徐國明
(包頭師范學(xué)院 數(shù)學(xué)科學(xué)學(xué)院,內(nèi)蒙古 包頭014030)
避難所作為生物進化過程中食餌種群所采用的有效降低被捕獲率的一種策略,受到了廣泛的研究.近幾年,許多學(xué)者研究了具有避難所的捕食者-食餌種群的動力學(xué)行為[1-15],在實際生活中,食餌種群為了免于被捕獲,常常會到處尋找避難所,在很多情況下存在一個與食餌數(shù)量成固定比例的避難所.本文考慮具有避難所的捕食者-食餌系統(tǒng),其模型為
式中:m∈[0,1)是一個常數(shù);mx為避難所保護的食餌數(shù)量;(1-m)x為能被捕食者捕獲的食餌數(shù)量.
定理1 對任意t≥0,系統(tǒng)(1)滿足初始值x(0)>0,y(0)>0的解(x(t),y(t))最終一致有界.
令F(t)=x(t)+y(t),由系統(tǒng)(1)有
所以
故由比較定理[16]有F(t)≤L1.
顯然系 統(tǒng)(1)存 在 三 個 平 衡 點E1(0,0),令
定理2 平衡點E1(0,0)是不穩(wěn)定的結(jié)點;當(dāng)時,平衡點是局部漸近穩(wěn)定的;平衡點是鞍點;當(dāng)r1≤r2且時,正平衡點E4(x0,y0)是局部漸近穩(wěn)定的.
證明 系統(tǒng)(1)在任意平衡點(x*,y*)處的Jacobian矩陣為
對于平衡點E1(0,0),其特征方程為(λ-r1)(λ-r2)=0,故特征根為λ1=r1>0,λ2=r2>0,所以E1(0,0)是不穩(wěn)定的結(jié)點.
系統(tǒng)(1)在正平衡點E4(x0,y0)處的Jacobian矩陣為
故
則當(dāng)r1≤r2且m>1-時,有J(E4)兩個負(fù)的特征根,所以此時正平衡點E4(x0,y0)是局部漸近穩(wěn)定的.
證明 構(gòu)造Lyapunov函數(shù)
顯然,對任意的x>0,y>0,V(x,y)有定義且連續(xù),且有
則正平衡點E4(x0,y0)是函數(shù)V(x,y)唯一的正極值點,且有
故平衡點E4(x0,y0)為V(x,y)的最小值點,即對任意的x>0,y>0,有
下面計算V(x,y)沿系統(tǒng)(1)的導(dǎo)數(shù)
通過上面的分析可以發(fā)現(xiàn),系統(tǒng)(1)中的食餌種群和捕食者種群不能同時滅絕,也不可能出現(xiàn)食餌種群持續(xù)生存而捕食者種群走向滅絕的現(xiàn)象.同時發(fā)現(xiàn),避難所的容量影響系統(tǒng)的穩(wěn)定性.令則當(dāng)m<m0時,食餌種群滅絕;當(dāng)m>m0時,兩種群共存.作為主要結(jié)論的一個應(yīng)用,令
則系統(tǒng)(1)化為
若令m=0.9,經(jīng)計算
故正平衡點Er(x0,y0)是全局漸近穩(wěn)定的.
[1]Collings J B.Bifurcation and stability analysis of a temperature dependent mite predator-prey interaction model incorporating a prey refuge[J].Bulletin of Mathematical Biology,1995,57(1):63-76.
[2]Kar T K.Stability analysis of a prey-predator model incorporating a prey refuge[J].Communications in Nonlinear Science and Numerical Simulation,2005,10(6):681-691.
[3]Kar T K.Modelling and analysis of a harvested preypredator system incorporating a prey refuge[J].Journal of Computational and Applied Mathematics,2006,185(1):19-33.
[4]Ko W,Ryu K.Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J].Journal of Differential Equations,2006,231(2):534-550.
[5]Huang Yunjin,Chen Fengde,Li Zhong.Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge[J].Applied Math.and Computation,2006,182(1):672-683.
[6]Chen Fengde,Chen Liujuan,Xie Xiangdong.On a Leslie-Gower predator-prey model incorporating a prey refuge[J].Nonlinear Analysis:Real World Applications,2009,10(2):2905-2908.
[7]Cressman R,Garay J.A.Predator-prey refuge system:evolutionary stability in ecological systems[J].Theoretical Population Biology,2009,76(4):248-257.
[8]Chen Liujuan,Chen Fengde,Chen Lijuan.Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge[J].Nonlinear Analysis:Real World Applications.2010,11(1):246-252.
[9]Liu Xia,Han Maoan.Chaos and Hopf bifurcation analysis for a two species predator-prey system with prey refuge and diffusion[J].Nonlinear Analysis:Real World Applications,2011,12(2):1047-1061.
[10]Mukhopadhyay B,Bhattacharyya R.Effects of deterministic and random refuge in a prey-predator model with parasite infection[J].Mathematical Biosciences,2012,239(1):124-130.
[11]Yang Wensheng.Diffusion has no influence on the global asymptotical stability of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges[J].Applied Mathematics and Computation,2013,223(15):278-280.
[12]Jana D.Chaotic dynamics of a discrete predator-prey system with prey refuge[J].Applied Mathematics and Computation,2013,224(1):848-865.
[13]陳柳娟,陳鳳德.避難所對一類階段結(jié)構(gòu)捕食-食餌模型的影響[J].福州大學(xué)學(xué)報(自然科學(xué)版),2013,41(3):283-290.Chen Liujuan,Chen Fengde.The influence of refuge on a stage-structured predator-prey model[J].Journal of Fuzhou University(Natural Science Edition),2013,41(3):283-290.(in Chinese)
[14]郭瑜婷,魏鳳英.具有避難所和修正Leslie-Gower項的捕食者-食餌模型的最優(yōu)稅收[J].福州大學(xué)學(xué)報(自然科學(xué)版),2013,41(2):132-136.Guo Yuting,Wei Fengying.Optimal taxation of predator-prey model with a prey refuge and modified Leslie-Gower term[J].Journal of Fuzhou University(Natural Science Edition),2013,41(2):132-136.(in Chinese)
[15]龔曉杰,陳鳳德,楊坤,等.具有避難所和捕獲的非線性模型穩(wěn)定性分析[J].龍巖學(xué)院學(xué)報,2014,32(2):10-14.Gong Xiaojie,Chen Fengde,Yang Kun,et al.Stability of a nonlinear competition model Incorporating a costant proportion of refuge for one species and harvesting[J].Journal of Longyan University,2014,32(2):10-14.(in Chinese)
[16]馬知恩,周義倉.常微分方程定性與穩(wěn)定性方法[M].北京:科學(xué)出版社,2001.
[17]馬知恩.種群生態(tài)學(xué)的數(shù)學(xué)建模與研究[M].合肥:安徽教育出版社,1996.