費(fèi)選文 張?zhí)K偉 孟令英
[摘要] 目的 研究熊果酸對(duì)慢性粒細(xì)胞白血病細(xì)胞株K562的凋亡及其過程中活性氧自由基的作用。 方法 不同濃度UA處理后用顯微鏡觀察K562細(xì)胞的形態(tài)學(xué)變化;用Annexin V/PI雙染色法檢測凋亡;用DCFH-DA法檢測活性氧自由基的水平。 結(jié)果 20μmol/L濃度組可見細(xì)胞變形、壞死,40μmol/L濃度組可見細(xì)胞變形、核固縮、核碎裂和胞膜突起等現(xiàn)象。10、20、40μmol/L作用48h后K562細(xì)胞凋亡呈劑量依賴關(guān)系,凋亡率分別為21.66%、40.55%、70.21%,隨著UA濃度的增高細(xì)胞凋亡率也增高,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01)。熊果酸能顯著增高K562細(xì)胞內(nèi)的活性氧水平,且活性氧水平隨著熊果酸的濃度增加而升高。平均熒光強(qiáng)度由48.96升至78.23,差異具有統(tǒng)計(jì)學(xué)意義(P<0.01)。 結(jié)論 熊果酸可誘導(dǎo)慢性粒細(xì)胞白血病凋亡,且活性氧自由基的水平在凋亡誘導(dǎo)過程中起了重要作用。
[關(guān)鍵詞] 熊果酸;慢性粒細(xì)胞白血??;凋亡;活性氧自由基
[中圖分類號(hào)] R733.72 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 2095-0616(2015)15-27-04
[Abstract] Objective To study the effect of UA on apoptosis of ROS cell line K562 and its process. Methods Different concentrations of UA treatment after microscope was used to observe the morphological changes of K562 cells; annexin V/PI double staining method for the detection of apoptosis; variations method was used to detect the reactive oxygen species (ROS) level. Results In the 20μmol/L concentration group, the deformation and necrosis of the cells were found, and the deformation of the cells was 40μmol/L. 10, 20, 40μmol/L for 48h after apoptosis of K562 cells was dose dependent, the apoptosis rate was 21.66%, 40.55%, 70.21%, with UA concentration increased cell apoptosis rate increased. The difference is statistically significant (P<0.01). UA can significantly increase the level of reactive oxygen species in K562 cells, and the level of reactive oxygen species increases with the increase of UA concentration. The average fluorescence intensity was 48.96 to 78.23, and the difference was statistically significant (P<0.01). Conclusion UA can induce the apoptosis of chronic myeloid leukemia, and the level of reactive oxygen species plays an important role in the process of apoptosis induction.
[Key words] UA; Chronic myeloid leukemia; Apoptosis; Reactive oxygen species
熊果酸(UA)屬于五環(huán)三萜類化合物,廣泛分布于自然界中[1-5]。UA對(duì)多種致癌和促癌物質(zhì)均有不同程度的抵抗作用,并且能夠抑制多種實(shí)體腫瘤細(xì)胞的生長[1-5]。Ning等[6](2012年)探討了來源于髓系的人白血病細(xì)胞U937中由UA誘導(dǎo)的細(xì)胞凋亡過程,結(jié)果表明,PKB失活和JNK活化在UA引起的細(xì)胞凋亡中發(fā)揮著重要的作用。活性氧自由基(ROS),包括H2O2和超氧化物自由基,引起細(xì)胞的氧化應(yīng)激,這正是內(nèi)源性凋亡途徑的啟動(dòng)因素,如Azhar等[7](2011年)發(fā)現(xiàn),在人白血病細(xì)胞株THP-1中,化合物誘導(dǎo)的凋亡與ROS的生成及JNK激活有關(guān),用NAC抑制ROS的產(chǎn)生可以抑制JNK信號(hào)激活及凋亡,這說明正是ROS水平的增高引起上述過程。
本文通過UA誘導(dǎo)K562細(xì)胞凋亡,針對(duì)性檢測ROS這一關(guān)鍵分子靶點(diǎn),探討ROS在UA誘導(dǎo)K562細(xì)胞凋亡過程中的作用,為UA臨床應(yīng)用積累有價(jià)值的參考資料。
1 材料與方法
1.1 材料
慢性粒細(xì)胞白血病細(xì)胞株K562以及熊果酸由汕頭大學(xué)醫(yī)學(xué)院中心實(shí)驗(yàn)室惠贈(zèng);RPMI-1640購自GIBCO;Annexin V/PI、DCFH-DA熒光染料購自Sigma公司。
1.2 細(xì)胞培養(yǎng)與分組
K562細(xì)胞在含10%胎牛血清和100U/L青霉素以及100U/L鏈霉素的RPMI-1640培養(yǎng)基里懸浮培養(yǎng)。取1×106個(gè)/mL濃度的細(xì)胞分四組,分別以0、10、20、40μmol/L UA作用48h。endprint
1.3 細(xì)胞形態(tài)觀察
取對(duì)數(shù)生長期各組K562細(xì)胞,接種于培養(yǎng)瓶,48h后分別加入10、20、40μmol/L濃度的UA,處理48h后在倒置顯微鏡下觀察細(xì)胞形態(tài)變化并拍攝記錄細(xì)胞形態(tài)。
1.4 細(xì)胞凋亡檢測
收集四組處理后的細(xì)胞,1500rpm離心5min,棄上清,用PBS重懸細(xì)胞并計(jì)數(shù)。取1×106個(gè)重懸的細(xì)胞,1500rpm離心5min后棄上清,加入195μL Annexin V-FITC結(jié)合液輕輕重懸細(xì)胞。再加入5μL Annexin V-FITC,輕輕混勻。室溫(20~25℃)避光孵育10min。1500rpm離心5min,棄上清,加入190μL Annexin V-FITC結(jié)合液輕輕重懸細(xì)胞。加入10μL碘化丙啶染色液,輕輕混勻,冰浴避光放置。流式細(xì)胞儀檢測。
1.5 細(xì)胞內(nèi)ROS水平檢測
DCFH-DA自由擴(kuò)散進(jìn)入細(xì)胞后被酯酶催化變成DCFH,在活性氧存在的情況下被氧化成DCF,后者的熒光強(qiáng)度與細(xì)胞內(nèi)活性氧水平成正比。收集處理后1×106個(gè)/mL細(xì)胞懸液,PBS洗滌后,加入1mL Hanks液重懸,加入2.5mmol/L的CDFH-DA液40μL,使終濃度為100μmol/L,在37℃下避光孵育1h,PBS洗滌后上流式細(xì)胞儀檢測。
1.6 統(tǒng)計(jì)學(xué)處理
使用統(tǒng)計(jì)學(xué)軟件SPSS19.0軟件進(jìn)行數(shù)據(jù)分析,熊果酸誘導(dǎo)凋亡及ROS水平試驗(yàn)檢測數(shù)據(jù)用()表示,兩兩比較使用t檢驗(yàn),多組間比較采用方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 細(xì)胞形態(tài)變化
10μmol/L濃度組整個(gè)時(shí)間段細(xì)胞形態(tài)變化不明顯;20μmol/L濃度組可見少許細(xì)胞變形、壞死,隨著時(shí)間的延長變形、壞死的細(xì)胞有增多趨勢;40μmol/L濃度組可見細(xì)胞變形、核固縮、核碎裂和胞膜突起等現(xiàn)象。見圖1。
2.2 UA誘導(dǎo)K562細(xì)胞凋亡
不同濃度組的UA作用K562細(xì)胞后,應(yīng)用流式細(xì)胞儀檢測各組的細(xì)胞凋亡率。結(jié)果表明,UA作用K562細(xì)胞48h后,隨著UA濃度的增高細(xì)胞凋亡率也增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。見表1。
2.3 UA降低K562細(xì)胞內(nèi)ROS水平
不同濃度組的UA作用K562細(xì)胞后,應(yīng)用流式細(xì)胞儀檢測各組的細(xì)胞內(nèi)ROS水平。結(jié)果表明,UA作用K562細(xì)胞48h后,隨著UA濃度的增高細(xì)胞內(nèi)ROS水平呈升高趨勢,差異有統(tǒng)計(jì)學(xué)意義(P<0.01)。見表2。
3 討論
慢性粒細(xì)胞白血病是一種侵襲血液及骨髓的血液系統(tǒng)惡性腫瘤,它以產(chǎn)生大量的不成熟白細(xì)胞為主要特點(diǎn),這些不成熟的白細(xì)胞在骨髓內(nèi)聚集,抑制正常的骨髓造血功能,并且通過血液循環(huán)在全身擴(kuò)散,導(dǎo)致機(jī)體出現(xiàn)貧血、出血傾向、感染及器官浸潤等癥狀[8-16]。
細(xì)胞凋亡是維持機(jī)體細(xì)胞數(shù)量動(dòng)態(tài)平衡的主要方式,凋亡機(jī)制的紊亂是腫瘤發(fā)生的重要原因,誘導(dǎo)腫瘤細(xì)胞凋亡是抑制腫瘤的重要手段,同時(shí)也是臨床上腫瘤治療研究的熱點(diǎn)之一。
本研究結(jié)果顯示,UA 10μmol/L濃度組整個(gè)時(shí)間段細(xì)胞形態(tài)變化不明顯;20μmol/L濃度組可見少許細(xì)胞變形、壞死,隨著時(shí)間的延長變形、壞死的細(xì)胞有增多趨勢;40μmol/L濃度組可見細(xì)胞變形、核固縮、核碎裂和胞膜突起等現(xiàn)象。UA作用K562細(xì)胞48h后,隨著UA濃度的增高細(xì)胞凋亡率也增高,差別具有統(tǒng)計(jì)學(xué)意義(P<0.01)。
UA是一種新近發(fā)現(xiàn)的治療白血病中藥,是五環(huán)三萜類化合物中的一個(gè)代表性藥物。有研究表明UA可以通過誘導(dǎo)白血病細(xì)胞凋亡來實(shí)現(xiàn)殺傷白血病細(xì)胞的目的,在誘導(dǎo)凋亡的過程中需要細(xì)胞內(nèi)的氧自由基的參與[17]。五環(huán)三萜類化合物的抗腫瘤作用機(jī)理非常復(fù)雜,研究者們試圖從不同的方向解析其機(jī)制,很難對(duì)此類各種不同的化合物效應(yīng)歸納出一個(gè)通用的作用模式,但是近年來的發(fā)現(xiàn)逐漸形成一個(gè)統(tǒng)一的主題:它們啟動(dòng)了細(xì)胞內(nèi)源和外源的兩種凋亡途徑,誘導(dǎo)細(xì)胞凋亡。
外源性凋亡途徑是由細(xì)胞表面的死亡受體的激活所啟動(dòng)的,在多種癌細(xì)胞中五環(huán)三萜類化合物celastrol南蛇藤素增加腫瘤壞死因子(TNF)死亡受體家族的死亡受體4(DR4)的表達(dá)[18]。內(nèi)源性凋亡途徑又稱作線粒體凋亡途徑,研究表明,在伊馬替尼耐藥細(xì)胞株KBM5中CDDO-Me主要是通過線粒體凋亡途徑誘導(dǎo)細(xì)胞調(diào)亡,低濃度的CDDO-Me抑制線粒體ROS的消耗,而細(xì)胞毒性效應(yīng)則是伴隨迅速有選擇性地使GSH下降,ROS升高。
ROS是真核生物有氧呼吸的產(chǎn)物包括H2O2和超氧化物自由基等,可以引起細(xì)胞的氧化應(yīng)激。ROS具有反應(yīng)活性高、能快速與胞內(nèi)大分子物質(zhì)起反應(yīng)的特點(diǎn),可以引起細(xì)胞內(nèi)結(jié)構(gòu)的病理性損傷。然而,細(xì)胞內(nèi)存在抗氧化酶類,拮抗這類物質(zhì)的氧化損傷,清除細(xì)胞正常代謝過程中產(chǎn)生的ROS物質(zhì),使得細(xì)胞內(nèi)的ROS的產(chǎn)生和清除處于一個(gè)動(dòng)態(tài)平衡。研究表明ROS可以介導(dǎo)細(xì)胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo),激活相關(guān)的轉(zhuǎn)錄因子,從而引起相關(guān)的生物基因表達(dá),起到調(diào)節(jié)細(xì)胞生長、增殖和凋亡的生物學(xué)功能。當(dāng)細(xì)胞內(nèi)ROS的動(dòng)態(tài)平衡被破壞時(shí),細(xì)胞就會(huì)受到氧化損傷,甚至死亡[19]。大量的研究證實(shí)ROS是細(xì)胞凋亡的重要信號(hào)通路之一[20]。本研究結(jié)果顯示,10μmol/L的UA就可使K562細(xì)胞內(nèi)的ROS水平顯著升高,并且隨著ROS濃度的增高ROS水平也增高,與對(duì)照組相比具有統(tǒng)計(jì)學(xué)意義,并可能由此激活相對(duì)應(yīng)的效應(yīng)機(jī)制從而引發(fā)細(xì)胞凋亡。因此,刺激細(xì)胞內(nèi)產(chǎn)生ROS從而誘導(dǎo)細(xì)胞凋亡可能是UA誘導(dǎo)K562細(xì)胞凋亡的重要機(jī)制。
綜上所述,ROS可以誘導(dǎo)K562細(xì)胞產(chǎn)生凋亡。其可能的凋亡信號(hào)通路為:UA作用于K562細(xì)胞引起細(xì)胞內(nèi)的ROS水平升高,繼而產(chǎn)生細(xì)胞的氧化損傷,激活相關(guān)的凋亡機(jī)制從而誘導(dǎo)細(xì)胞產(chǎn)生凋亡。
[參考文獻(xiàn)]endprint
[1] Yuliang W Zejian W,Hanlin S,et al.The hypolipidemic effect of artesunate and ursolic acid in rats[J].Pak J Pharm Sci,2015,28(3):871-874.
[2] Gurovic MS,Lanza AM,Adánez MC,et al.Cytotoxic effects induced by combination of heliantriol B2 and dequalinium against human leukemic cell lines[J].Phytother Res,2011,25(4):603-610.
[3] Sung B,Park B,Yadav VR,et al.Celastrol,a triterpene,enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors[J].J Biol Chem,2010,285(15):11498-11507.
[4] Samudio I,Kurinna S,Ruvolo P,et al.Inhibition of mitochondrial metabolism by methyl-2-cyano-3,12-dioxooleana-1,9-diene-28-oate induces apoptotic or autophagic cell death in chronic myeloid leukemia cells[J].Mol Cancer Ther,2008,7(5):1130-1139.
[5] Mun-OK,Dong-OM,Jin MJ,et al.Agaricus blazei extract induces apoptosis through ROS-dependent JNK activation involving the mitochondrial pathway and suppression of constitutive NF-κB in THP-1 Cells[J].Evid Based Complement Alternat Med,2011,20:176-187.
[6] Ning G,Senping C,Amit B,et al.Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway[J].BJP,2012,165:1813-1826.
[7] Azhar RH,Shahab U,Rong B,et al.Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines[J].PLoS One,2011,6(9):24703.
[8] Gao N,Rahmani M,Dent P,et al.2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Akt-dependent process[J]Oncogene,2005,24(23):3797-3809.
[9] Bang HS,Seo DY,Chung YM,et al.Corrigendum to:Ursolic Acid-Induced Elevation of Serum Irisin Augments Muscle Strength During Resistance Training in Men[J].Res Pharm Sci,2014,9(1):11-22.
[10] Li R,Wang X,Zhang XH,et al.Ursolic acid promotes apoptosis of SGC-7901 gastric cancer cells through ROCK/PTEN mediated mitochondrial translocation of cofilin-1[J].Asian Pac J Cancer Prev,2014,15(22):9593-9597.
[11] Swamy SM,Huat BT.Intracellular glutathione depletion and reactive oxygen species generation are important in alpha-hederin-induced apoptosis of P388 cells[J].Mol Cell Biochem,2003,245(1):127-139.
[12] Zhang T,Su J,Guo B,et al.Ursolic acid alleviates early brain injury after experimental subarachnoid hemorrhage by suppressing TLR4-mediated inflammatory pathway[J].Int Immunopharmacol,2014,23(2):585-591.endprint
[13] Bang HS,Seo DY,Chung YM,et al.Ursolic Acid-induced elevation of serum irisin augments muscle strength during resistance training in men.[J].Korean J Physiol Pharmacol,2014,18(5):441-446.
[14] Sandjo LP,F(xiàn)ru CG,Kuete V,et al.Elatumic acid:a new ursolic acid congener from Omphalocarpum elatum Miers (Sapotaceae)[J].Z Naturforsch C,2014,69(8):276-282.
[15] Mahmoudi M,Rabe SZ,Balali MM,et al.Ursolic acid induced apoptotic cell death following activation of caspases in isolated human melanoma cells[J].Cell Biol Int,2015,39(2):230-236.
[16] Chen HX,Xu XG,Han YY,et al.Plasma concentration and pharmacokinetics of ursolic acid carried in self-microemulsifying drug delivery system in rats studied by UPLC-MS/MS[J].Acta Pharmaceutica Sinica,2014,49(6):938-941.
[17] Liu B,Liu Y,Yang G,et al.Ursolic acid induces neural regeneration after sciatic nerve injury[J].Neural Regen Res,2013,8(27):2510-2519.
[18] Peng H,Cao F,Wang J,et al.Regulation of ursolic acid on TNF-alpha and collagen in silicotic rats[J]. Journal of Hygiene Research,2014,43(4):594-607
[19] Chen J,F(xiàn)u H,Wang Z,et al.A new synthetic ursolic acid derivative IUA with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway[J].Cell Physiol Biochem,2014,34(3):724-733.
[20] Yang Y,Zhao Z,Liu Y,et al.Suppression of oxidative stress and improvement of liver functions in mice by ursolic acid via LKB1-AMP-activated protein kinase signaling.[J].J Gastroenterol Hepatol,2015,30(3):609-618.
(收稿日期:2015-05-25)endprint