• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vortex interactions between forewing and hindwing of dragonfly in hovering flight

    2015-11-21 07:27:29ChunMeiXieWeiXiHuang

    Chun-Mei Xie,Wei-Xi Huang?

    aSino-French Engineer School,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    bAML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China

    Vortex interactions between forewing and hindwing of dragonfly in hovering flight

    Chun-Mei Xiea,b,Wei-Xi Huangb,?

    aSino-French Engineer School,Beijing University of Aeronautics and Astronautics,Beijing 100191,China

    bAML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China

    A R T I C L E I N F O

    Article history:

    Received 21 November 2014

    Accepted 31 December 2014

    Available online 14 February 2015

    Vortex interaction

    Dragonfly

    Hovering flight

    Immersed boundary method

    Two tandem flapping wings in viscous flow were modeled by using the immersed boundary method for exploration of the aerodynamics of dragonfly in hovering flight.Interaction between the forewing and the hindwing,and its effect on the lift forces,were examined by varying the phase difference of the wing motions and the inter-distance of the two wings.Two vortex interaction modes were identified at different phase differences and inter-distances,which give rise to significant variations of the lift forces. The first interaction mode increases the lift of the forewing and the second one enhances the lift of the hindwing.The two modes occur at different time during a flapping period and have different influence on the lift of wings as the phase difference varies.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    During the past several decades,studies have been carried out extensively on the aerodynamic performance and flow physics of insect flight[1-4].As a four-winged insect,dragonfly possesses the ability of controlling their flight performance by modulating the stroke amplitude,frequency and angle of attack of each wing.The aerodynamic interaction of the wings induces more complexities ofthe flight mechanism[5-9].Froma kinematic study on live dragonflies,Alexander[10]observed that the offset in the flapping motion between the forewing and the hindwing played a significant role in their flightperformance.Azuma and Watanabe[11]pointed out that dragonflies modulated the forewing and hindwing phasing rather than the flapping frequency,according to their flight velocity,i.e.the hovering or cruise status.Furthermore,Thomas et al.[12]proposed mechanisms related to the generation of highlift leading edge vortices and the interaction between forewing and hindwing in the flight of dragonfly.They also claimed that two-dimensional(2D)simulation is able to present the main features of interaction.Maybury et al.[13]investigated experimentally the wing-wake interaction in dragonflies and evaluated in more details the functional significance of stroke-phase modulation on wake structure,aerodynamic force generation and lift-todrag ratio.They also found that the inter-distance of the two wings has a significant influence on the aerodynamic interaction between the two wings.Based on the experimental observations,numerical studies have been rising in recent years due to the fast increase of computation power.Wang[14]proved that the lift generated by a 2D hovering insect is enough to support its weight.Wang and Russell[15]showed that the in-phase flapping generates the maximum lift force and is beneficial for takeoff,while the out-of-phase flapping requires nearly the minimal energy consumption to obtain the required lift force in hovering flight.They also provided a simple model for explaining the interaction of the two wings with different phase lags,which neglects the real interaction of vortices shed from the forewing and the hindwing.Moreover,Isogai et al.[16]performed three-dimensional(3D)simulations of flow around tandem wings and obtained the total lift force and necessary power.Rival et al.[17]simulated a 2D dragonfly model and mainly focused on the difference of vortices around the hindwing and those around a single wing.In brief,the phase lag between the forewing and the hindwing is the main distinctive feature for the dragonfly flight,but the underling aerodynamic mechanism has not been fully understood despite that some efforts have been made on this problemas mentioned above.In the presentstudy,we take the two tandem flapping wings in viscous flow as a 2D model ofthe dragonfly in hovering flight.Variations ofthe liftforces under different kinematic configurations are examined,and are analyzed by disclosing the vortex interactions between the forewing and the hindwing.

    A 2D wing model is set as an ellipse shape with the aspect ratio of0.1.The kinematics ofboth the forewing and the hindwing are in the same form with a phase difference,based on the experimental measurements[14,15].The center displacements and the angles of attack of the forewing and the hindwing are governed by

    Fig.1.Positions of the forewing and the hindwing during a flapping period for ψ=0?and d=2.The downstroke phase is indicated by red and the upstroke phase by green.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    where A0isthe stroke amplitude,?is the phase difference between the wing center displacement and the angle of attack,ψis the phase difference between the motions of the forewing and the hindwing,and the subscripts‘‘f''and‘h''denote the forewing and the hindwing respectively.In the presentstudy,the parametersare similar to the single wing case[14],i.e.A0=2.5,T=7.85,and ?=0?in the dimensionless form.Here we use the chord length and the maximum center velocity as the characteristic length and velocity,respectively.The stroke planes are inclined at different angles for the forewing and the hindwing,i.e.βf=53?andβh= 44?according to Wang and Russell[15].In the simulations,we fix the kinematics of the forewing and change the initial state of the hindwing to obtain different phase lags(ψ)and inter-distances of the two stroke planes(d),which are varied in the ranges of 0?≤ψ≤360?and 1.6≤d≤2.4,respectively.A schematic of the two flapping wings is plotted in Fig.1 for the case ofψ=0?and d=2.

    In order to simulate the flow around the flapping wings,the incompressible Navier-Stokes and continuity equations are solved by the fractional step method in a staggered Cartesian grid system[18].The immersed boundary method is adopted to enforce the noslip condition on the wings'surfaces,which is capable of solving flow over complex geometries while retaining the efficiency of the original flow solver based on the regular mesh.Details and validations ofthe numericalmethod can be found in our previous studies[19,20].The Reynolds number based on the chord length and the maximum flapping velocity is set to be 157 as in Wang[14].The size ofthe computationaldomain is 8×8,and 1024×1024 grids are used to uniformly discretize the domain.The computational time step is 0.000785,which results in a CFL number of about 0.1,and a flapping cycle is divided into 104steps.It should be pointed out that the influence of the computational domain boundary is not fully eliminated by using the current domain size,but the difference in vortex characters around the wings is negligible with those in a larger domain,which is the main focus of the present study. Moreover,the computational results of the second flapping period is adopted for analysis in the following.Although aerodynamic forces on the wings have not been converged at the second period,the vortex interactions of the tandem flapping wings have formed,which remain essentially the same as those at a later period.

    Fig.2.Variations of the mean lift coefficients with the phase difference:(a)d=1.6,(b)d=2.0,(c)d=2.4.The results of the single wing flapping in the same inclined stroke planes are also included for comparison.

    Fig.3.Time histories of the lift coefficients of(a)the forewing and(b)the hindwing for differentψand d=1.6.

    Figure 2 shows the variations of the mean lift coefficients(CL)with the phase differenceψfor three different inter-distances,i.e.d=1.6,2.0,2.4,while the results ofthe single wing flapping inthe same inclined stroke planes are also included for comparison. We can see that the lift coefficients are less varied withψas d increases.Although for the single wing case CLofβf=53?is higher than that ofβh=44?,for the tandem two flapping wings CLof the hindwing is generally higher than that of the forewing,because of the vortex interactions ofthe two wings as willbe discussed below. For d=1.6(Fig.2(a)),the results are similar to Wang and Russell[15].The liftofthe hindwing reaches its maximumatψ=0?and is nearly independent of the phase difference whenψ∈[45?,275?]. The lift of the forewing also shows obvious dependence onψ,indicating the significant interaction of the two wings.As d increases to d=2.0 and d=2.4(Figs.2(b)and 2(c)),similar trends of the lift variations are observed for the two cases.The lift of the forewing is maximal atψ=135?and that of the hindwing is maximal atψ=270?.Unlike the d=1.6 case,the total lift is not maximal atψ=0?,mainly due to the difference in the lift of the hindwing.

    Fig.4.Contours of vorticity around the flapping wings at the instants near the lift peaks of(a)the hindwing withψ=0?,(b)the forewing withψ=0?,(c)the hindwing withψ=135?,and(d)the forewing withψ=270?.

    To see the effect ofthe phase difference,time histories ofthe lift coefficients of both the forewing and the hindwing are plotted in Fig.3 for differentψand d=1.6,together with the results of the single wing case,and vorticity contours around the flapping wings at the instants near the lift peaks in the time histories are displayed in Fig.4.It is seen in Fig.3 that the shape of the single wing case is consistent with that of Wang's[14],with two peaks during the downstroke.An inspection of the flow field indicates that the first peak is generated by wake capture,while the second one is caused by the variationofangle ofattack.Interestingly,the second peak lift of both the forewing and the hindwing are enhanced as compared with thatofthe single wing case,as a resultofthe interaction ofthe two wings.As shown in Fig.3(b),the high CLof the hindwing with ψ=0?can be explained by a long duration of high lift in a period. At t/T=0.08 and t/T=0.20,two peaks in CLare observed,and the corresponding vorticity fields are seen in Fig.4(a).At t/T=0.08,the hindwing crosses its own wake vortex generated during the previous upstroke(vortex 3),a mechanism called wake capture[1].The second peak at t/T=0.20 is mainly caused by the interaction between the forewing and the hindwing.Meanwhile,the forewing's lift is also growing to a peak value(Fig.3(a)).At this time(Fig.4(b)),the trailing edge vortex of the forewing(vortex B)is shedding,and the leading edge vortex of the hindwing(vortex 1)is moving towards vortex B.As a result,vortex B can not be shed normally,and instead it is attached to the forewing,which increases the lift force of the forewing and is referred to as the first interaction mode in the following.Interaction with vortex B also makes vortex 1 attached to the hindwing,and then weakens the new leading edge vortex,which increases the lift of the hindwing and is referred to as the second interaction mode in the following.

    Atψ=135?,the mean lift of the hindwing is minimal(Fig.2(b)),since the duration of the lift peak is much shorter than theψ=0?case(Fig.3(b)).The vorticity fields at the instants near the lift peak are shown in Fig.4(c).We can see that the hindwing captures the wake vortices produced during the previous upstroke,but the wing-wing interaction is negligible because the distance of two wings is far.Thus,the high lift status is not durable,unlike theψ=0?case.On the other hand,the mean lift of the forewing is minimal atψ=270?(Fig.2(c)),due to the low peak value of CL(Fig.3(a)).Similarly,the vorticity fields at the instants near the lift peak are shown in Fig.4(d).Compared to theψ=0?case(Fig.4(b)),the interaction between the two wings affects the trailing edge vortex of the forewing(vortex B)differently.As seen in Fig.4(d),the vortex B is tilted by the upstroke motion of the hindwing,resulting in a reduced lift peak value.

    Fig.5.Time histories of the lift coefficients for d=2.0 and(a)ψ=0?,(b)ψ=135?,(c)ψ=270?.

    Fig.6.Contours of vorticity around the flapping wings at the instants near the lift peaks of(a)both wings withψ=0?,(b)the forewing withψ=135?,(c)the hindwing withψ=135?,(d)the forewing withψ=270?,and(e)the hindwing withψ=270?.The legend of the vorticity contours is the same as that in Fig.4.

    Fig.7.Time histories of the lift coefficient of the hindwing at(a)ψ=0?and(b)ψ=270?for three different inter-distances between the two wings.

    Fig.8.Contours of vorticity around the flapping wings at the instants near the lift peaks of the hindwing forψ=270?and(a)d=1.6,(b)d=2.4.The legend of the vorticity contours is the same as that in Fig.4.

    As d increases to 2.0 and 2.4(Figs.2(b)and 2(c)),the difference in the lift coefficients of the two wings is minimal atψ=135?due to the maximal CLof the forewing,but is maximal atψ=270?due to the maximal CLof the hindwing.To see more clearly,time histories of CLof the d=2.0 case are plotted in Fig.5 for these two phase differences as well asψ=0?.As shown in Fig.5(b),CLof the forewing forψ=135?is the largest at about t/T=0.1,while that of the hindwing forψ=270?reaches maximum at about t/T=0.5.The vorticity fields at the instants near the lift peak at the three phase differences are then examined.Figure 6(a)shows the interaction between the two wings when they are in phase,corresponding to the second peak in Fig.5(a).Here we do not show the first peak because the wake capture appears in all three cases of different d,and we mainly focus on the interaction between the two wings.Figure 6(b)shows the interaction of the two wings at the instants near the lift peak of the forewing forψ=135?.At this time,the trailing edge vortex of the forewing(vortex B)and the leading edge vortex of the hindwing(vortex 1)move in the opposite directions,which enhances vortex B and is the main reason of the increase of CLofthe forewing.We also callitthe firstinteraction mode.From Fig.6(c)it is seen that the maximal CLof the hindwing forψ=135?is caused by the interaction between the trailing edge vortex of the forewing(vortex C),which is almost completely shed,and the leading edge vortex of the hindwing(vortex 1).It is the second interaction mode but is stronger than theψ=0?case,where we see half of vortex C is combined to the trailing edge vortex of the hindwing(vortex 2).It enhances vortex 2 and causes the increase of CLof the hindwing.Atψ=270?(Fig.6(d)),the interaction mode corresponding to the lift peak of the forewing is similar to theψ=135?case(Fig.6(b)),but is less distinctive.The interaction mode corresponding to the lift peak of the hindwing in Fig.6(e)is also similar toψ=135?case(Fig.6(c)),but the trailing edge vortex of the forewing(vortex C)affects more the hindwing. Moreover,in Fig.6(e),the hindwing is almost horizontally moving downward,which is also a reason for the larger lift of the hindwing than theψ=135?case(Fig.6(c)).We also checked other phase differences of the two wings,it was found that these two interaction modes are always present,but the first mode is most distinctive atψ=135?and the second one atψ=270?.For d=2.4,the interaction modes are similar to the d=2.0 case andare not shown here.Recall that for the d=1.6 case,both the first and second interaction modes are most significant atψ=0?.So the optimal phase difference is dependent on the inter-distance of the two wings.Nevertheless,the interaction modes remain similar before diminishing as the inter-distance becomes large.

    A comparison of Figs.2(a),2(b)and 2(c)shows that the interdistance affects more the lift of the hindwing than the forewing. Thus,time histories of CLof the hindwing atψ=0?andψ=270?with three different inter-distances are plotted in Fig.7.Atψ=0?(Fig.7(a)),CLof the hindwing is close for the three distances.The most obvious difference occurs at the beginning of the flapping cycle.The wake capture and the interaction of the two wings occur closely in time for d=1.6,which causes the longer duration of high lift.In Fig.7(b),the lift of the d=1.6 case is much lower than the other two cases.This phenomenon is caused by the impact of the trailing vortex of the forewing on the hindwing.As shown in Fig.8,the vorticity field corresponding to the lift peak of the hindwing for d=1.6 is compared with that for d=2.4.For d=1.6,F(xiàn)ig.8(a)shows that the hindwing hits the trailing vortex of the forewing(vortex B)before it is completely shed.On the contrary,for d=2.4(Fig.8(b)),the hindwing passes the shedding trailing edge vortex(vortex B),which interacts with the leading edge vortex of the hindwing(vortex 1).As a result,a higher lift peak of the hindwing is formed for the larger d atψ=270?.

    Aerodynamics of two tandem flapping wings in viscous flow were simulated as a 2D model of dragonfly in hovering flight by using the immersed boundary method.Interaction between the forewing and the hindwing were examined by varying the phase difference of the wing motions and the inter-distance of the two wings.The results indicate that the interaction of the two wings is significant under certain kinematic conditions.As the interdistance increases,the lift coefficients of the forewing and the hindwing,and thusthe totalliftforce,are less varied with the phase difference.By examining the vorticity fields around the flapping wings,several mechanisms were disclosed for the explanation of the lift enhancement by the vortex-vortex or vortex-wing interaction.The wake capture is always present regardless of the inter-distance.The first interaction mode was identified for the increase of the lift of the forewing by affecting the forewing's trailing edge vortex.It was then shown that the second interaction mode is more complex and is caused by the interaction of the forewing's trailing edge vortex and the leading and trailing edge vortices of the hindwing,which can substantially increase the lift of the hindwing.The interaction of the two wings affects more the hindwing than the forewing on their aerodynamic performances.

    This work was supported by the National Natural Science Foundation of China(11322221)and Tsinghua University Initiative Scientific Research Program(20131089267).

    [1]M.H.Dickinson,F(xiàn).O.Lehmann,S.P.Sane,Wing rotation and the aerodynamic basis of insect flight,Science 284(1999)1954-1960.

    [2]J.M.Birch,M.H.Dickinson,Spanwise flow and the attachment of the leadingedge vortex on insect wings,Nature 412(2001)729-733.

    [3]S.P.Sane,The aerodynamics ofinsectflight,J.Exp.Biol.206(2003)4191-4208.

    [4]M.Sun,Insect flight dynamics:stability and control,Rev.Modern Phys.86(2014)615-645.

    [5]J.M.Wakeling,C.P.Ellington,Dragonfly flight I.Gliding flight and steady-state aerodynamic forces,J.Exp.Biol.200(1997)543-556.

    [6]J.M.Wakeling,C.P.Ellington,Dragonfly flight II.Velocity,accelerations and kinematics of flapping flight,J.Exp.Biol.200(1997)557-582.

    [7]J.M.Wakeling,C.P.Ellington,Dragonfly flight III.Lift and power requirements,J.Exp.Biol.200(1997)583-600.

    [8]S.B.Savage,B.G.Newman,D.T.B.Wong,The role of vortices and unsteady effects during the hovering flight of dragonflies,J.Exp.Biol.83(1979)59-77.

    [9]K.Isogai,S.Fujishiro,T.Saitoh,M.Yamashaki,M.Matsubara,Study on aerodynamic mechanism of hovering flight of dragonfly by using a robot,in: Proceedings of ISABMECH2003,Tokai Univ.Pacific Center,Honolulu,HI,Paper S.3-02,2003.

    [10]D.E.Alexander,Unusual phase relationships between the forewings and hindwings in flying dragonflies,J.Exp.Biol.109(1984)379-383.

    [11]A.Azuma,T.Watanabe,F(xiàn)light performance of a dragonfly,J.Exp.Biol.137(1988)221-252.

    [12]A.L.R.Thomas,G.K.Taylor,R.B.Srygley,R.L.Nudds,R.J.Bomphrey,Dragonfly flight:free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms,controlled primarily via angle of attack,J.Exp.Biol.207(2004)4299-4323.

    [13]W.J.Maybury,F(xiàn).O.Lehmann,The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings,J.Exp.Biol.207(2004)4707-4726.

    [14]Z.J.Wang,Two dimensional mechanism for insect hovering,Phys.Rev.Lett.85(2000)2216-2219.

    [15]Z.J.Wang,D.Russell,Effect of forewing and hindwing interaction on aerodynamic forces and power in hovering dragonfly flight,Phys.Rev.Lett. 99(2007)148101.

    [16]K.Isogai,S.Fujishiro,T.Saitoh,M.Yamamoto,M.Yamasaki,M.Matsubara,Unsteady three-dimensional viscous flow simulation of a dragonfly hovering,AIAA J.42(2004)2053-2059.

    [17]D.Rival,D.Schonweitz,C.Tropea,Vortex interaction of tandem pitching and plunging plates:a two-dimensional model of hovering dragonfly-like flight,Bioinsp.Biomin.6(2011)016008.

    [18]K.Kim,S.J.Baek,H.J.Sung,An implicit velocity decoupling procedure for incompressible Navier-Stokes equations,Int.J.Numer.Methods Fluids 38(2002)125-138.

    [19]W.X.Huang,S.J.Shin,H.J.Sung,Simulation of flexible filaments in a uniform flow by the immersed boundary method,J.Comput.Phys.226(2007)2206-2228.

    [20]S.J.Shin,W.X.Huang,H.J.Sung,Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method,Int.J.Numer. Methods Fluids 58(2008)263-286.

    ?Corresponding author.

    E-mail address:hwx@tsinghua.edu.cn(W.-X.Huang).

    *This article belongs to the Fluid Mechanics

    看十八女毛片水多多多| a级毛色黄片| 中文字幕免费在线视频6| 男男h啪啪无遮挡| 亚洲综合色网址| 中文天堂在线官网| 国产精品一区二区三区四区免费观看| 欧美成人午夜免费资源| 亚洲国产色片| 99九九在线精品视频| 欧美性感艳星| av免费观看日本| 男的添女的下面高潮视频| 国产精品秋霞免费鲁丝片| 亚洲国产精品一区三区| 久久久久国产精品人妻一区二区| 99热6这里只有精品| 一级二级三级毛片免费看| 热99久久久久精品小说推荐| 亚洲av中文av极速乱| 久久久久国产网址| 黄色欧美视频在线观看| 久久精品国产亚洲av天美| 免费观看性生交大片5| 精品久久久久久久久亚洲| 人成视频在线观看免费观看| 亚洲久久久国产精品| 精品亚洲乱码少妇综合久久| 亚洲综合色网址| 国产精品成人在线| 男女无遮挡免费网站观看| 亚洲内射少妇av| 少妇被粗大的猛进出69影院 | 热re99久久精品国产66热6| 国产视频内射| 成人综合一区亚洲| 精品视频人人做人人爽| 看免费成人av毛片| 一区在线观看完整版| 亚洲综合色网址| 日本爱情动作片www.在线观看| 国产精品三级大全| 一级毛片我不卡| 天堂8中文在线网| 亚洲欧美日韩卡通动漫| 女性被躁到高潮视频| 在线观看免费高清a一片| 国产一区有黄有色的免费视频| 久久热精品热| 国产精品成人在线| 成年人午夜在线观看视频| 丰满乱子伦码专区| 最新的欧美精品一区二区| 亚洲丝袜综合中文字幕| 免费观看性生交大片5| 高清黄色对白视频在线免费看| 80岁老熟妇乱子伦牲交| 丁香六月天网| 插阴视频在线观看视频| 九九在线视频观看精品| 丰满饥渴人妻一区二区三| 高清不卡的av网站| 亚洲精品国产色婷婷电影| 成人国产av品久久久| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 中文欧美无线码| 男女边摸边吃奶| 国产极品粉嫩免费观看在线 | 九草在线视频观看| a级毛片在线看网站| 日韩伦理黄色片| 国产片内射在线| 久久韩国三级中文字幕| 超碰97精品在线观看| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 免费高清在线观看日韩| 国产午夜精品久久久久久一区二区三区| 国产精品人妻久久久影院| 黑人欧美特级aaaaaa片| 一本一本综合久久| 国产精品一二三区在线看| 中文字幕人妻熟人妻熟丝袜美| 日韩电影二区| 国产av码专区亚洲av| 国产黄频视频在线观看| 国产一区亚洲一区在线观看| 成人影院久久| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 亚洲人成网站在线观看播放| 中文天堂在线官网| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| av黄色大香蕉| 亚洲国产成人一精品久久久| kizo精华| 一级,二级,三级黄色视频| 一级毛片 在线播放| 国产亚洲欧美精品永久| 99久久精品国产国产毛片| 国产精品蜜桃在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久鲁丝午夜福利片| 一级,二级,三级黄色视频| 久久久精品94久久精品| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 日本黄大片高清| 搡女人真爽免费视频火全软件| 大片免费播放器 马上看| av在线app专区| 久久99一区二区三区| 国产国拍精品亚洲av在线观看| 国产精品99久久99久久久不卡 | av一本久久久久| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 日韩伦理黄色片| 午夜老司机福利剧场| tube8黄色片| 男的添女的下面高潮视频| 青春草亚洲视频在线观看| 国产精品久久久久久精品古装| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 简卡轻食公司| 免费大片黄手机在线观看| 精品国产一区二区久久| av女优亚洲男人天堂| 另类亚洲欧美激情| av免费观看日本| 精品国产国语对白av| 日韩视频在线欧美| 午夜av观看不卡| 亚洲高清免费不卡视频| 一级毛片aaaaaa免费看小| 亚洲av中文av极速乱| xxxhd国产人妻xxx| 黑人巨大精品欧美一区二区蜜桃 | 亚州av有码| 熟女人妻精品中文字幕| 女人久久www免费人成看片| 日日撸夜夜添| 在线观看www视频免费| 伊人久久精品亚洲午夜| 少妇人妻久久综合中文| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| 亚洲av.av天堂| 人妻少妇偷人精品九色| 国产在线视频一区二区| 国产精品免费大片| 国产深夜福利视频在线观看| a级毛片在线看网站| 久久久久久久精品精品| 亚洲三级黄色毛片| 美女主播在线视频| 曰老女人黄片| 日韩熟女老妇一区二区性免费视频| 亚洲一级一片aⅴ在线观看| 丝袜脚勾引网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产在线视频一区二区| 有码 亚洲区| 免费看av在线观看网站| 亚洲精品aⅴ在线观看| 色视频在线一区二区三区| 久久精品国产亚洲av天美| 国产成人精品无人区| av天堂久久9| 九九爱精品视频在线观看| 欧美三级亚洲精品| 亚洲精品国产色婷婷电影| 老司机影院成人| 极品少妇高潮喷水抽搐| 亚洲,欧美,日韩| 大陆偷拍与自拍| 99热这里只有是精品在线观看| 国产在视频线精品| 在线免费观看不下载黄p国产| 亚洲精品国产av蜜桃| 高清视频免费观看一区二区| 亚洲精品久久久久久婷婷小说| 在线观看国产h片| 国产精品久久久久久精品电影小说| 亚洲图色成人| 在线精品无人区一区二区三| 天天躁夜夜躁狠狠久久av| 亚洲一级一片aⅴ在线观看| 国产亚洲欧美精品永久| 美女xxoo啪啪120秒动态图| 色视频在线一区二区三区| 国产 精品1| 久久精品国产亚洲av天美| 不卡视频在线观看欧美| 久久久亚洲精品成人影院| 五月玫瑰六月丁香| 久久韩国三级中文字幕| 18禁动态无遮挡网站| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡 | 久久久久久人妻| 少妇高潮的动态图| freevideosex欧美| 国产日韩一区二区三区精品不卡 | 水蜜桃什么品种好| 国产一区二区在线观看av| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久av不卡| 久久久久久人妻| 在线精品无人区一区二区三| 中文天堂在线官网| 草草在线视频免费看| 婷婷色综合www| 午夜免费观看性视频| 大话2 男鬼变身卡| 亚洲av男天堂| 2021少妇久久久久久久久久久| 亚洲av在线观看美女高潮| 岛国毛片在线播放| 国产熟女午夜一区二区三区 | 丝袜在线中文字幕| 欧美老熟妇乱子伦牲交| 18在线观看网站| 精品一区在线观看国产| 免费看av在线观看网站| 亚洲精品乱码久久久久久按摩| 卡戴珊不雅视频在线播放| h视频一区二区三区| 最黄视频免费看| 曰老女人黄片| 久久人妻熟女aⅴ| 久久久久久久精品精品| 亚洲精品一二三| 一本色道久久久久久精品综合| 国产精品一二三区在线看| 免费观看在线日韩| 毛片一级片免费看久久久久| 国产毛片在线视频| 精品久久国产蜜桃| 高清在线视频一区二区三区| 免费观看a级毛片全部| 国产精品久久久久久精品电影小说| 性高湖久久久久久久久免费观看| 国产高清国产精品国产三级| 日本欧美视频一区| 人人妻人人澡人人看| 51国产日韩欧美| 亚洲成色77777| 91久久精品国产一区二区三区| 成年av动漫网址| 男女啪啪激烈高潮av片| av不卡在线播放| 欧美+日韩+精品| 国产男女内射视频| 一个人免费看片子| 最新中文字幕久久久久| 亚洲欧美日韩另类电影网站| 日本-黄色视频高清免费观看| 黄片播放在线免费| 老女人水多毛片| 免费人妻精品一区二区三区视频| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 99久久综合免费| 亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| av在线老鸭窝| 女人精品久久久久毛片| 18禁观看日本| 欧美日韩视频精品一区| 少妇熟女欧美另类| av网站免费在线观看视频| 嫩草影院入口| 看十八女毛片水多多多| 高清不卡的av网站| 日本黄色日本黄色录像| 综合色丁香网| 欧美老熟妇乱子伦牲交| 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 久久久久久伊人网av| 另类精品久久| 国产精品国产三级专区第一集| 国产精品嫩草影院av在线观看| av有码第一页| 日本爱情动作片www.在线观看| 国产精品国产av在线观看| 色吧在线观看| 在线观看人妻少妇| 国产一区二区在线观看av| 香蕉精品网在线| 国产黄色免费在线视频| 精品人妻熟女av久视频| 在线看a的网站| 一级毛片我不卡| 黄色一级大片看看| 综合色丁香网| 久久精品国产亚洲av涩爱| 国产视频首页在线观看| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 免费黄网站久久成人精品| 午夜av观看不卡| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 九色亚洲精品在线播放| 日韩av不卡免费在线播放| 色婷婷久久久亚洲欧美| 成年美女黄网站色视频大全免费 | 制服丝袜香蕉在线| av电影中文网址| 看免费成人av毛片| 一级二级三级毛片免费看| 80岁老熟妇乱子伦牲交| 丰满乱子伦码专区| 国产成人午夜福利电影在线观看| 狂野欧美激情性xxxx在线观看| 在线观看免费视频网站a站| 日韩中文字幕视频在线看片| 国产日韩欧美在线精品| 啦啦啦在线观看免费高清www| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 欧美精品一区二区免费开放| 天堂俺去俺来也www色官网| 大话2 男鬼变身卡| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 日日爽夜夜爽网站| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放| 一级二级三级毛片免费看| 国产又色又爽无遮挡免| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验| 一级毛片电影观看| 亚洲欧美成人精品一区二区| 搡老乐熟女国产| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 少妇精品久久久久久久| 国产精品秋霞免费鲁丝片| 99热这里只有精品一区| 成人国产麻豆网| 欧美成人精品欧美一级黄| 久久久午夜欧美精品| 欧美精品亚洲一区二区| 美女大奶头黄色视频| 曰老女人黄片| 亚洲精品亚洲一区二区| 中文乱码字字幕精品一区二区三区| 高清午夜精品一区二区三区| 好男人视频免费观看在线| 久久女婷五月综合色啪小说| 人妻人人澡人人爽人人| 夜夜看夜夜爽夜夜摸| 精品少妇内射三级| 国产av码专区亚洲av| av电影中文网址| .国产精品久久| 91久久精品国产一区二区成人| 伊人久久精品亚洲午夜| 国产黄片视频在线免费观看| 免费大片黄手机在线观看| 9色porny在线观看| 91精品三级在线观看| 中文字幕最新亚洲高清| 亚洲在久久综合| 久久人人爽av亚洲精品天堂| 色5月婷婷丁香| 亚洲国产精品一区三区| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx在线观看| 十八禁高潮呻吟视频| av女优亚洲男人天堂| 中文字幕久久专区| 亚洲精品一区蜜桃| 亚洲国产欧美日韩在线播放| 久久久久国产网址| 国产精品国产三级国产av玫瑰| 亚洲精品日本国产第一区| 精品酒店卫生间| 中国国产av一级| 日韩视频在线欧美| 99热网站在线观看| 欧美亚洲日本最大视频资源| 免费av不卡在线播放| 亚洲一级一片aⅴ在线观看| 最近2019中文字幕mv第一页| av有码第一页| 人人妻人人添人人爽欧美一区卜| 免费少妇av软件| 看非洲黑人一级黄片| 老司机亚洲免费影院| 精品酒店卫生间| 国产国语露脸激情在线看| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 久久这里有精品视频免费| 精品一区二区免费观看| a级毛色黄片| 国产免费福利视频在线观看| 日日爽夜夜爽网站| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 亚洲av免费高清在线观看| 欧美激情极品国产一区二区三区 | 男人操女人黄网站| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 丝瓜视频免费看黄片| 亚洲精品中文字幕在线视频| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 久久国内精品自在自线图片| .国产精品久久| 精品少妇久久久久久888优播| 免费看不卡的av| 在线观看三级黄色| 丁香六月天网| 亚洲伊人久久精品综合| 999精品在线视频| 九九在线视频观看精品| 天堂8中文在线网| 亚洲第一av免费看| 99久久中文字幕三级久久日本| 久久精品国产亚洲网站| 亚洲av日韩在线播放| 午夜福利视频精品| 涩涩av久久男人的天堂| 久久精品国产自在天天线| 亚洲人与动物交配视频| 久久久久久久久久人人人人人人| 91久久精品国产一区二区成人| 蜜桃在线观看..| 男人操女人黄网站| 国产精品国产三级国产专区5o| 日韩一本色道免费dvd| 高清欧美精品videossex| 国产高清不卡午夜福利| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| √禁漫天堂资源中文www| 国产高清三级在线| 母亲3免费完整高清在线观看 | 大香蕉97超碰在线| 亚洲中文av在线| 亚洲一级一片aⅴ在线观看| 亚洲av男天堂| 国产精品久久久久久精品古装| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 黄色一级大片看看| 黑人欧美特级aaaaaa片| h视频一区二区三区| 精品久久蜜臀av无| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 日韩电影二区| 国产高清不卡午夜福利| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到 | 男女啪啪激烈高潮av片| 熟女人妻精品中文字幕| 久久久久久久久久久久大奶| 一边摸一边做爽爽视频免费| 中文欧美无线码| 97精品久久久久久久久久精品| 久久久久久久久久久久大奶| av女优亚洲男人天堂| 制服丝袜香蕉在线| 精品卡一卡二卡四卡免费| 久久久久久久久久成人| av天堂久久9| 国产又色又爽无遮挡免| √禁漫天堂资源中文www| 日韩精品免费视频一区二区三区 | 欧美精品一区二区免费开放| 麻豆乱淫一区二区| 亚洲av中文av极速乱| 51国产日韩欧美| 久久免费观看电影| 久久久久精品性色| 国产成人精品久久久久久| 国语对白做爰xxxⅹ性视频网站| 内地一区二区视频在线| 国产熟女午夜一区二区三区 | 日韩中文字幕视频在线看片| 亚洲精品一二三| 丝袜美足系列| 交换朋友夫妻互换小说| 亚洲国产成人一精品久久久| 一级片'在线观看视频| 99国产精品免费福利视频| 国产在视频线精品| 午夜日本视频在线| 亚洲av在线观看美女高潮| 多毛熟女@视频| 五月开心婷婷网| 最近手机中文字幕大全| 久久久午夜欧美精品| 乱人伦中国视频| 高清av免费在线| 亚洲精品美女久久av网站| 国内精品宾馆在线| 亚洲熟女精品中文字幕| 久久国产精品男人的天堂亚洲 | 国产精品蜜桃在线观看| 午夜激情久久久久久久| 亚洲,欧美,日韩| 一本大道久久a久久精品| 22中文网久久字幕| 欧美成人午夜免费资源| 男女高潮啪啪啪动态图| 免费av不卡在线播放| 久久精品夜色国产| 国产一区二区在线观看av| 赤兔流量卡办理| 18禁在线无遮挡免费观看视频| 91午夜精品亚洲一区二区三区| 九九爱精品视频在线观看| 男女边吃奶边做爰视频| 亚洲成色77777| 久久久久国产精品人妻一区二区| 国产伦精品一区二区三区视频9| 久久精品熟女亚洲av麻豆精品| 一区二区三区四区激情视频| 国产成人精品无人区| 欧美 日韩 精品 国产| 一级片'在线观看视频| 国产欧美亚洲国产| 精品人妻熟女av久视频| 亚洲国产av影院在线观看| av专区在线播放| 毛片一级片免费看久久久久| 亚洲一区二区三区欧美精品| av黄色大香蕉| 人人澡人人妻人| 全区人妻精品视频| 亚洲av综合色区一区| 亚洲综合色惰| 人人妻人人爽人人添夜夜欢视频| 国内精品宾馆在线| 美女主播在线视频| 日韩欧美一区视频在线观看| 好男人视频免费观看在线| 汤姆久久久久久久影院中文字幕| 午夜福利视频在线观看免费| 天美传媒精品一区二区| 三级国产精品欧美在线观看| 狠狠精品人妻久久久久久综合| 高清av免费在线| videosex国产| 少妇 在线观看| 日韩制服骚丝袜av| 日韩在线高清观看一区二区三区| 春色校园在线视频观看| 国产熟女午夜一区二区三区 | 亚洲精品av麻豆狂野| 人妻夜夜爽99麻豆av| 晚上一个人看的免费电影| 男女边吃奶边做爰视频| 欧美日韩综合久久久久久| 国产日韩欧美视频二区| 久久久久视频综合| 精品少妇黑人巨大在线播放| 国产精品嫩草影院av在线观看| 哪个播放器可以免费观看大片| 亚洲丝袜综合中文字幕| 99九九在线精品视频| 91aial.com中文字幕在线观看| 男人添女人高潮全过程视频| 国产精品久久久久久av不卡| 免费人妻精品一区二区三区视频| 精品久久久噜噜| 久久青草综合色| 成人毛片a级毛片在线播放| 久久精品国产a三级三级三级| 国产亚洲最大av| 免费观看在线日韩| 亚洲精品国产av蜜桃| 国产高清国产精品国产三级| 午夜福利在线观看免费完整高清在| 国产69精品久久久久777片| 五月玫瑰六月丁香| 免费大片黄手机在线观看| 亚洲欧美日韩另类电影网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲中文av在线| 久久久久国产精品人妻一区二区| 亚洲一级一片aⅴ在线观看| av视频免费观看在线观看| 亚洲色图综合在线观看| av专区在线播放| 母亲3免费完整高清在线观看 | 久久久精品区二区三区| 国产精品成人在线| 极品少妇高潮喷水抽搐| 欧美另类一区| 久久久久久久久久久免费av| 国产亚洲精品久久久com| 街头女战士在线观看网站| 国产亚洲精品第一综合不卡 | 毛片一级片免费看久久久久|