• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      An Extremal Problem on Lagrangians of Hypergraphs

      2016-03-17 01:06:49
      關(guān)鍵詞:猜想

      ?

      An Extremal Problem on Lagrangians of Hypergraphs

      YAOYu-ping1*

      (College of Mathematics and Econometrics, Hunan University, Changsha 410082, China)

      KeywordsLagrangians;FranklandFürediconjecture;colexorder

      ForasetVandapositiveintegerr,letV(r)denotethefamilyofallr-subsetsofV.Anr-uniformgraphorr-graphGconsistsofasetV(G)ofverticesandasetE(G)?V(G)(r)ofedges.Anedgee={a1,a2,…,ar}willbesimplydenotedbya1a2…ar.Anr-graphHisasubgraphofanr-graphG,denotedbyH?GifV(H)?V(G)andE(H)?E(G).Thecomplementofanr-graphGisdenotedbyGc.Acompleter-graphontverticesisalsocalledacliqueofordert.LetNbethesetofallpositiveintegers.Foranyintegern∈N, we denote the set {1, 2, 3, …,n} by [n]. Let [n](r)represent the completer-uniform graph on the vertex set [n].

      In [1], Motzkin and Straus provided the following simple expression for the Lagrangian of a 2-graph.

      TheobviousgeneralizationofMotzkinandStraus’resulttohypergraphsisfalsebecausetherearemanyexamplesofhypergraphsthatdonotachievetheirLagrangianonanypropersubhypergraph.Indeed,estimatingtheLagrangianofahypergraphismuchdifficult.Lagrangiansofhypergraphshasbeenprovedtobeausefultoolinhypergraphextremalproblems.Inmostapplications,anupperboundoftheLagrangiansofcertainclassofhypergraphsisneeded.FranklandFüredi[2]askedthefollowingquestion.Givenr≥3andm∈N, how large can the Lagrangian of anr-graph withmedges be? For distinctA,B∈N(r)wesaythatAislessthanBinthecolexorderifmax(AΔB)∈B,whereAΔB=(AB)∪(BA).LetCr,mbether-uniformhypergraphwithmedgesformedbytakingthefirstmsetsinthecolexorderofN(r). The following conjecture of Frankl and Füredi (if it is true) provides a solution to the question mentioned at the beginning.

      Conjecture 1 (Frankl and Füredi[2]) IfGis ar-graph withmedges, thenλ(G)≤λ(Cr,m).

      Definition2Anr-graphG=([n],E)isleft-compressedifj1j2…jr∈Eimpliesi1i2…ir∈Eprovidedip≤jpforeveryp,1≤p≤r.

      Wearegoingtoprovethefollowingresult.

      Theremainingproofofthispaperisorganizedasfollows.InSection1,wegivesomepremilinaryresults.InSection2,wegivetheproofofTheorem2.

      1Preliminaries

      (1)

      Remark1Anr-graphG=([n],E)isleft-compressedifandonlyifEji=forany1≤i

      ThefollowinglemmagivessomenecessaryconditionsofanoptimalweightingforG.

      (a) In Lemma 1, part (Ⅰ) implies that

      In particular, ifGis left-compressed, then

      for anyi,jsatisfying 1≤i

      (b) IfGis left-compressed, then for anyi,jsatisfying 1≤i

      (2)

      holds. IfGis left-compressed andEij=fori,jsatisfying 1≤i

      x1≥x2≥…≥xn≥0.

      (3)

      We will also give some useful results to apply the following results in the proof.

      Sunetal.in[7]provedthatλ(G)≤λ(C3,m)if|EΔE″|≤8.Later,Sunetalextendedtheresults,whichisTheorem3.

      2ProofofTheorem2

      ProofofTheorem2LetGbethe3-graphsatisfyingconditionsofTheorem5.If[t-1](3)?G,thenbyTheorem4,wehaveλ(G)≤λ(C3,m).Otherwise,wewillprovethefollowinglemmaswhichimplyTheorem2.

      Next,wewillgivetheproofofLemma4-7.Infact,theproofsofotherthreelemmasaresimilartotheproofofLemma4.Weomitthedetailsoftheproofofotherlemmasandwillgiveonlyanoutlineoftheproofs.InSection2.1,wegivetheproofofLemma4.InSection2.2-2.4,wegivetheoutlineoftheproofofLemma4-7,respectively.

      2.1ProofofLemma4

      xt+xt-1+xt-2+…+xt-2-i+1-x1≥0.

      (4)

      To verify (4), we have

      (5)

      Let us continue our proof. We divide the proof into two cases:a=0 anda≥1.

      By Remark 2,

      (6)

      So

      (7)

      (8)

      (9)

      Then

      (10)

      (11)

      (13)

      Note that

      (14)

      where

      (15)

      and

      (16)

      (17)

      (18)

      (19)

      (20)

      By (4) (14), (18) and (20), we have

      (21)

      Therefore,λ(C3,m)≥λ(G′)≥λ(G).

      2.2OutlineoftheproofofLemma5

      We divide the prove into two parts:p=3 andp>3.

      PartⅠp=3,thenwehavej+1≥i.Wedividetheproveintotwocases: j≥2andj=1.

      2.3OutlineoftheProofofLemma6

      PartⅠp=3.Wedividethisproveintotwocases: i=1andi≥2.

      PartⅡp≥4.Wedivideourproofintotwocases: p=4, a=0andp≥5ora≥1.

      Case1p=4, a=0.Ifj=1,thenwehavei=1ori=2.Wedividethisproveintothreesubcases: j≥2; j=1, i=1; j=1, i=2.

      2.4OutlineofproofLemma7

      References:

      [1]MOTZKINTS,STRAUSEG.MaximaforgraphsandanewproofofatheoremofTurán[J].CanadJMath, 1965,17(1):533-540.

      [2]FRANKLP,FüREDIZ.Extremalproblemswhosesolutionsaretheblow-upsofthesmallWitt-designs[J].JCombinTheorSerA, 1989,52(5):129-147.

      [3]TALBOTJ.Lagrangiansofhypergraphs[J].CombinProbabComput, 2002,11(2):199-216.

      [4]PENGY,ZHAOC.AMotzkin-Straustyperesultfor3-uniformhypergraphs[J].JGraphsComb, 2013,29(3):681-694.

      [5]FRANKLP,R?DLV.Hypergraphsdonotjump[J].Combinatory, 1989,4(2-3):149-159.

      [6]TANGQS,PENGY,ZHANGXD, et al.Someresultsonlagrangiansofhypergraphs[J].DiscAppMath, 2013,166(3):222-238.

      [7]SUNYP,TANGQS,ZHAOC, et al.Onthelargestgraph-lagrangianof3-graphswithfixednumberofedges[J].JOptimizTheorAppl, 2013,163(1):57-79.

      (編輯HWJ)

      極值問(wèn)題——超圖的拉格朗日

      姚宇萍*,彭岳建

      (湖南大學(xué)數(shù)學(xué)與計(jì)量經(jīng)濟(jì)學(xué)院,湖南 長(zhǎng)沙410082)

      摘要設(shè)G=([t],E)是一個(gè)有m條邊的左壓的3-一致超圖,其中,并設(shè)[t-2](3)?G.本文證明,如果按同余字典序排列中最小元素是(t-p-i)(t-p)并且,則有λ(G)≤λ(C3,m).

      關(guān)鍵詞拉格朗日;Frankl and Füredi 猜想;同余字典序

      中圖分類號(hào)O157.5

      文獻(xiàn)標(biāo)識(shí)碼A

      文章編號(hào)1000-2537(2015)06-0068-08

      *通訊作者,E-mail:yupingyao1989@163.com, PENG Yue-jian2

      基金項(xiàng)目:National Natural Science Foundation of China (No.11271116)

      收稿日期:2015-01-27

      DOI:10.7612/j.issn.1000-2537.2016.01.012

      猜你喜歡
      猜想
      重視初中學(xué)生直覺(jué)思維能力的培養(yǎng)
      考試周刊(2017年2期)2017-01-19 15:27:01
      繪本閱讀:學(xué)生言語(yǔ)智慧飛越的踏板
      數(shù)學(xué)課程中的創(chuàng)造教育淺議
      合理猜想,有效驗(yàn)證
      培養(yǎng)數(shù)學(xué)意識(shí)增強(qiáng)學(xué)生自主探究能力研究
      成才之路(2016年34期)2016-12-20 20:29:27
      培養(yǎng)學(xué)生猜想能力 營(yíng)造高效物理課堂
      數(shù)學(xué)教學(xué)中提升學(xué)生自主探究能力研究
      成才之路(2016年36期)2016-12-12 13:56:32
      讓“演示實(shí)驗(yàn)”不僅僅止于演示
      小學(xué)生空間觀念培養(yǎng)微探
      “猜想與假設(shè)”在小學(xué)各年段有不同的要求
      考試周刊(2016年46期)2016-06-24 14:22:47
      浠水县| 凌云县| 额尔古纳市| 汨罗市| 达拉特旗| 聊城市| 石河子市| 和田县| 奇台县| 孟津县| 南丹县| 马关县| 荣昌县| 天等县| 南部县| 浪卡子县| 韩城市| 筠连县| 金川县| 玉林市| 衡阳县| 广宁县| 洪湖市| 建阳市| 乳山市| 敖汉旗| 神木县| 克什克腾旗| 黔东| 英德市| 锡林郭勒盟| 故城县| 甘谷县| 宜丰县| 金昌市| 金寨县| 兴义市| 丹东市| 邵阳县| 阜新| 成武县|