• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*

    2021-11-23 07:32:26YongChaoJiang姜永超GuiXiaLi李桂霞GuiFengYu于桂鳳JuanWang王娟ShuLaiHuang黃樹來andGuoLiangXu徐國亮
    Chinese Physics B 2021年11期
    關(guān)鍵詞:王娟徐國

    Yong-Chao Jiang(姜永超) Gui-Xia Li(李桂霞) Gui-Feng Yu(于桂鳳) Juan Wang(王娟)Shu-Lai Huang(黃樹來) and Guo-Liang Xu(徐國亮)

    1College of Science and Information,Qingdao Agricultural University,Qingdao 266109,China

    2School of Physics,Henan Normal University,Xinxiang 453007,China

    Keywords: supramolecular organic framework, functionalization, modelling and simulation, carbon capture and storage

    1. Introduction

    The rapid climate change caused by global warming has been a serious issue due to the extensive CO2emission into the atmosphere by anthropogenic activities such as industrial production, power plants emission, and vehicle emissions.[1]The development of efficient strategies is more challenging,and becomes an urgent task to mitigate the global warming and to continue to use fossil fuels. Under such a background,carbon capture and storage(CCS)technologies play a critical process to tackle this urgent globally environmental problem by capture and separation of CO2.[2]In order to obtain high efficiency of CCS,it is highly desirable that the suitable materials serving as effective adsorbent is utilized for CO2capture and separation.[3]Supramolecular organic frameworks with intrinsic porosity, based on the assembly of calixarenes,[4]bisurea,[5]cucurbiturils,[6]and more recently pillarenes,[7,8]have emerged as a excellent solid adsorbent materials for CO2adsorption and separation. Among them, pillar[n]arene has been exploited as an excellent candidate for CO2capture and separation because of high thermal stability, favourable pore characteristics and good gas sorption properties.

    As a desired gas adsorption material, pillar[n]arene has been experiencing comprehensive and substantial studies on its structures,properties,and syntheses. Ogoshiet al.adopted per-hydroxylated pillar[6]arene to capture gas and vapour,and found 1D channels of the per-hydroxylated pillar[6]arene can adsorb various gases and organic vapours due to their pillarshaped structures with suitable pore volume of 0.098 cm3/g.[9]Tanet al.investigated pillar[6]arene for selective sorption of hydrocarbons,and found that P5-SOF has good selectively of C2H2over H2(~2969/1), C2H6(~295/1), N2(~60/1),CH4(~41/1), and C2H4(~20/1) and exhibits high selectivity for other gas mixtures under the equimolar gas mixture condition at 1.0 bar.[10]Tanet al.employed pillar[5]arene and pillar[6]arene to realize high selective CO2adsorption capacity for CO2/H2mixtures, reaching up to 3733/1 for 30/70 mixture of CO2/H2at 298 K via strong O-H···O,C-H···O, C-H···π,π···πinteractions.[11]Therefore, pillar[n]arene might be deemed to possess outstanding gas capture performance with strong gas-framework interaction. So far as we know, the effects of functionalization, the improvement mechanism on the CO2adsorption and selectivity over CO2of N2mixture gas in functionalized pillar[6]arenes materials have not been distinctly explained.

    In this work,we adopt azo group(N=N)to decorate pillar[6]arene for investigating the adsorption and separation performance of CO2/N2mixture by density functional theory(DFT) and grand canonical Monte-Carlo (GCMC). Firstly,we optimize the geometry structure of functionalized pillar[6]arenes and calculate their atomic partial charge as the basic input parameters in GCMC simulation by DFT;secondly,the functionalized pillar[6]arenes pore characteristics of the azo-based pillar[6]arenes are showed; thirdly, adsorption capacity and separation of CO2/N2mixture is calculated;finally,the isosteric heats, interaction energy, and adsorption energy are analyzed to determine the effects of azo-functionalization on the adsorption strength and characteristics. Our results highlight the potential use of the azo-based pillar[6]arenes in CCS for high adsorption capacity and high selectivity of CO2over N2.

    2. Model and methodology

    Pillar[6]arene was adopted as the initial unit to form the adsorbing material for separating CO2from CO2/N2mixture. Firstly, we assumed that the incorporation of azo group into the macrocyclic backbone of pillar[6]arene: pillar[6]arene N2, which have two decorated macrocyclic backbones; pillar[6]arene N4, which have four decorated macrocyclic backbones, as shown in Fig. 1. After building these three structures, optimizing structure and analyzing atomic charge were carried out by means of DFT. The B3LYP/6-31+g(d,p) basis was set in Gaussian 09 package with the highly computational effciiency and suffciient accuracy.[12]The self-consistent feild (SCF) was computed with a convergence threshold of 10?6a.u. on total energy. Next,their functionalized pillar[6]arene frameworks were composed by four well-ordered optimized units. Atomic partial charges(ChelpG) of functionalized pillar[6]arenes were used as important information parameters in GCMC simulations to describe the electrostatic interaction by Coulomb law.

    CO2and N2molecules were regarded as rigid linear molecules, and the three-site molecule was used for CO2and N2molecules.The LJ potential parameters for both CO2and N2molecules were obtained from the TraPPE model,which were reported by Potoff and Siepmann.[13]Dreiding force field[14]was applied to acquire atomic Lennard-Jones 12-6 potential (ULJ) parameters. This force field has been successfully appropriated for a wealth of adsorbed materials,such as CNnsheets,[15]metal organic frameworks(MOFs),[16]and boron nitride nanotube.[17]GCMC simulations were employed to calculate the uptake of single-component CO2and N2,and the selectivity of CO2over N2in their binary mixture with different ratio in functionalized pillar[6]arene. Lennard-Jones 12-6 potential was used to describe the van der Waals interaction,which is calculated as follows:

    where the charge on particlesiandjareqiandqj, respectively,in units ofe. The dielectric constant at vacuum condition is represented byε0with the value of 8.85×10?12F/m.For the GCMC simulations,100000 cycles were used in which the first 50000 cycles were used for initialization,and the last 50000 cycles were performed for taking ensemble averages.All these GCMC simulations were implemented in the RASPA simulation code.[18]

    Fig.1. Initial configurations of the azo-based pillar[6]arenes.

    3. Results and discussion

    3.1. Pore topology and morphology

    Pore structure of frameworks is a decisive factor for gas adsorption and separation. We use Poreblazer v3.0[19]to evaluate the available pore volume (VP), pore limiting diameter(DL), maximum pore diameter(DM), and accessible surface area. The porosity (Φ) is estimated byVP/VTotal, whereVTotalis the total volume of the frameworks. Table 1 lists the pore structure of the three functionalized pillar[6]arene evaluated,which were reported by Sarkisov[20]and Duren[21]methods. After decorating, the density increase to 1.184 g·cm?3from the original 0.979 g·cm?3, and moreNatoms are introduced into frameworks leading to the greater density. TheVpof the azo-based pillar[6]arene fluctuate from 0.32 cm3/g to 0.43 cm3/g, which are lower than those of the unmodified pillar[6]arene. The accessible surface areas of the azo-based pillar[6]arene decrease from 1073.36 m2·g?1to 880.54 m2·g?1with the increasing of the azo group number,and these values are larger than those of traditional adsorbent zeolite 13X (591 m2·g?1),[22]a part of metal?organic materials (200-300 m2·g?1),[23]similar to some 2D covalent organic frameworks (688-1197 m2·g?1),[24]but lower than those of metal organic frameworks with high porosity(~6000 m2·g?1).[25]The porosity of three azo-based pillar[6]arenes is kept about 30%.In contrast with pillar[6]arene,azo-functionalization has little effect onDLandDM.

    Table 1. Physical characteristics of the azo-based pillar[6]arenes(gas probe molecule=He with diameter of 2.58 ?A).

    Fig.2. The pore size distributions of the azo-based pillar[6]arenes.

    To gain a deeper insight into the pore morphological structures, the pore size distributions (PSDs) are showed in Fig. 2. All PSDs present similar continuous distribution, and all pore sizes are smaller than 7 ?A, which are the typical ultramicropore structures(<7.00 ?A)in accordance with the IUPAC classification.[26]The main pore distributions concentrate on 5-6 ?A.The PSDs findings demonstrate the unmodified pillar[6]arene exist some pore,which is smaller than 2 ?A.Based on the previous work, pores with sizes of 5-7 ?A or even below (also referred to as ultramicropores) should be presented because they have a larger adsorption potential for CO2as compared to larger supermicropores (7-20 ?A) or mesopores(>2 nm)[1]at the low-pressure. Therefore, three azo-based pillar[6]arenes provide favorable environment for CO2adsorption and separation.

    3.2. Single-component adsorption of CO2/N2

    Single-component adsorption capacity is the primary standard to evaluate the adsorbent performance. The absolute adsorption isotherms of the single-component CO2adsorption in three azo-based pillar[6]arenes at 298 K are presented in Fig. 3(a). The absolute CO2adsorption capacities in the azo-based pillar[6]arenes are signifciantly higher than that of the unmodifeid pillar[6]arenes. At 1 bar, the adsorption capacity of three azo-based pillar[6]arenes is 0.66 mmol/g for pillar[6]arene, 0.75 mmol/g for pillar[6]arene N2, and 1.36 mmol/g for pillar[6]arene N4, respectively. The results show that azo-functionalization can improve the adsorption capacity of pillar[6]arene. In particular, pillar[6]arene N4 presents larger adsorption capacity, which is larger than those of typical supramolecular organic framework T-SOF-1 (~1.07 mmol/g),[27]TPP (0.94 mmol/g),[4]DMP5-SOF(0.05 mmol/g),[28]SMOF-SIFSIX-1a (1.05 mmol/g)[29]and B2 (~0.67 mmol/g),[4]and MgAl(Cl) (~0.136),[28]but smaller than nanoporous carbons(2.14-9.62 mmol/g),[30]and similar to azo based COF-TpAzo (1.59 mmol/g) at the same conditions. The increased CO2uptake performances are attributed to the introduction of azo groups, which add strong adsorption sites, change pore topology, and strengthen interactions with CO2and N2molecules. Introducing azo groups leads to the increasing of the number of N atoms in the frameworks.That is,an azo group(N=N)with large electronegativity increases interactions with CO2molecules of strong electric quadrupole moment.

    Figure 3(b) shows the absolute adsorption isotherms of N2in the azo-based pillar[6]arenes at 298 K. Pillar[6]arene N2 with two decorated macrocyclic backbones has a slight impact on adsorption capacity of N2. The adsorption capacity of N2has improvement in pillar[6]arene N4 frameworks. At 1 bar,the pillar[6]arene N4 presents the highest adsorption capacity(0.053 mmol/g),which is far less than most of traditional adsorbent materials, such as, 13X zeolites,[31]similar to azo based COF-TpAzo (~0.051 mmol/g), and larger than a family of azo-bridged covalent organic polymers(azo-COPs)(0.03-0.05 mmol/g)at the same conditions.For the temperature effect, the gas adsorption capacity decreases along with the increase of temperature as a result of the exothermic nature of the adsorption process. For instance, at the pressures above 1 bar,the total CO2uptakes in azo-based pillar[6]arenes are within the range of 0.66-1.36 and 1.12-1.66 mmol/g at 298 and 273 K, respectively (see Figs. 3(a)and 3(c)).

    Overall, the adsorption of CO2/N2in the azo-based pillar[6]arenes exhibits type-I Langmuir adsorption behavior,which is a typical characteristic of microporous adsorption.[32]The azo groups signifciantly enhance the adsorption capacities of CO2. In particular, the results show that the pillar[6]arene N4 processes the better adsorption capacity of CO2and weaker adsorption capacity of N2, which compare with congeneric supramolecular frameworks.

    Fig.3. (a)Absolute adsorption isotherms of CO2 at 298 K.(b)N2 in the azobased pillar[6]arenes at 298 K.(c)Absolute adsorption isotherms of CO2 at 273 K.

    3.3. Selectivity of CO2 over N2 with equal molar fraction

    The selectivity of CO2over N2is the important criterion to screen superior adsorbent materials to separate CO2from the CO2/N2mixtures. The selectivity of CO2over N2is defined as

    whereSis the selectivity of CO2over N2,xCO2andxN2are the molar fractions of CO2and N2in their adsorbed phase, andyCO2andyN2are the corresponding molar fractions of CO2and N2in their bulk gas phases. The selectivity of CO2over N2with equal molar fraction in the azo-based pillar[6]arenes at 298 K are showed in Fig.4(a).

    The selectivity of CO2over N2declines initially,and then flattens out to a constant value with the increase in pressure.At 298 K and 1 bar, the selectivity of CO2over N2decreases in the sequence of pillar[6]arene N4(~116)>pillar[6]arene N2(~32)> pillar[6]arene (~27). Pillar[6]arene N4 exhibits the best selectivity, which is better than that of azo-UiO-66(~100),[33]azo-COP-X(X=1-3)(~65-130),[34]and traditional Zr-BFDC (~60),[35]and ZIF-8 (~4).[36]The results show that pillar[6]arene N4 have a distinct advantage over other adsorption materials. This is ascribed that the introducing azo groups (N=N) can provide the stronger attractive interactions between CO2and theframework thanthatof N2.CO2has stronger quadrupole moment (4.30×1026esu·cm2)and polarizability (2.91×1025cm3), while N2have weaker q ua d rupole mo m e nt (1.52×1026e su·c m2)an d p o l a rizab ili t y(1.74×1025cm3).[37]So, CO2has the stronger electrostatic interaction with frameworks than that of N2. In addition, the pore sizes focus on ultramicropores(<7 A?),which is the optimum size for separate CO2/N2mixtures.CO2has preferential adsorption behavior to flil the optimal adsorption sites,whereafter, N2has no void space to adsorb into frameworks due to smaller pore sizes.

    The separation of CO2from N2is an essential step in power plant (“post-combustion”) flue-gas purifciation. Flue gases typicallycontain 3%-15%CO2and morethan70%N2.[38]In ordertobe closertothe practicalproductionand life,CO2/N2mixture gases with 15:85 ratio are taken into account. Figure 4(b) shows the selectivities of CO2over N2in non-equimolar CO2/N2mixtures with ratios of 15:85. Overall,the selectivities of CO2over N2in non-equimolar CO2/N2mixtures show a similar trend to that in equimolar CO2/N2mixtures. And the sequence of selectivity in the azo-based pillar[6]arenes is pillar[6]arene N4(~132)>pillar[6]arene N2(~36)>pillar[6]arene (~28), which shows its sequence is not affected by molar fraction of CO2/N2mixture. Compared with azo decorated structures, pillar[6]arene N4 has superior selectivity of CO2than that of nanoporous azo-linked polymers(~25-38)[39]and some azo-COPs(~95-130)[40]at the same conditions. Moreover, the selectivity of CO2over N2in pillar[6]arene N4 is higher than that of traditional materials, such as, JLU-Liu46-47 (~50),[41]edge-functionalized nanoporous carbons(~3-130)at 298 K,[30]and ordered carbon nanotube arrays(3-65)at 303 K.[42]As a whole,the azobased pillar[6]arenes can provide a high single-component adsorption capacity and selectivity of CO2/N2,and thus exhibit a promising potential for CCS technology.

    Fig.4. Selectivity of CO2 over N2 in the azo-based pillar[6]arenes at 298 K with the different mixture ratios of CO2/N2,(a)50:50,(b)15:85.

    3.4. Mechanism of CO2/N2 adsorption and separation

    To deepen our understanding of intrinsic mechanisms of CO2/N2adsorption and separation in the azo-based pillar[6]arenes, isosteric heats (Qst), interaction analyses, the most stable adsorption confgiuration and the corresponding maximum adsorption energy are presented.

    TheQstis the critical parameter to illustrate the interaction strength between CO2/N2and frameworks.Qstis calculated by the Clausius-Clapeyron formula

    Fig.5. Isosteric heat of CO2 and N2 on the azo-based pillar[6]arenes at 298 K.

    To estimate intrinsic of the interaction between CO2/N2and frameworks in detail, Coulomb and van der Waals interactions of gas-framework in azo-based pillar[6]arenes are calculated in Fig. 6. The van der Waals interactions of CO2/N2-framework are relatively larger than the corresponding Coulomb interactions. The pillar[6]arene N4 shows the maximal van der Waals and Coulomb interactions, which is larger than pillar[6]arene N2 and pillar[6]arene for CO2/N2.For the CO2,the van der Waals interaction of CO2-framework in the pillar[6]arene is maximum (~16.11 kJ·mol?1), which accounts for 74.79% contributions of the total interactions.The results show that the van der Waals interaction plays a leading role forthe CO2adsorption capacity. The vander Waals interaction of CO2increase to~17.70kJ·mol?1for pillar[6]arene N2 andfor~18.55 kJ·mol?1pillar[6]areneN4 due to the N=N groups. The van der Waals and Coulomb interactions of N2are less than these of CO2. The Coulomb interaction between N2and framework is very small (~0.89-0.38 kJ·mol?1), which is attributed to the weak electric quadrupole moment of N2. The results reveal the nature mechanism of the difference between CO2and N2adsorption capacities.

    Fig. 6. Coulomb and van der Waals interactions of gas-framework in the azo-based pillar[6]arenes at 298 K. (a) and (c) Van der Waals interactions,(b)and(d)Coulomb interactions.

    Fig. 7. Stable adsorption configurations CO2 (a)-(c), and N2 (d)-(f) at different sites.

    To understand the interaction between CO2/N2and each part in the azo-based pillar[6]arene surface,the adsorption energy(Eads)is explored by DFT simulation.Eadsis obtained by the following equation:[44]Eads=Egas+surf?Egas?Esurf,(7)

    whereEgasis the energy of the gas molecule,Esurfis the energy of fragment in the azo-based pillar[6]arenes,andEgas+surfis the total energy of the gas molecule adsorbed on the fragment of azo-based pillar[6]arens. Based on the definition, a larger negative value represents the more stable adsorption.The macrocyclic backbone are cut off from the initial and azobased pillar[6]arenes to illustrate the effect of O and N atom on CO2/N2molecules. The most stable adsorption configuration of CO2in the fragment of initial pillar[6]arene is shown in Fig. 7(a), CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.166 eV. For the azobased pillar[6]arene,the most stable adsorption configuration of CO2in the fragment of azo-based pillar[6]arene is that CO2is adsorbed on the top of N atom in the N=N group, and the corresponding adsorption energy is?0.306 eV in Fig. 7(c).In addition, the CO2adsorbed on the top of O atom in the azo-based pillar[6]arene is calculated, and the adsorption energy is?0.265 eV in Fig.7(b). Comparing with initial framework, azo-functionalization increase the interaction between CO2and O atom in the frameworks,and the N atoms in N=N group provide most stable adsorption configuration of CO2.For N2molecule, the most stable adsorption configuration of N2in the fragment of initial pillar[6]arene is that CO2is adsorbed on the top of O atom, and the corresponding adsorption energy is?0.153 eV in Fig. 7(d). This value is smaller than that of the azo-based pillar[6]arene (?0.225 eV). CO2is adsorbed on the top of N atom in the N=N group, that is,the most stable adsorption configuration of N2in the fragment of azo-based pillar[6]arene,and the corresponding adsorption energy is?0.253 eV in Fig. 7(e). In short, the introduction of N=N groups has a more positive influence on CO2/N2for surface adsorption enhancement by inductive effect/direct interaction,especially for CO2.

    4. Conclusion

    The effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes have been investigated by DFT and GCMC simulations. Azo-based pillar[6]arene provide a favorable environment for the separation of CO2/N2by suitable pore sizes. The azo-based pillar[6]arene enhance the adsorption and separation capacity of CO2/N2. Adsorption capacity of CO2/N2is more significantly enhanced by azo-functionalization,and the more N=N group leads to the more adsorption capacity. The isosteric heat and adsorption energy show that azo-functionalization can effectively increase the interaction between CO2/N2and pillar[6]arene. The interaction analysis shows that azofunctionalization enhance the van der Waals and Coulomb interaction, and van der Waals interaction of gas is higher than the Coulomb interaction. This work highlights the effects of azo-functionalization on the adsorption and separation of CO2/N2in pillar[6]arenes, and provides an effective strategy for designing and screening adsorbent materials for carbon capture and separation.

    猜你喜歡
    王娟徐國
    Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
    The formation of adolescent performing culture in the chorus
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Electrostatic force of dust deposition originating from contact between particles and photovoltaic glass?
    貧血鑒別診斷中血液檢驗(yàn)的效果及作用分析
    健康之家(2021年19期)2021-05-23 09:10:44
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    追本溯源提升素養(yǎng)
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    国产老妇女一区| 五月天丁香电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲在线自拍视频| 五月天丁香电影| 搡老乐熟女国产| freevideosex欧美| 亚洲无线观看免费| 午夜精品国产一区二区电影 | 三级国产精品欧美在线观看| 99热这里只有是精品50| 欧美3d第一页| 午夜福利视频精品| 国产成年人精品一区二区| 成年女人看的毛片在线观看| 黄色欧美视频在线观看| 在线免费观看不下载黄p国产| 国产欧美另类精品又又久久亚洲欧美| 九九在线视频观看精品| 亚洲三级黄色毛片| 青春草国产在线视频| 啦啦啦中文免费视频观看日本| av国产免费在线观看| 国产精品一区二区在线观看99 | 日韩在线高清观看一区二区三区| 久久草成人影院| 一本久久精品| 97在线视频观看| 3wmmmm亚洲av在线观看| 国产有黄有色有爽视频| 欧美97在线视频| 美女高潮的动态| 97热精品久久久久久| 国产男人的电影天堂91| 日韩精品青青久久久久久| 精品少妇黑人巨大在线播放| 中文字幕免费在线视频6| av国产久精品久网站免费入址| 国产伦精品一区二区三区视频9| 亚洲av二区三区四区| 美女被艹到高潮喷水动态| 成人鲁丝片一二三区免费| 久久午夜福利片| 亚洲欧洲日产国产| 久久99精品国语久久久| 波野结衣二区三区在线| 亚洲三级黄色毛片| 国产精品伦人一区二区| 久久久久九九精品影院| 激情五月婷婷亚洲| 最新中文字幕久久久久| 人妻夜夜爽99麻豆av| 特级一级黄色大片| 亚洲天堂国产精品一区在线| 国产中年淑女户外野战色| 毛片一级片免费看久久久久| 麻豆国产97在线/欧美| 日本午夜av视频| 亚洲欧美精品自产自拍| 91狼人影院| av在线老鸭窝| 国产69精品久久久久777片| videossex国产| 欧美另类一区| 久久久成人免费电影| 国产乱人视频| 欧美最新免费一区二区三区| 亚洲三级黄色毛片| 午夜精品国产一区二区电影 | 日本色播在线视频| 内射极品少妇av片p| 老师上课跳d突然被开到最大视频| 高清欧美精品videossex| 一级二级三级毛片免费看| 99久久中文字幕三级久久日本| 人妻夜夜爽99麻豆av| 黄色配什么色好看| 丝袜喷水一区| 男人狂女人下面高潮的视频| 国产精品嫩草影院av在线观看| 夫妻午夜视频| 亚洲精品视频女| 免费看不卡的av| 久久久久九九精品影院| 超碰av人人做人人爽久久| 美女黄网站色视频| 日本色播在线视频| 午夜福利高清视频| 大陆偷拍与自拍| 国产伦一二天堂av在线观看| 久久久久久久亚洲中文字幕| 国产精品蜜桃在线观看| 国产精品久久久久久精品电影小说 | 丰满乱子伦码专区| 国产精品久久久久久精品电影| 91久久精品电影网| 三级男女做爰猛烈吃奶摸视频| 日韩电影二区| av黄色大香蕉| 99久国产av精品| 亚洲欧美一区二区三区国产| 一区二区三区免费毛片| 少妇裸体淫交视频免费看高清| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av日韩在线播放| 国产黄片美女视频| 亚洲,欧美,日韩| 成人欧美大片| 天堂影院成人在线观看| 国产一级毛片在线| 国产精品美女特级片免费视频播放器| 观看美女的网站| 久久久精品94久久精品| 日韩欧美三级三区| 亚洲精品日韩av片在线观看| 久久热精品热| 亚洲欧美精品自产自拍| 国产精品一区二区在线观看99 | 寂寞人妻少妇视频99o| 国产精品.久久久| 国产伦一二天堂av在线观看| 成人欧美大片| 99热这里只有是精品50| 欧美性感艳星| 欧美bdsm另类| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久久亚洲| 亚洲最大成人中文| 午夜免费观看性视频| 国产色爽女视频免费观看| av线在线观看网站| 国产精品久久久久久久久免| 亚洲精品第二区| 精品一区二区三区视频在线| 一本久久精品| 亚洲高清免费不卡视频| 成人午夜高清在线视频| 午夜亚洲福利在线播放| 亚洲精品国产成人久久av| 亚洲精品色激情综合| 亚洲国产av新网站| 26uuu在线亚洲综合色| 国产一区二区三区av在线| 亚洲丝袜综合中文字幕| 色尼玛亚洲综合影院| 熟妇人妻不卡中文字幕| 久久久久久久大尺度免费视频| 亚洲va在线va天堂va国产| 亚洲高清免费不卡视频| 色播亚洲综合网| 视频中文字幕在线观看| 青春草亚洲视频在线观看| 国产亚洲最大av| 综合色av麻豆| 美女大奶头视频| 1000部很黄的大片| 天堂中文最新版在线下载 | 三级毛片av免费| 久久久久精品性色| 国产精品久久久久久精品电影小说 | 国产精品一二三区在线看| 欧美xxxx性猛交bbbb| 国产美女午夜福利| 亚洲欧美一区二区三区国产| 国产精品久久久久久精品电影小说 | 日韩一区二区三区影片| 一级黄片播放器| 最近的中文字幕免费完整| 久久久久精品性色| 97精品久久久久久久久久精品| 亚洲精品影视一区二区三区av| 在线观看美女被高潮喷水网站| 国产精品日韩av在线免费观看| 国产精品人妻久久久影院| 日韩三级伦理在线观看| 亚洲一级一片aⅴ在线观看| 亚洲av.av天堂| 免费电影在线观看免费观看| 七月丁香在线播放| 丰满人妻一区二区三区视频av| 久久这里只有精品中国| 九九久久精品国产亚洲av麻豆| av国产免费在线观看| eeuss影院久久| 男女下面进入的视频免费午夜| 国产 一区精品| 五月伊人婷婷丁香| av免费观看日本| 久久精品久久久久久噜噜老黄| 人人妻人人澡欧美一区二区| av在线观看视频网站免费| 街头女战士在线观看网站| 只有这里有精品99| 亚洲欧美精品专区久久| av播播在线观看一区| 国产一区二区三区av在线| 婷婷色综合大香蕉| 日韩制服骚丝袜av| 国产成人91sexporn| 亚洲精品色激情综合| 天堂√8在线中文| 综合色av麻豆| 欧美一区二区亚洲| 女人十人毛片免费观看3o分钟| 视频中文字幕在线观看| 丝袜美腿在线中文| 大片免费播放器 马上看| 一本久久精品| 国产精品一区www在线观看| 97精品久久久久久久久久精品| 亚洲人与动物交配视频| 久久99热6这里只有精品| 晚上一个人看的免费电影| 蜜桃久久精品国产亚洲av| 十八禁国产超污无遮挡网站| 可以在线观看毛片的网站| 久久久久久久久中文| 内射极品少妇av片p| h日本视频在线播放| 高清午夜精品一区二区三区| 两个人的视频大全免费| 国产黄色免费在线视频| 久久99蜜桃精品久久| 黄片wwwwww| 免费不卡的大黄色大毛片视频在线观看 | 一级二级三级毛片免费看| 69av精品久久久久久| 亚洲精品国产av成人精品| 国产精品一区www在线观看| 天堂俺去俺来也www色官网 | 99久久精品一区二区三区| 亚洲无线观看免费| h日本视频在线播放| 亚洲欧美精品自产自拍| 亚洲精品久久久久久婷婷小说| 街头女战士在线观看网站| 亚洲av成人精品一二三区| 亚洲av福利一区| 美女xxoo啪啪120秒动态图| 青青草视频在线视频观看| 大片免费播放器 马上看| 国产片特级美女逼逼视频| 免费在线观看成人毛片| 久久久久久久大尺度免费视频| av线在线观看网站| 久久这里有精品视频免费| 日韩国内少妇激情av| 夫妻性生交免费视频一级片| 中文天堂在线官网| 欧美日韩精品成人综合77777| 日韩成人伦理影院| 国产午夜精品论理片| 黄色日韩在线| 中文字幕av成人在线电影| 国产一区二区在线观看日韩| 亚洲精品色激情综合| 99九九线精品视频在线观看视频| 国精品久久久久久国模美| 美女cb高潮喷水在线观看| 国产美女午夜福利| 亚洲av不卡在线观看| 乱码一卡2卡4卡精品| 赤兔流量卡办理| 黄色配什么色好看| 三级国产精品欧美在线观看| 国产真实伦视频高清在线观看| 久久久国产一区二区| 色综合亚洲欧美另类图片| 色综合亚洲欧美另类图片| 亚洲最大成人av| 欧美成人a在线观看| 亚洲欧美中文字幕日韩二区| 亚洲av不卡在线观看| 免费人成在线观看视频色| www.av在线官网国产| 纵有疾风起免费观看全集完整版 | 亚洲18禁久久av| 日本av手机在线免费观看| 男人和女人高潮做爰伦理| 成人二区视频| 欧美97在线视频| 国内精品一区二区在线观看| 日韩欧美 国产精品| 精华霜和精华液先用哪个| 亚洲熟妇中文字幕五十中出| 日本爱情动作片www.在线观看| 国语对白做爰xxxⅹ性视频网站| 国产麻豆成人av免费视频| 精品久久久久久成人av| 久久久精品免费免费高清| .国产精品久久| 亚洲精品,欧美精品| 亚洲18禁久久av| 69av精品久久久久久| 国产黄色视频一区二区在线观看| 国产精品久久久久久久久免| 久久精品熟女亚洲av麻豆精品 | 国产乱人视频| 国产精品久久久久久精品电影| 精品久久国产蜜桃| 亚洲精品影视一区二区三区av| 国产精品一区www在线观看| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一区久久| 日韩,欧美,国产一区二区三区| 最近中文字幕2019免费版| 久久99精品国语久久久| 五月玫瑰六月丁香| 一二三四中文在线观看免费高清| 亚洲最大成人手机在线| 午夜精品国产一区二区电影 | 午夜老司机福利剧场| 欧美3d第一页| 成人一区二区视频在线观看| 三级男女做爰猛烈吃奶摸视频| 两个人的视频大全免费| 久久韩国三级中文字幕| 国产亚洲av片在线观看秒播厂 | 精品国产三级普通话版| videossex国产| 国产伦精品一区二区三区四那| 欧美日韩一区二区视频在线观看视频在线 | 在现免费观看毛片| 免费看光身美女| 少妇的逼好多水| 韩国av在线不卡| 熟女电影av网| 一级毛片电影观看| 久久久久久久久久久丰满| 你懂的网址亚洲精品在线观看| 2021天堂中文幕一二区在线观| 一二三四中文在线观看免费高清| 真实男女啪啪啪动态图| 久久99蜜桃精品久久| 欧美一区二区亚洲| 天堂av国产一区二区熟女人妻| 2021天堂中文幕一二区在线观| 成人漫画全彩无遮挡| 别揉我奶头 嗯啊视频| 久久久久久久久久人人人人人人| 久久精品综合一区二区三区| 2021少妇久久久久久久久久久| 国产综合懂色| 91午夜精品亚洲一区二区三区| 欧美一区二区亚洲| 一级av片app| 午夜福利在线在线| 国精品久久久久久国模美| 观看免费一级毛片| 亚洲激情五月婷婷啪啪| 18禁在线无遮挡免费观看视频| 国产午夜精品一二区理论片| 在线观看一区二区三区| 成年人午夜在线观看视频 | 亚洲精品久久久久久婷婷小说| 男女视频在线观看网站免费| 一级毛片aaaaaa免费看小| 中文欧美无线码| 亚洲精品国产成人久久av| 简卡轻食公司| 联通29元200g的流量卡| 亚洲第一区二区三区不卡| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 久久久久久久大尺度免费视频| 亚洲精品一二三| 国产乱来视频区| 国产在线一区二区三区精| 岛国毛片在线播放| 日韩中字成人| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 久久久久国产网址| 美女主播在线视频| 亚洲最大成人av| 99热全是精品| 色网站视频免费| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区| 插阴视频在线观看视频| 成人欧美大片| 久久99蜜桃精品久久| 国产精品人妻久久久影院| 亚洲最大成人手机在线| 亚洲av电影不卡..在线观看| 国产一区有黄有色的免费视频 | 内射极品少妇av片p| 美女大奶头视频| 久久精品久久精品一区二区三区| 麻豆精品久久久久久蜜桃| 国产伦在线观看视频一区| 黄片无遮挡物在线观看| 日本免费a在线| 亚洲精品中文字幕在线视频 | 日韩,欧美,国产一区二区三区| 国产极品天堂在线| 听说在线观看完整版免费高清| 亚洲人与动物交配视频| 成人午夜精彩视频在线观看| 日韩精品青青久久久久久| 搡老乐熟女国产| 女人被狂操c到高潮| 不卡视频在线观看欧美| 日韩中字成人| 性插视频无遮挡在线免费观看| 亚洲人成网站在线播| 欧美不卡视频在线免费观看| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 最近最新中文字幕大全电影3| 久久久久久久久久人人人人人人| 热99在线观看视频| 国模一区二区三区四区视频| 丝袜喷水一区| 纵有疾风起免费观看全集完整版 | 好男人视频免费观看在线| 午夜久久久久精精品| 美女脱内裤让男人舔精品视频| 亚洲国产精品专区欧美| 久久午夜福利片| 亚洲欧美成人精品一区二区| 2021天堂中文幕一二区在线观| 乱人视频在线观看| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 国内揄拍国产精品人妻在线| 精品久久久精品久久久| 国产探花在线观看一区二区| 国产乱人视频| 在线观看美女被高潮喷水网站| 婷婷色av中文字幕| 成人亚洲精品一区在线观看 | 日本av手机在线免费观看| 日本三级黄在线观看| 黄色日韩在线| 亚洲av福利一区| 三级国产精品片| 看免费成人av毛片| 国产精品久久久久久精品电影| 国产在视频线精品| 国产伦精品一区二区三区四那| 22中文网久久字幕| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 身体一侧抽搐| 欧美性猛交╳xxx乱大交人| 国产精品蜜桃在线观看| 久久久久久久久久人人人人人人| 亚洲综合色惰| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 日韩制服骚丝袜av| 亚洲国产精品成人久久小说| 国产伦一二天堂av在线观看| 国产伦精品一区二区三区视频9| 久久人人爽人人爽人人片va| 禁无遮挡网站| kizo精华| 亚洲国产av新网站| 成人性生交大片免费视频hd| kizo精华| 免费av毛片视频| 乱系列少妇在线播放| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 亚洲精品成人av观看孕妇| 黄色一级大片看看| 亚洲av福利一区| 亚洲精品中文字幕在线视频 | 成年av动漫网址| 永久免费av网站大全| 男女视频在线观看网站免费| 成年女人在线观看亚洲视频 | 国产女主播在线喷水免费视频网站 | 色播亚洲综合网| 国产精品麻豆人妻色哟哟久久 | 日韩欧美精品免费久久| 天堂av国产一区二区熟女人妻| 只有这里有精品99| 精品久久久精品久久久| 日韩在线高清观看一区二区三区| 亚洲国产精品sss在线观看| 97热精品久久久久久| 久久久精品免费免费高清| 久久精品久久久久久噜噜老黄| 国产在视频线精品| av在线亚洲专区| 日韩三级伦理在线观看| 婷婷色av中文字幕| 寂寞人妻少妇视频99o| 日本爱情动作片www.在线观看| 亚洲国产精品国产精品| 亚洲av中文av极速乱| av卡一久久| 小蜜桃在线观看免费完整版高清| 国内精品美女久久久久久| 爱豆传媒免费全集在线观看| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| 久久国产乱子免费精品| 久久久久网色| 三级经典国产精品| 搡老乐熟女国产| 国产一区有黄有色的免费视频 | 床上黄色一级片| 精品99又大又爽又粗少妇毛片| av.在线天堂| 搡老妇女老女人老熟妇| 亚洲在线观看片| 五月伊人婷婷丁香| 亚洲欧美一区二区三区国产| 亚洲成人av在线免费| 国产综合精华液| 国产日韩欧美在线精品| 91av网一区二区| 国产黄色视频一区二区在线观看| 日本熟妇午夜| 一级a做视频免费观看| 亚洲图色成人| 日本与韩国留学比较| 精品一区二区三区视频在线| 九草在线视频观看| 国产精品爽爽va在线观看网站| 亚洲久久久久久中文字幕| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 99久久人妻综合| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 精品不卡国产一区二区三区| 搡老妇女老女人老熟妇| 小蜜桃在线观看免费完整版高清| 婷婷六月久久综合丁香| 美女高潮的动态| 国产永久视频网站| 春色校园在线视频观看| 伦理电影大哥的女人| 激情 狠狠 欧美| 联通29元200g的流量卡| 一级毛片 在线播放| 晚上一个人看的免费电影| 男女边摸边吃奶| 毛片女人毛片| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 日韩电影二区| 亚州av有码| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 国产乱来视频区| 22中文网久久字幕| 亚洲av免费高清在线观看| 欧美日韩综合久久久久久| 69av精品久久久久久| 欧美+日韩+精品| 国产高清国产精品国产三级 | 久久这里只有精品中国| 嘟嘟电影网在线观看| 免费看a级黄色片| 国产麻豆成人av免费视频| 身体一侧抽搐| 美女cb高潮喷水在线观看| 欧美最新免费一区二区三区| 啦啦啦中文免费视频观看日本| 赤兔流量卡办理| 有码 亚洲区| 日韩电影二区| 国产成人精品婷婷| 成人美女网站在线观看视频| 免费av毛片视频| 亚洲美女搞黄在线观看| 亚洲精品成人久久久久久| 久久99热6这里只有精品| 婷婷色麻豆天堂久久| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 99久国产av精品国产电影| 欧美日韩一区二区视频在线观看视频在线 | 亚洲丝袜综合中文字幕| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久久久久| 亚洲成人中文字幕在线播放| 亚洲一区高清亚洲精品| 亚洲精品,欧美精品| 青春草国产在线视频| 久久久午夜欧美精品| 51国产日韩欧美| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 国产乱人视频| 少妇人妻精品综合一区二区| 亚洲精品乱码久久久久久按摩| 在现免费观看毛片| 身体一侧抽搐| 亚洲国产精品成人久久小说| 永久免费av网站大全| 能在线免费观看的黄片| 日韩一本色道免费dvd| 非洲黑人性xxxx精品又粗又长| 纵有疾风起免费观看全集完整版 | 内地一区二区视频在线| 搡女人真爽免费视频火全软件| 国产69精品久久久久777片| 蜜臀久久99精品久久宅男| 久久久久性生活片| 亚洲成人精品中文字幕电影| 超碰97精品在线观看| 亚洲精品日韩av片在线观看| 久久久久久久大尺度免费视频| 日韩欧美精品v在线| 亚洲精品中文字幕在线视频 | 91精品一卡2卡3卡4卡|