的amo A基因的重要影響因素之一[15],AOB種群結(jié)構(gòu)在不同p H環(huán)境下,優(yōu)勢種群不同.p H顯著上升時,amo A基因拷貝數(shù)會明顯增加[16].劉彪,等[17]研究發(fā)現(xiàn),當(dāng)p H為7.5~8.0時,AOB的amo A基因豐度較高,p H為8.0時,amo A基因豐度最高.在本研究中,所有水樣p H在7.0~8.0范圍內(nèi),p H>7.8的水樣W10、W11的amo A基因豐度顯著大于p H<7.3的水樣W2、W3和W4.AOB絕對豐度與p H間相關(guān)系數(shù)為0.439(P>0.05),因此不存在顯著的相關(guān)性.
氨氧化細(xì)菌豐度和相對豐度與氮污染物質(zhì)量濃度呈顯著正相關(guān),氮污染物質(zhì)量濃度越高,AOB絕對豐度越大.SAUDER,等[18]的研究也表明,當(dāng)氨氮質(zhì)量濃度大于0.1 mg/L時,AOB在氨氧化微生物中占據(jù)主導(dǎo)地位,并且AOB的生物量和氨氮質(zhì)量濃度呈顯著正相關(guān).而陳國元,等[19]對西湖沉積物間隙水的研究發(fā)現(xiàn),AOB豐度與氨氮質(zhì)量濃度呈顯著相關(guān)性,這與本研究的結(jié)果一致.WHITBY,等[20]對淡水湖的研究發(fā)現(xiàn),AOB豐度與氨氮質(zhì)量濃度無顯著性差異.因此推測在不同環(huán)境中,環(huán)境因子對AOB影響方式不同.JIA,等[21]和DI,等[22]通過對土壤環(huán)境研究發(fā)現(xiàn),AOB是富氨氮土壤環(huán)境中氨氧化過程的主導(dǎo)者.推測在富氨氮水環(huán)境中,AOB也是氨氧化過程的主導(dǎo)者.大量研究表明,AOB適合在高氮的環(huán)境下生長,而AOA適合在氮源相對貧乏的環(huán)境中生長[10].
環(huán)境因子的PCA聚類分組結(jié)果表明,環(huán)境因子按照主成分1氨氮質(zhì)量濃度和主成分2硝氮質(zhì)量濃度結(jié)合考慮,可以分為3個區(qū)域,分別是靠近No.1氧化塘邊的ClusterⅠ、靠近No.2氧化塘邊的ClusterⅢ和遠(yuǎn)離氧化塘的區(qū)域ClusterⅡ,而且AOB amo A基因拷貝數(shù)的分布也可以劃分為與其位置基本吻合的3個區(qū)域,同時氮素污染物呈現(xiàn): ClusterⅢ>ClusterⅡ>ClusterⅠ,AOB中amoA基因拷貝數(shù):ClusterⅢ>ClusterⅡ>ClusterⅠ.因此推測地下水和氧化塘之間的位置關(guān)系會影響地下水的環(huán)境因子和AOB數(shù)量,靠近No.2氧化塘邊的地下水污染質(zhì)量濃度最高,AOB數(shù)量最多;靠近No.1氧化塘邊的地下水污染質(zhì)量濃度最低,AOB數(shù)量最少.
TOC與TOC/TN和AOB豐度無任何相關(guān)性,說明在此場地內(nèi),TOC和TOC/TN不是氨氧化細(xì)菌繁殖的限制性因素,這可能是由于場地內(nèi)有足夠的碳源供氨氧化細(xì)菌吸收利用.
4.1 雖然p H值和AOB絕對豐度無相關(guān)性,但是p H值會影響AOB絕對豐度的大小:當(dāng)p H>7.8時,AOB絕對豐度較大;但當(dāng)p H<7.3時,AOB絕對豐度顯著減小.
4.2 AOB絕對豐度和相對豐度與氮污染物呈顯著正相關(guān),尤其是硝氮質(zhì)量濃度,呈極顯著正相關(guān)(P<0.01).
(References):
[1] JIAN M W,KAI W,XUE L C,et al.Evaluation on feed factors affecting the dung pollutants of livestock and poultry.Animal Husbandry and Feed Science,2009,1(8/10):14-16,19.
[2] LEE S.Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. GEODERMA,2006,135:26-37.
[3] RODRíGUEZ L,RUIZ E,ALONSO-AZCáRATE J,et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.Journal of Environmental Management,2009,90(2):1106-1116.
[4] 李政紅,張翠云,張勝,等.地下水微生物學(xué)研究進(jìn)展綜述.南水北調(diào)與水利科技,2007,5(5):60-63.
LI Z H,ZHANG C Y,ZHANG S,et al.Groundwater microbiology research progress summary.South to North Water Transfers and Water Science&Technology,2007,5(5):60-63.(in Chinese with English abstract)
[5] K?NNEKE M,BERNHARD A E,JOSéR,et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature,2005,437(7058):543-546.
[6] PROSSER J I,NICOL G W.Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment.Environmental Microbiology,2008,10(11): 2931-2941.
[7] CANFIELD D E,GLAZER A N,F(xiàn)ALKOWSKI P G.The evolution and future of Earth's nitrogen cycle.Science,2010,330(6001):192-196.
[8] 國家環(huán)境保護(hù)總局水和廢水監(jiān)測分析方法編委會.水和廢水監(jiān)測分析方法:第四版.北京:中國環(huán)境科學(xué)出版社,2002: 236-261.
State Environmental Protection Administration,Water and Waste Water Monitoring Analysis Method:4th ed.Beijing:China Environmental Science Press,2002:236-261.(in Chinese)
[9] ZHOU J B,CHEN Z J,LIU X J,et al.Nitrate accumulation in soil profiles under seasonally open‘sunlight greenhouses'in northwest China and potential for leaching loss during summer fallow.Soil Use and Management,2010,26(3):332-339.
[10] XIE Z,LE ROUX X,WANG C,et al.Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows.Soil Biology and Biochemistry,2014,77:89-99.
[11] ROTTH AUWE J,WITZEL K,LIESACK W.The ammonia monooxygenase structural gene amo A as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations.Applied and Environmental Microbiology,1997,63(12):4704-4712.
[12] 陸詩敏.淡水養(yǎng)殖池塘環(huán)境中氨氧化微生物的研究.武漢:華中農(nóng)業(yè)大學(xué),2014:54-69.
LU S M.Study on the ammonia-oxidizing microorganisms in the freshwater aquaculture pond environment in China. Wuhan:Huazhong Agricultural University,2014:54-69.(in Chinese with English abstract)
[13] KOOPS H P,PURKHOLD U,POMMERENING-R?SER A,et al.The Prokaryotes:An Evolving Electronic Resource for the Microbiological Community.New York:Springer-Verlag,2003.
[14] HE J,SHEN J,ZH ANG L,et al.Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices.Environmental Microbiology,2007,9(9):2364-2374.
[15] KOWALCHUK G A,STEPHEN J R,DE BOER W,et al. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments.Applied andEnvironmental Microbiology,1997,63(4):1489-1497.
[16] MENDUM T A,HIRSCH P R.Changes in the population structure ofβ-group autotrophic ammonia oxidizing bacteria in arable soils in response to agricultural practice.Soil Biology and Biochemistry,2002,34(10):1479-1485.
[17] 劉彪.仿生植物附著氨氧化微生物群落結(jié)構(gòu)及其對環(huán)境因子的響應(yīng)研究.蘇州,江蘇:江蘇大學(xué),2014:54-100.
LIU B.Research on community structure of ammoniaoxidizing microorganisms in the biofilm attached bionic plants and its responses to environmental factor.Suzhou,Jiangsu: Jiangsu University,2014:54-100.(in Chinese with English abstract)
[18] SAUDER L A,ENGEL K,STEARNSJ C,et al.Aquarium nitrification revisited:Thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters.PLoS ONE,2011,6(8):e23281.
[19] 陳國元,黃曉鳴.泉州西湖沉積物中硝化細(xì)菌的分布及其作用.微生物學(xué)通報,2011,38(11):1632-1638.
CHEN G Y,HUANG X M.Distribution and role of nitrifying bacteria in the sediments of Xihu Lake in Quanzhou.Microbiology,2011,38(11):1632-1638.(in Chinese with English abstract)
[20] WHITBY C B,SAUNDERS J R,PICKUP R W,et al.A comparison of ammonia-oxidizer populations in eutrophic and oligotrophic basins of a large freshwater lake.Antonie van Leeuwenhoek,2001,79(2):179-188.
[21] JIA Z,CONRAD R.Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology,2009,11(7):1658-1671.
[22] DI H J,CAMERON K C,SHEN J P,et al.Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils.Nature Geoscience,2009,2(9):621-624.
Groundwater ammonia-oxidizing bacteria distribution and the correlations between the distribution and environmental factors around livestock lagoons.Journal of Zhejiang University(Agric.&Life Sci.),2016,42(5):589- 597
REN Juan,ZHANG Lei,ZENG Lingzao,WU Laosheng,SHI Jiachun*
(Institute of Soil and Water Resource and Environmental Science,College of Environmental and Resource Sciences,Zhejiang University,Hangzhou 310058,China)
groundwater;ammonia-oxidizing bacteria(AOB);environmental factors;Pearson correlation coefficient
X 523
A
10.3785/j.issn.1008-9209.2015.11.182
國家高技術(shù)研究發(fā)展計劃(863)項目(2012AA062603).
*通信作者(Corresponding author):施加春(http://orcid.org/0000-0002-4279-4908),E-mail:jcshi@zju.edu.cn
聯(lián)系方式:任娟(http://orcid.org/0000-0002-4906-8896),E-mail:renjuan518@gmail.com
(Received):2015 11 18;接受日期(Accepted):2016 04 18;
日期(Published online):2016 09 18 URL:http://www.cnki.net/kcms/detail/33.1247.S.20160918.1535.012.html