• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adjoint-based optimization of flapping plates hinged with a trailing-edge flap

    2015-11-21 07:27:24MinXuMingjunWeiChengyuLiHioDong

    Min Xu,Mingjun Wei,?,Chengyu Li,Hio Dong

    aNew Mexico State University,Las Cruces,NM 88003,USA

    bUniversity of Virginia,Charlottesville,VA 22904,USA

    Adjoint-based optimization of flapping plates hinged with a trailing-edge flap

    Min Xua,Mingjun Weia,?,Chengyu Lib,Haibo Dongb

    aNew Mexico State University,Las Cruces,NM 88003,USA

    bUniversity of Virginia,Charlottesville,VA 22904,USA

    A R T I C L E I N F O

    Article history:

    Received 24 November 2014

    Accepted 1 December 2014

    Available online 3 February 2015

    Flapping wing

    It is important to understand the impact of wing-morphing on aerodynamic performance in the study of flapping-wing flight of birds and insects.We use a flapping plate hinged with a trailing-edge flap as a simplified model for flexible/morphing wings in hovering.The trailing-edge flapping motion is optimized by an adjoint-based approach.The optimized configuration suggests that the trailing-edge flap can substantially enhance the overall lift.Further analysis indicates that the lift enhancement by the trailingedge flapping is from the change of circulation in two ways:the local circulation change by the rotational motion of the flap,and the modification of vortex shedding process by the relative location between the trailing-edge flap and leading-edge main plate.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://reativecommons.org/licenses/by-nc-nd/4.0/).

    The unsteady aerodynamic phenomena that allows insects to operate efficiently at low-Reynolds-number is produced by flapping-wing mechanism.The inherently unsteady nature of flapping-wing kinematics is responsible for the primary force production[1],and also differentiates flapping-wing motion fromconventional fixed and rotary wing configurations.In recent years,more attention has been paid to the aerodynamics of deformable wings[2,3].Results have revealed that the dynamically changed wing surface,either actively or passively deformed,would potentially provide new aerodynamic mechanisms[4]of force productions over completely rigid wings[1,5]in flapping flights.The performance of a rigid wing can be significantly improved by adding chord-wise flexibility onto the wing.Vanella et al.[6]used a 2-D two-link model to model the chord-wise flexibility in a flapping plate.It shows that if appropriately chosen,the chord-wise flexibility can result in up to 28%enhancement in terms of lift-todrag ratio and 39%increase for lift-to-power ratio comparing to a rigid one.In addition,Wan etal.[7]investigated the effectofchordwise flexibility over a range of hovering kinematics parameters using a hinged-plate model.Their results indicated that higher liftto-drag ratio can be obtained by hinging the plate at three-quarter chord from the leading-edge comparing to a fully rigid plate in the same flapping kinematics.Li et al.[8]performed numerical simulations of deformable flapping plate by attaching a trailing-edge flap(TEF)and studied its effects on aerodynamic performance and flow modulation.Results have shown that the optimal lift production can be achieved by tailoring the trailing-edge deflection angle and phase shift.The enhancement of lift production is up to 26% comparing to a completely rigid flapping plate.

    However,if the parameter space of the problem is further increased,it is impracticable to find the optimal setting via direct parametric case study.Adjoint-based optimization,on the other hand,offers the same computational efficiency for increased number of control parameters[9-11].In this work,we have developed an adjoint-based approach to quickly find the optimal solution of chord-wise wing morphing.The further analysis of the optimal solution allows us to study the effect of wing flexibility through its comparison to rigid and other configuration not optimized for aerodynamic performance.The rest of the paper is arranged in the following manner.The governing equations and numericalsimulation details are first introduced.Then,the optimization results are discussed.The conclusion is given at the end.

    Shown in Fig.1,the configuration of the flapping plates is chosen to be the same as the one used by Li et al.[8],which allows a convenient comparison of performance and accuracy from different approaches.The leading-edge(i.e.main)plate and the trailingedge plate are respectively 0.75 and 0.25 based on the total length. The flapping motion is prescribed by

    where AL=3 andβL=45?are respectively the amplitudes of the leading-edge plate's horizontal and rotational motion,and f=1/(3π)is the flapping frequency.All the variables are nondimensionalised by the total chord-length c and the reference velocity Uref=πfAL.The control parameters are the flapping amplitudeβTand the phase delay?Tof the trailing-edge flap.The two parameters are optimized to achieve the maximum lift.The Reynolds number,Re=Urefc/ν,is 100 for all the cases.Here,we only considerthe periodic state,which can be achieved after8 flapping cycles.

    The surrounding flow satisfies the incompressible Navier-Stokes equations

    with convective boundary conditions at the far field,and the Dirichlet condition along the solid wing surface S

    where Viis the local velocity of solid.

    Staggered Cartesian mesh with local refinement through stretching is used to provide both efficiency and numerical stability.Immersed boundary method[12,13]is implemented for the description of moving solid boundaries(i.e.hinged plates)in both the forward simulation of fluid flow and the backward simulation of the adjoint field.The second-order central difference scheme is used for spatial discretization and the third-order Runge-Kutta/ Crank-Nicolson scheme is used for time advancement[14-16].The continuity equation for incompressible flow is enforced by projection method[16].

    The computationaldomain has non-dimensionalsize 30×30.A stretched 290×320 Cartesian mesh is used for an overall Eulerian description of the combined fluid and solid domain.The grid is clustered near solid region with a minimum size ofΔx=Δy= 0.02.There are 202 marker points for the Lagrangian description of the moving hinged plates with zero thickness.

    Fig.1.Schematic of a flapping plate hinged with a trailing-edge flap.

    where

    and Siis the location of the solid point,niis the norm direction from solid to fluid and T is the time for one flapping cycle.The control is updated along the gradient to eventually converge to an optimalsolution.The accuracy ofthe gradientcomputed by adjoint approach has been validated in our earlier work,and there are also details on derivation[14,15].

    The optimization is started with an arbitrarily chosen initial control,φ0=(20?,-40?).It is shown in Fig.2 that,after 6 iterations,the lift coefficient is improved by 18.7%,from 0.793 to 0.941. Three cases are compared in Table 1:(a)the rigid plate without trailing-edge flap,(b)the initial control,and(c)the optimal control,which are consistent with the choices of the direct parametric study by Li et al.[8].The outcome of the adjoint-based optimization also matches very wellwith the direct parametric study.However,it is worth noting that the adjoint-based optimization(with 6 iterations)has much lower computational cost than the direct approach(with 72 cases).More important,the computational cost from the adjoint-based approach,by its nature,should remain at about the same level as the control parameters increase from 2 to a much larger number(e.g.more than 10);on the other hand,such increase of control parameters will lead to much larger(or impossible?。ヽomputational cost from the direct approach through the increase of cases to cover a much larger parametric space[14].

    The optimal control provides much higher lift coefficient than the rigid case with 27%enhancement,though the initial control also provides lift enhancement by 7.3%from the rigid case.It is shown in Fig.3 that,during one single flapping circle(8T≤t<9T),the major lift enhancement happens at t=8.2T and t=8.8T.At these two moments,as shown in Fig.4,the instantaneous translational velocity at the leading edge,vxL=d xL/d t reaches its maximum amplitude(positively or negatively).

    In current study,the plates do not interact with their own wake during flapping due to the strong downwash velocity induced by high lift.Therefore,despite the unsteadiness,quasi-steady model can still be a good approximation[19,20]and help to interpret the complex results.It is worth noting that the coefficients of quasisteady model are computed from numerical simulation data.The numerical simulation and optimization still rely on direct numerical simulation approach mentioned above.

    Table 1The lift coefficients for the rigid flapping plate and hinged flapping plates with initial and optimized controls.

    Fig.2.The optimization process showing the change of the cost function(i.e.lift coefficient)by the number of iterations.

    Fig.3.Comparison of the lift coefficients for the case of a rigid flapping plate(thick solid line),the case of hinged plates with the initial control(thin solid line),and the case of hinged plates with the optimized control(dashed line).Two moments,t=8.2T and t=8.8T,are marked by dotted lines for better comparison.

    Fig.4.The time variation of the translationalvelocity vxL(solid line)ofthe leadingedge and the angular velocityωT=dθT/d t(dashed line)of the trailing-edge flapping with the optimized control.Two moments,t=8.2T and t=8.8T,are marked by dotted lines for better comparison.

    According to the quasi-steady model,the circulation component of the total lift is

    whereΓis the circulation along the plates and is defined to be positive for anti-clockwise vortices.The formulation(8)implies that the lift is more sensitive to the change of circulation at the moment when the translational velocity vxLhas large amplitude.For our case,it means the two moments t=8.2T and t=8.8T.

    The trailing-edge flap changes the circulation(and eventually the lift)through two ways:(1)the rotational motion of the flap itselfchanges directly the totalcirculation;(2)the angle between the main plate and the trailing-edge plate changes the shedding process of the trailing-edge vortex(TEV)which,in turn,has a negative impact on the total circulation through the conservation of angular momentum.Both effects can be observed in Fig.5.At t=8.2T,when vxL<0,the clockwise flapping motion of the flap brings in additional negative circulation,therefore,it increases the overall lift;at t=8.8T,when vxL>0,the additional positive circulation by the anti-clockwise motion of the flap results also the overall lift enhancement.The optimal flow at both time moments also show stronger TEV shedding in comparison to the rigid case and the initial case.The stronger vortex shedding leads to larger lift at these moments.

    We numerically studied the impact of wing flexibility/morphing towards the aerodynamic performance(i.e.lift coefficient in the current work)of flapping wings in hovering motion.The study is based on a simplified model,a flapping plate hinged with a trailing-edge flap.A newly-developed adjoint-based approach is used to reach the same optimal setting but much lower computational cost compared to a previous study using direct parametric case study.It is noted that the current extension of using adjoint-based approach on moving-boundary problems has only become possible through the introduction of non-cylindrical calculus to handle the boundary derivatives for the derivation of adjoint equations.

    Through the comparison between the rigid(i.e.no hinged flap)case and the optimal trailing-edge flapping case,we see a 27%lift enhancement.Further analysis shows that the lift enhancement is the result of circulation changes at the moment when maximum translational speed of the leading edge happens.The implementation of a trailing-edge flap at its optimal rotation and phase delay results in the increase or decrease of the circulation at those critical time moments.The change of circulation,the maximumtranslational speed of the leading edge,and the right sign of both values,together,result in the lift enhancementin the currentstudy. In other words,the impact of the trailing-edge flap to the lift enhancement is through the change of circulation by both the rotational motion and the relative angle of the two plates.

    Fig.5.(Color Online)The flow field marked by vorticity contours at two time moments t=8.2T and t=8.8T:(a)and(b)are the case of a rigid flapping plate;(c)and(d)are the case of hinged flapping plates with the initial control;(e)and(f)are the case of hinged flapping plates with the optimal control.The red and blue colors respectively denote anti-clockwise and clockwise vortices.

    Acknowledgment

    This work was supported by AFOSR(FA9550-12-1-0071).

    [1]M.H.Dickinson,F(xiàn).O.Lehmann,S.P.Sane,Wing rotation and the aerodynamic basis of insect flight,Science 284(1999)1954-1960.

    [2]J.Valasek,Morphing Aerospace Vehicles and Structures,John Wiley&Sons,Chichester,2012.

    [3]H.Wang,L.Zeng,H.Liu,C.Yin,Measuring wing kinematics,flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies,J.Exp.Biol.206(2003)745-757.

    [4]W.Shyy,Y.Lian,J.Tang,D.Viieru,H.Liu,Aerodynamics of Low Reynolds Number Flyers,Cambridge University Press,New York,2008.

    [5]M.Sun,J.Tang,Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion,J.Exp.Biol.205(2002)55-70.

    [6]M.Vanella,T.Fitzgerald,S.Preidikman,E.Balaras,B.Balachandran,Influence of flexibility on the aerodynamic performance of a hovering wing,J.Exp.Biol. 212(2009)95-105.

    [7]H.Wan,H.Dong,G.P.Huang,Hovering hinge-connected flapping plate with passive deflection,AIAA J.50(2012)2020-2027.

    [8]C.Li,H.Dong,Y.Ren,A numerical study of flapping plates hinged with a trailing-edge flap,AIAA Paper 2014-2049(2014).

    [9]A.Jameson,Aerodynamic shape optimization using the adjoint method. Lectures at the Von Karman Institute,Brussels,F(xiàn)ebuary 6(2003).

    [10]T.R.Bewley,P.Moin,R.Temam,DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms,J.Fluid Mech.447(2001)179-225.

    [11]M.Wei,J.B.Freund,A noise-controlled free shear flow,J.Fluid Mech.546(2006)123-152.

    [12]R.Mittal,H.Dong,M.Bozkurttas,F(xiàn).Najjar,A.Vargas,A.VonLoebbecke,A versatile sharp interface immersed boundary method forincompressible flows with complex boundaries,J.Comput.Phys.227(2008)4825-4852.

    [13]T.Yang,M.Wei,H.Zhao,Numericalstudy offlexible flapping wing propulsion,AIAA J.48(2010)2909-2915.

    [14]M.Xu,M.Wei,A continuous adjoint-based approach for the optimization of wing flapping,AIAA Paper 2014-2048(2014).

    [15]M.Xu,M.Wei,Using adjoint-based approach to study flapping wings,AIAA Paper 2013-0839(2013).

    [16]H.Zhao,J.B.Freund,R.D.Moser,A fixed-mesh method for incompressible flow-structure systems with finite solid deformations,J.Comput.Phys.227(2008)3114-3140.

    [17]M.Moubachir,Moving Shape Analysis and Control:Applications to Fluid Structure Interactions,CRC Press,Abingdon,2006.

    [18]B.Protas,W.Liao,Adjoint-based optimization of PDEs in moving domains,J.Comput.Phys.227(2008)2707-2723.

    [19]A.Andersen,U.Pesavento,Z.Wang,Unsteady aerodynamics of fluttering and tumbling plates,J.Fluid Mech.541(2005)65-90.

    [20]G.J.Berman,Z.J.Wang,Energy-minimizing kinematics in hovering insect flight,J.Fluid Mech.582(2007)153-168.

    ?Corresponding author.

    E-mail address:mjwei@nmsu.edu(M.Wei).

    Trailing-edge flap

    Adjoint-based optimization

    *This article belongs to the Fluid Mechanics

    国产一级毛片在线| 国产日韩欧美亚洲二区| 99久久中文字幕三级久久日本| 亚洲精品一二三| 国产成人a∨麻豆精品| 亚洲精品色激情综合| 在线观看免费视频网站a站| 好男人视频免费观看在线| 精品人妻偷拍中文字幕| 97精品久久久久久久久久精品| 91午夜精品亚洲一区二区三区| 国产乱人偷精品视频| 在线观看国产h片| 亚洲久久久国产精品| 精品久久久精品久久久| 天堂中文最新版在线下载| 欧美3d第一页| 国产成人91sexporn| 国产精品99久久久久久久久| 亚洲,一卡二卡三卡| a级毛片在线看网站| 日韩电影二区| 在线观看免费高清a一片| 在线观看av片永久免费下载| 久热久热在线精品观看| av又黄又爽大尺度在线免费看| 国产男女超爽视频在线观看| 丝瓜视频免费看黄片| 成人漫画全彩无遮挡| 99re6热这里在线精品视频| 久久精品久久久久久久性| 有码 亚洲区| 国产精品一区二区三区四区免费观看| 在线观看www视频免费| 九九久久精品国产亚洲av麻豆| 三级经典国产精品| 另类精品久久| 亚洲情色 制服丝袜| 亚洲精品亚洲一区二区| 99久久精品一区二区三区| 成人无遮挡网站| 十分钟在线观看高清视频www | 涩涩av久久男人的天堂| 男人爽女人下面视频在线观看| 在线播放无遮挡| 观看美女的网站| 一个人看视频在线观看www免费| videossex国产| 亚洲精品,欧美精品| 精品亚洲成国产av| 成人18禁高潮啪啪吃奶动态图 | 美女福利国产在线| av.在线天堂| 人妻少妇偷人精品九色| 亚洲国产精品专区欧美| 久久亚洲国产成人精品v| 亚洲自偷自拍三级| 亚洲性久久影院| 日韩一区二区三区影片| 午夜久久久在线观看| 最近中文字幕2019免费版| 免费黄网站久久成人精品| 国产成人精品婷婷| 欧美日韩综合久久久久久| 国产 精品1| 大片电影免费在线观看免费| av.在线天堂| 中文在线观看免费www的网站| 午夜福利视频精品| 久久久午夜欧美精品| 在线亚洲精品国产二区图片欧美 | 国产色婷婷99| 中国国产av一级| 伦理电影大哥的女人| 国产精品一二三区在线看| 麻豆成人午夜福利视频| 三级经典国产精品| 亚洲精品久久午夜乱码| 免费观看av网站的网址| 十八禁高潮呻吟视频 | 国产一级毛片在线| 久久午夜福利片| 中国国产av一级| 午夜免费鲁丝| 欧美日韩视频精品一区| 久久鲁丝午夜福利片| 成人二区视频| 午夜免费鲁丝| av福利片在线| 国产女主播在线喷水免费视频网站| 精品视频人人做人人爽| 另类精品久久| 美女内射精品一级片tv| 成人国产麻豆网| 日韩人妻高清精品专区| 两个人免费观看高清视频 | 日韩精品免费视频一区二区三区 | 男人和女人高潮做爰伦理| 大片电影免费在线观看免费| 男女边摸边吃奶| 丁香六月天网| 午夜91福利影院| 国产一区亚洲一区在线观看| 91午夜精品亚洲一区二区三区| 亚洲精品一区蜜桃| 免费人成在线观看视频色| 久久热精品热| 日韩欧美精品免费久久| 2022亚洲国产成人精品| 不卡视频在线观看欧美| av在线app专区| 一本一本综合久久| 中文乱码字字幕精品一区二区三区| 国产成人免费无遮挡视频| 免费人妻精品一区二区三区视频| 亚洲丝袜综合中文字幕| 大香蕉97超碰在线| 日本vs欧美在线观看视频 | 日韩精品有码人妻一区| 欧美日本中文国产一区发布| 丝袜喷水一区| 国产免费一区二区三区四区乱码| 国产视频首页在线观看| 国产一区二区三区av在线| 免费av不卡在线播放| a级一级毛片免费在线观看| 久久久久网色| av天堂久久9| 亚洲美女视频黄频| 高清黄色对白视频在线免费看 | 精华霜和精华液先用哪个| 亚洲久久久国产精品| 日韩精品免费视频一区二区三区 | 人人妻人人添人人爽欧美一区卜| 国产精品福利在线免费观看| 久久久国产精品麻豆| 精品一区二区三卡| 最近的中文字幕免费完整| 亚洲情色 制服丝袜| 久久99精品国语久久久| 亚洲,欧美,日韩| 青春草国产在线视频| 99九九线精品视频在线观看视频| 国产一区二区三区av在线| 免费av不卡在线播放| 久久狼人影院| 免费看av在线观看网站| 啦啦啦中文免费视频观看日本| 免费av中文字幕在线| 三级经典国产精品| 亚洲国产精品国产精品| 亚洲欧美日韩另类电影网站| 噜噜噜噜噜久久久久久91| 91aial.com中文字幕在线观看| 一个人看视频在线观看www免费| 中文字幕人妻熟人妻熟丝袜美| 国产爽快片一区二区三区| 亚洲精品第二区| 亚洲va在线va天堂va国产| 国产黄片视频在线免费观看| 高清av免费在线| 亚洲一级一片aⅴ在线观看| 观看av在线不卡| 国内少妇人妻偷人精品xxx网站| 亚洲经典国产精华液单| 国产伦理片在线播放av一区| 国产深夜福利视频在线观看| 亚洲国产欧美日韩在线播放 | 国产精品麻豆人妻色哟哟久久| 亚洲综合精品二区| 精品国产一区二区久久| 久久久亚洲精品成人影院| 亚洲国产精品999| 国产精品久久久久久久久免| 久久影院123| 菩萨蛮人人尽说江南好唐韦庄| 日本与韩国留学比较| 男人舔奶头视频| 熟女电影av网| 欧美区成人在线视频| h日本视频在线播放| 欧美日本中文国产一区发布| 99精国产麻豆久久婷婷| 色94色欧美一区二区| 国产精品一区二区三区四区免费观看| 免费看不卡的av| 国产一区有黄有色的免费视频| 涩涩av久久男人的天堂| 极品少妇高潮喷水抽搐| 高清毛片免费看| 亚洲美女搞黄在线观看| 丝瓜视频免费看黄片| 丝袜在线中文字幕| 亚洲av不卡在线观看| 日韩一区二区三区影片| 在线免费观看不下载黄p国产| 麻豆乱淫一区二区| 少妇人妻精品综合一区二区| av在线播放精品| 校园人妻丝袜中文字幕| 狂野欧美激情性xxxx在线观看| 日本猛色少妇xxxxx猛交久久| 午夜av观看不卡| 街头女战士在线观看网站| 22中文网久久字幕| 成人亚洲精品一区在线观看| 欧美97在线视频| 免费少妇av软件| 一级毛片aaaaaa免费看小| 蜜桃在线观看..| 成人午夜精彩视频在线观看| 十八禁网站网址无遮挡 | 午夜日本视频在线| 亚洲一区二区三区欧美精品| 国产女主播在线喷水免费视频网站| 午夜福利网站1000一区二区三区| 欧美三级亚洲精品| 午夜福利网站1000一区二区三区| 天堂中文最新版在线下载| 大话2 男鬼变身卡| 亚洲国产精品一区二区三区在线| 三级国产精品欧美在线观看| 高清黄色对白视频在线免费看 | 丰满迷人的少妇在线观看| 人人澡人人妻人| 日韩成人av中文字幕在线观看| 久久久久人妻精品一区果冻| 亚洲综合色惰| 最新中文字幕久久久久| 人人妻人人澡人人看| 五月玫瑰六月丁香| 亚洲综合色惰| 精品午夜福利在线看| 爱豆传媒免费全集在线观看| 亚洲av.av天堂| 国产一区二区在线观看日韩| 亚洲av成人精品一二三区| xxx大片免费视频| 亚洲激情五月婷婷啪啪| 成人亚洲精品一区在线观看| 在线观看免费视频网站a站| 欧美精品高潮呻吟av久久| 18禁在线播放成人免费| 精品国产乱码久久久久久小说| av.在线天堂| 成人亚洲欧美一区二区av| 亚洲在久久综合| 日韩欧美一区视频在线观看 | 国产男女超爽视频在线观看| 欧美最新免费一区二区三区| 国产精品一区二区性色av| 国产免费一级a男人的天堂| 国产熟女欧美一区二区| 性高湖久久久久久久久免费观看| 黄色一级大片看看| 99精国产麻豆久久婷婷| 日本免费在线观看一区| 亚洲成人av在线免费| 我的老师免费观看完整版| 91久久精品电影网| 一级,二级,三级黄色视频| 日产精品乱码卡一卡2卡三| 成年美女黄网站色视频大全免费 | 精品亚洲成a人片在线观看| 午夜精品国产一区二区电影| 欧美丝袜亚洲另类| 日韩亚洲欧美综合| 亚洲综合精品二区| 黄色怎么调成土黄色| 国产成人免费观看mmmm| 国产免费又黄又爽又色| 老司机亚洲免费影院| 精品少妇内射三级| 久久久久人妻精品一区果冻| 18禁裸乳无遮挡动漫免费视频| 五月伊人婷婷丁香| 欧美日韩一区二区视频在线观看视频在线| 国产高清三级在线| 国产乱人偷精品视频| 热99国产精品久久久久久7| 久久99热这里只频精品6学生| 日韩大片免费观看网站| 女人精品久久久久毛片| 国产熟女欧美一区二区| 人体艺术视频欧美日本| 欧美精品一区二区大全| 日本黄大片高清| 看免费成人av毛片| 夫妻性生交免费视频一级片| 欧美日韩综合久久久久久| 亚洲av免费高清在线观看| 老司机亚洲免费影院| 久久精品夜色国产| 亚洲精品成人av观看孕妇| 下体分泌物呈黄色| 麻豆成人午夜福利视频| 亚洲精品第二区| 国产日韩欧美视频二区| av在线老鸭窝| 亚洲av在线观看美女高潮| 国产色爽女视频免费观看| 欧美精品高潮呻吟av久久| 美女中出高潮动态图| 少妇的逼水好多| 欧美激情极品国产一区二区三区 | 高清毛片免费看| 少妇 在线观看| 国产亚洲一区二区精品| 狂野欧美激情性bbbbbb| 少妇 在线观看| 啦啦啦啦在线视频资源| 青春草国产在线视频| 免费看av在线观看网站| 国产精品久久久久久精品古装| 中文字幕免费在线视频6| 男人狂女人下面高潮的视频| 又大又黄又爽视频免费| 亚洲欧洲日产国产| 美女国产视频在线观看| 全区人妻精品视频| 乱码一卡2卡4卡精品| 丝瓜视频免费看黄片| 熟女人妻精品中文字幕| 在线亚洲精品国产二区图片欧美 | 国产亚洲午夜精品一区二区久久| 国国产精品蜜臀av免费| 黄色怎么调成土黄色| 亚洲综合精品二区| 午夜激情福利司机影院| 91久久精品国产一区二区三区| 国产黄频视频在线观看| 免费人妻精品一区二区三区视频| 日本午夜av视频| 一边亲一边摸免费视频| 人人妻人人添人人爽欧美一区卜| 大片免费播放器 马上看| 久久精品久久精品一区二区三区| 亚洲精品色激情综合| 日韩中文字幕视频在线看片| 精品一区在线观看国产| 啦啦啦视频在线资源免费观看| 成人无遮挡网站| 亚洲国产色片| 色婷婷久久久亚洲欧美| av国产久精品久网站免费入址| 国产 精品1| 国产精品久久久久久精品古装| 亚洲图色成人| 精品人妻一区二区三区麻豆| h视频一区二区三区| freevideosex欧美| 观看av在线不卡| 国产精品国产三级专区第一集| 国产精品福利在线免费观看| 国产一区二区在线观看日韩| 一本—道久久a久久精品蜜桃钙片| 99久久中文字幕三级久久日本| 亚洲欧洲精品一区二区精品久久久 | 日本黄大片高清| 亚洲欧美日韩东京热| 亚洲欧美中文字幕日韩二区| 插阴视频在线观看视频| 国产成人免费无遮挡视频| 我要看日韩黄色一级片| 美女xxoo啪啪120秒动态图| 黄色怎么调成土黄色| 国产高清有码在线观看视频| 国产精品久久久久久av不卡| 狂野欧美激情性xxxx在线观看| 偷拍熟女少妇极品色| 在线观看免费高清a一片| 在线观看美女被高潮喷水网站| 国产免费视频播放在线视频| 嫩草影院新地址| 国产精品久久久久久av不卡| 亚洲av免费高清在线观看| 国产一级毛片在线| 久久狼人影院| 波野结衣二区三区在线| 亚洲国产精品一区二区三区在线| 国产成人精品无人区| 日本午夜av视频| 国产精品国产三级国产av玫瑰| av国产精品久久久久影院| 国产在视频线精品| 最近的中文字幕免费完整| 丰满饥渴人妻一区二区三| 乱人伦中国视频| 免费人成在线观看视频色| 久久久久国产网址| 黑丝袜美女国产一区| 你懂的网址亚洲精品在线观看| 免费观看在线日韩| 22中文网久久字幕| 自拍偷自拍亚洲精品老妇| 在线观看三级黄色| 天美传媒精品一区二区| 在线 av 中文字幕| 欧美成人午夜免费资源| 蜜桃在线观看..| 天堂中文最新版在线下载| 一区在线观看完整版| 一级毛片电影观看| 国产成人免费无遮挡视频| 熟女人妻精品中文字幕| 高清在线视频一区二区三区| 久热这里只有精品99| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 国国产精品蜜臀av免费| 一本久久精品| 亚洲国产欧美日韩在线播放 | 欧美+日韩+精品| 国产成人精品无人区| 最新中文字幕久久久久| 午夜激情久久久久久久| 国产成人a∨麻豆精品| 乱系列少妇在线播放| 尾随美女入室| 婷婷色麻豆天堂久久| 99久久中文字幕三级久久日本| 美女xxoo啪啪120秒动态图| 亚洲精品日本国产第一区| 精品亚洲乱码少妇综合久久| 欧美日本中文国产一区发布| 午夜日本视频在线| 日韩中文字幕视频在线看片| 黄色毛片三级朝国网站 | 日韩精品免费视频一区二区三区 | 国产色婷婷99| 麻豆成人av视频| 自拍偷自拍亚洲精品老妇| 久久久国产一区二区| 日本av手机在线免费观看| 国产成人aa在线观看| 在线观看人妻少妇| 国产一区二区三区综合在线观看 | 日本欧美视频一区| 高清视频免费观看一区二区| 日本黄大片高清| 丰满人妻一区二区三区视频av| 免费观看无遮挡的男女| 香蕉精品网在线| 九草在线视频观看| 你懂的网址亚洲精品在线观看| 精品国产一区二区久久| 9色porny在线观看| 欧美日韩av久久| 国产高清三级在线| 国产精品一区二区三区四区免费观看| 国产精品偷伦视频观看了| 欧美国产精品一级二级三级 | 国产亚洲欧美精品永久| 人妻人人澡人人爽人人| 久久久久久人妻| 日本黄色日本黄色录像| 中文欧美无线码| 国产精品三级大全| a 毛片基地| 老司机亚洲免费影院| 91成人精品电影| 国产有黄有色有爽视频| 菩萨蛮人人尽说江南好唐韦庄| 大又大粗又爽又黄少妇毛片口| 欧美日韩亚洲高清精品| 亚洲精品中文字幕在线视频 | 嘟嘟电影网在线观看| 蜜桃在线观看..| freevideosex欧美| 国产成人精品婷婷| 国产美女午夜福利| 日日啪夜夜爽| 欧美日韩综合久久久久久| 免费播放大片免费观看视频在线观看| 六月丁香七月| 香蕉精品网在线| 亚洲无线观看免费| 成人毛片a级毛片在线播放| 丰满人妻一区二区三区视频av| 精品少妇内射三级| 超碰97精品在线观看| 另类亚洲欧美激情| 高清黄色对白视频在线免费看 | 久久97久久精品| 精品人妻熟女av久视频| 国产色爽女视频免费观看| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 国产在视频线精品| videos熟女内射| 九九在线视频观看精品| 亚洲国产精品专区欧美| 一本久久精品| 免费黄频网站在线观看国产| 99精国产麻豆久久婷婷| 中国三级夫妇交换| 最近手机中文字幕大全| 欧美精品高潮呻吟av久久| 亚洲欧美一区二区三区黑人 | 特大巨黑吊av在线直播| 亚洲在久久综合| 国产精品成人在线| 日本爱情动作片www.在线观看| 极品教师在线视频| 亚洲av二区三区四区| 日本vs欧美在线观看视频 | 亚洲人成网站在线播| 80岁老熟妇乱子伦牲交| 91久久精品电影网| 一区二区三区免费毛片| 亚洲av成人精品一区久久| 美女脱内裤让男人舔精品视频| 蜜臀久久99精品久久宅男| 亚洲欧洲精品一区二区精品久久久 | 国产精品女同一区二区软件| 日本黄色片子视频| 一个人看视频在线观看www免费| 精品一区二区免费观看| 亚洲欧美一区二区三区国产| 蜜桃在线观看..| 少妇人妻一区二区三区视频| 老司机亚洲免费影院| 观看av在线不卡| 欧美日韩av久久| 老司机影院毛片| 日韩制服骚丝袜av| 国产精品嫩草影院av在线观看| 久久久a久久爽久久v久久| 高清黄色对白视频在线免费看 | 女性被躁到高潮视频| 美女中出高潮动态图| 永久免费av网站大全| 国产视频首页在线观看| 少妇精品久久久久久久| av.在线天堂| 国产高清国产精品国产三级| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 久久久久视频综合| 国产精品99久久99久久久不卡 | 99久久中文字幕三级久久日本| 激情五月婷婷亚洲| av天堂久久9| 日日爽夜夜爽网站| 91精品伊人久久大香线蕉| 能在线免费看毛片的网站| 久久精品国产鲁丝片午夜精品| 一个人看视频在线观看www免费| 观看av在线不卡| 精品久久久精品久久久| 在线播放无遮挡| 五月玫瑰六月丁香| 日韩一区二区三区影片| 99re6热这里在线精品视频| 又大又黄又爽视频免费| 亚洲综合精品二区| 国产精品麻豆人妻色哟哟久久| 国产免费一级a男人的天堂| 亚洲av电影在线观看一区二区三区| 国产欧美日韩一区二区三区在线 | 亚洲精品国产av成人精品| 久热这里只有精品99| 日韩不卡一区二区三区视频在线| 下体分泌物呈黄色| 色5月婷婷丁香| 精品一区二区免费观看| 在线 av 中文字幕| 人人妻人人爽人人添夜夜欢视频 | 男女免费视频国产| a级毛片免费高清观看在线播放| 中文字幕免费在线视频6| 最近中文字幕2019免费版| 黑人高潮一二区| 欧美3d第一页| 国产免费一级a男人的天堂| 久久午夜福利片| 久久狼人影院| 在线观看三级黄色| 18禁动态无遮挡网站| 久久久亚洲精品成人影院| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看| 午夜激情久久久久久久| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 色婷婷久久久亚洲欧美| 成年人免费黄色播放视频 | 黑人高潮一二区| 97精品久久久久久久久久精品| 久久人妻熟女aⅴ| 久久久久久久精品精品| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久久亚洲| 亚洲人与动物交配视频| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 91精品国产九色| 熟女电影av网| av在线播放精品| 黄色配什么色好看| 高清av免费在线| 久热这里只有精品99| 成人国产av品久久久| 在线观看www视频免费| 免费观看在线日韩| 久久6这里有精品| 午夜免费男女啪啪视频观看| 欧美另类一区| 又黄又爽又刺激的免费视频.| 少妇人妻一区二区三区视频| 黄色视频在线播放观看不卡| 日韩一本色道免费dvd| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜| 久久99热这里只频精品6学生|