• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      帶p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題的解的存在性

      2016-03-17 01:08:19呂秋燕劉文斌申騰飛程玲玲

      呂秋燕,劉文斌,唐 敏*,申騰飛,程玲玲

      (1.蘇州市吳中區(qū)東山中學(xué),中國(guó) 蘇州 215107;2.中國(guó)礦業(yè)大學(xué)理學(xué)院,中國(guó) 徐州 221116)

      ?

      帶p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題的解的存在性

      呂秋燕1,劉文斌2,唐敏2*,申騰飛2,程玲玲2

      (1.蘇州市吳中區(qū)東山中學(xué),中國(guó) 蘇州215107;2.中國(guó)礦業(yè)大學(xué)理學(xué)院,中國(guó) 徐州221116)

      摘要利用不動(dòng)點(diǎn)定理,研究帶有p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題解的存在性,得到邊值問(wèn)題至少存在一個(gè)解的充分條件.

      關(guān)鍵詞分?jǐn)?shù)階微分方程;p-Laplacian算子;存在性;不動(dòng)點(diǎn)定理

      Exitence of Solutions for Fractions Multi-point Boundary Value Problem withp-Laplacian Operator

      LVQiu-yan1,LIUWen-bin2*,TANGMin2,SHENTeng-fei2,CHENGLing-ling2

      (1.Dongshan High School, Suzhou 215107, China;2.College of Science, China University of Mining and Technology, Xuzhou 221116, China)

      AbstractThis paper presents a study on the existence of solutions for the fractional multi-point boundary value problem withp-Laplacian operator. Making use of the fixed-point theorem, we obtained sufficient conditions to guarantee the existence of at least one solution for the boundary value problem.

      Key wordsfractional differential equation;p-Laplacian operator; existence; fixed point theorem

      近年來(lái),分?jǐn)?shù)階微分方程被廣泛應(yīng)用于物理學(xué)、生物學(xué)、控制論等諸多領(lǐng)域[1-3],因此,分?jǐn)?shù)階微分方程受到許多學(xué)者的廣泛關(guān)注,并取得了很多有意義的結(jié)果.文獻(xiàn)[4]研究了分?jǐn)?shù)階微分方程三點(diǎn)邊值問(wèn)題

      解的存在性,其中1<α≤2,0≤β≤1.

      為了研究流體力學(xué)中相關(guān)問(wèn)題,文獻(xiàn)[5]介紹了一類(lèi)帶有p-Laplacian算子的微分方程,其一維形式如下

      (φp(x′(t)))′=f(t,x(t),x′(t)),

      (1)

      文獻(xiàn)[13]研究了下面分?jǐn)?shù)階微分方程反周期邊值問(wèn)題

      受以上文獻(xiàn)的啟示,我們研究如下一類(lèi)帶有p-Laplacian算子分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題解的存在性,

      (2)

      1基本定義和預(yù)備知識(shí)

      顯然,E是Banach空間.

      定義1.1[14]函數(shù)u:(0,∞)→R的α>0階Riemann-Liouville型積分是指

      其中右邊在(0,∞)上逐點(diǎn)定義.

      定義1.2[14]函數(shù)u:(0,∞)→R的α>0階Caputo型微分是指

      其中n為大于或等于α的最小整數(shù),右邊是在(0,∞)上逐點(diǎn)定義的.

      引理1.1[14]設(shè)函數(shù)u∈C(0,1)有α>0階的Caputo型微分,則

      其中n是大于或等于α的最小整數(shù).

      引理1.3設(shè)g(t)∈C[0,1],

      (3)

      2主要結(jié)論

      引理2.1算子F:E→E是全連續(xù)的.

      定理2.1對(duì)任意的常數(shù)r>0,Ω={u|‖u‖

      (H)|f(t,u,v,w)|≤σφp(mr),

      因此得到

      由引理1.2知F滿(mǎn)足Rothe條件,原方程至少存在一個(gè)解.

      3例子

      例3.1考慮如下帶有p-Laplacian算子的分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題

      (4)

      不妨設(shè)r=6,則有界集Ω={u‖|u‖E<6,u∈E}.

      顯然,問(wèn)題(4)滿(mǎn)足定理2.1的假設(shè)條件.因此,至少存在一個(gè)解.

      參考文獻(xiàn):

      [1]LAKSHMIKANTHM V. Theory of fraction functional differential equations[J]. Nonlinear Anal: TMA, 2008,69(10):33337-33343.

      [2]ABDELKADER B. Second-order boundary value problems with integral boundary conditions[J]. Nonlinear Anal, 2009,70(1):364-371.

      [3]DELBOSCO D. Fractional calculus and function spaces[J]. J Fract Calc,1994,6:45-53.

      [4]LI C, LUO X, ZHOU Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J]. Comput Math Appl, 2010,59(3):1363-1375.

      [5]LEIBENSON L S. General problem of the movement of a compressible fluid in a porous medium[J]. Izvestiia Akademii Nauk Kirgizskoi SSR, 1945,9:7-10.

      [6]SHEN T, LIU W, CHEN T,etal. Solvability of fractionalm-point boundary value problems withp-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(58):1-10.

      [7]JIANG W. Solvability of boundary value problem withp-Laplacian at resonance[J]. Bound Value Probl, 2014(1):36.

      [8]申騰飛,劉文斌,宋文耀.一類(lèi)帶有p-Laplacian算子分?jǐn)?shù)階微分方程邊值問(wèn)題正解的存在性[J]. 湖南師范大學(xué)自然科學(xué)學(xué)報(bào), 2012,35(5):9-14.

      [9]BAI Z. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl, 2005,311(2):495-505.

      [10]GE W. The existence of solutions ofm-point boundary value problems at resonance[J]. Acta Math Appl Sin, 2005,28(4):288-295.

      [11]CHENG L, LIU W, YE Q. Boundary value problem for a coupled system of fractional differential equations withp-Laplacian operator at resonance[J]. Electr J Diff Equ, 2014(60):1-12.

      [12]BAI Z. On positive solutions of nonlocal fractional boundary value problem[J]. Nonlinear Anal: TMA, 2010,72(2):916-924.

      [13]CHEN T. An anti-periodic boundary value problem for the fractional differential equation withp-Laplacian operator[J]. Appl Math, 2012,25(11):1671-1675.

      [14]BAI Z. Solvability for a class of fractional m-point boundary value problems at resonance[J]. Comput Math Appl, 2012,62(3):1292-1302.

      [15]鐘成奎.非線(xiàn)性泛函分析引論[M].蘭州:蘭州大學(xué)出版社,1998.

      (編輯HWJ)

      中圖分類(lèi)號(hào)O175.8

      文獻(xiàn)標(biāo)識(shí)碼A

      文章編號(hào)1000-2537(2016)01-0080-05

      *通訊作者,E-mail:wblium@163.com

      基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(11271364)

      收稿日期:2013-12-02

      DOI:10.7612/j.issn.1000-2537.2016.01.014

      韶山市| 浙江省| 广平县| 屏东县| 汉寿县| 平遥县| 宁蒗| 永城市| 黄梅县| 霍州市| 玛沁县| 淮安市| 南乐县| 渝中区| 兴业县| 泽库县| 唐海县| 大洼县| 常熟市| 五莲县| 南雄市| 南川市| 衡东县| 通渭县| 汉沽区| 海安县| 盐边县| 桑植县| 龙陵县| 涪陵区| 蒲江县| 漾濞| 余庆县| 梧州市| 临沭县| 左权县| 石棉县| 界首市| 汉阴县| 资源县| 土默特右旗|