• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorptive Desulfurization of Propylmercaptan and Dimethyl Sulfide by CuBr2Modified Bentonite

    2015-06-22 14:38:29
    中國煉油與石油化工 2015年2期
    關(guān)鍵詞:拘泥于儀隴縣示范園區(qū)

    (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    Adsorptive Desulfurization of Propylmercaptan and Dimethyl Sulfide by CuBr2Modified Bentonite

    Cui Yuanyuan; Lu Yannan; Yi Dezhi; Shi Li; Meng Xuan

    (The State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237)

    Adsorptive desulfurization for removing propylmercaptan (PM) and dimethyl sul fide (DMS) over CuBr2modified bentonite was investigated under ambient conditions in this work. A saturated sulfur capacity as high as 196 mg of S per gram of adsorbent was demonstrated. The in fluence of loading amount of Cu (II) and calcination temperature on adsorptive desulfurization was investigated. Test results revealed that the optimum loading amount of Cu (II) was 15%, and the calcination temperature was 150 ℃. The pyridine-FTIR spectroscopy showed that a certain amount of Lewis acid could contribute to the increase of adsorption capacity. Spectral shifts of the ν(C-S) and ν(Cu-S) vibrations were detected from the Raman spectra of the Cu (II) complex which was a reaction product of CuBr2with DMS. According to the hybrid orbital theory and the complex adsorption reaction, the desulfurization of PM and DMS over the CuBr2modi fied bentonite is ascribed to the formation of S-M (σ) bonds.

    desulfurization; bentonite; propylmercaptan; dimethyl sul fide; mechanism

    1 Introduction

    Sulfides often exist as the main pollutants in liquid fuels and natural gas and its oxidation can bring about the formation of tropospheric sulfur dioxide (SO2), which would cause acid rains[1]. The presence of sulfur compounds will reduce the purity of petrochemical products, deteriorate the service performance, and severely poison the noble metal catalysts used in subsequent processes[2-4]. The deep desulfurization of gasoline and diesel is becoming more and more difficult, since the sulfur content of crude oil is becoming higher and the permitted sulfur limits in oil product are becoming stricter. Therefore, it is a worldwide urgent challenge to produce increasingly cleaner fuels[5-11]. Hydrodesulfurization (HDS) process is a conventional method to remove sulfur compounds using Co-Mo/ Al2O3or Ni-Mo/Al2O3catalysts at high temperature (300—340 ℃) and high pressure (2.0—10.0 MPa of H2). However, the hydrogenation of olefins would take place simultaneously during the HDS process, which will reduce the octane number of gasoline[7,9,12-15]. Compared with HDS, adsorptive desulfurization is a more economical method[14]and has attracted researchers’ interest extensively.

    Bentonite is a relatively economical material used for adsorptive desulfurization. Its partial-amorphous nature provides mesopores with a wide range of pore sizes and some peculiar physical and chemical properties (i.e., large specific surface area and satisfactory adsorptive affinity for organic and inorganic ions) and has been attracting more and more attention as effective separating agents or adsorbents[4,7-10,14,16].

    The primary objective of this study is to investigate the adsorptive desulfurization efficiency of the Cu (II)-modified bentonite for removing propylmercaptan (PM) and dimethyl sulfide (DMS). The adsorbents, raw bentonite and Cu (II)-modified bentonite, are characterized by X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and pyridine-FTIR spectroscopy. Raman spectroscopy is used to characterize the Cu (II) complex. Finally, combined with the hybrid orbital theory and complex adsorption reaction, the adsorption mechanism is discussed briefly.

    2 Experimental

    2.1 Adsorbents and feedstocks

    In this work, the raw bentonite was bought from theHangzhou Yongsheng Catalyst Co., Ltd, Zhejiang province, China. It was used directly without further treatment. The composition analysis of the raw bentonite is shown in Table 1.

    Table 1 The composition of the raw bentonite

    The chemical reagents (CH3COO)2Cu, Cu(NO3)2, CuSO4, CuBr and CuBr2were purchased from the Sinopharm Chemical Reagent Co., Ltd. PM and DMS were purchased from the Shanghai Chemical Reagent Co., Ltd. The adsorbents in this work were prepared by means of the kneading method. The raw bentonite was mixed with (CH3COO)2Cu, Cu(NO3)2, CuSO4, CuBr and CuBr2for 0.5 h, respectively. Dilute nitric acid used as a liquid binder was added into the mixture to make the slurry. Pellets were formulated by an extruder with an outer diameter of 1 mm. All of the adsorbents were dried at 120 ℃ overnight and calcined in a muffle furnace at 150 ℃ for 4 h in air. The mass fraction of Cu (II) species in all adsorbents was 15%. In the follow-up experiments, the CuBr2modified bentonite with different Cu (II) contents and at different calcination temperature were prepared in the similar way.

    The model oil for adsorptive desulfurization was prepared by adding PM and DMS into n-hexane simultaneously, and the sulfur content of PM and DMS in the mixture was 2 000 μg/g each.

    2.2 Characterization of adsorbents

    2.2.1 X-ray diffraction

    The crystal structure of powder adsorbents was characterized by X-ray diffraction (XRD) method, using a Siemens D-500 X-ray diffractometer equipped with Ni-filtered CuKα radiation (40 kV, 100 mA). The 2θ scanning angle range was 10°—70° with each step of 0.02(°)/s.

    2.2.2 Thermogravimetric analysis

    Thermogravimetric analysis (TGA) was carried out using a STA 449F3 thermal analyzer, made by Netzsch, Germany. The instrument was heated at a heating rate of 10 ℃ /min to 700 ℃ in air with an air flow rate of 100 mL/min.

    2.2.3 Acidity characterization

    The amount of acids, the acid density, and the acid variety were measured via the Fourier transform infrared (FT-IR) spectroscopy (Magna-IR550, Nicolet Company), using pyridine as the probe molecule.

    2.2.4 Raman spectra

    The Raman spectroscopic studies were conducted on a Renishaw System 100 Raman spectrometer. The laser power was 3 mW at the sample position. The Raman scattered light was detected perpendicular to the laser beam with a Peltiercooled CCD detector, and the spectral resolution for all measurements was 1 cm-1.

    2.3 Adsorption experiments

    2.3.1 Dynamic tests

    The adsorptive desulfurization capacity of the adsorbents for PM and DMS was measured using dynamic tests on a fixed-bed reactor under ambient conditions in a custommade quartz tube (with an internal diameter of 9 mm, a length of 500 mm and a bed volume of 1.25 cm3). The weight hourly space velocity (WHSV) of the model oil was 5 h-1. Reaction products were sampled every halfhour and analyzed with a HP5890 gas chromatograph equipped with FID and GC-MS (type GC6890-MS 5973N, made by the Agilent Co.).

    where C0is the initial molar concentration of sulfur (mol/L), C is the final molar concentration of sulfur (mol/L).2.3.2 Static tests

    The saturated desulfurization capacity of the adsorbents for DMS and PM was evaluated by static tests at ambient temperature. 0.1 g of adsorbent and 10 g of model oil were put into an airtight container to enter into reaction for 24 hours. The concentration of sulfur was analyzed bya gas chromatograph.

    Sulfur capacity (mg S/g of adsorbent) = 1 000×(C0- C)VM/m where C0is the initial molar concentration of sulfur (mol/L), C is the final molar concentration of sulfur (mol/L), V is the volume of solution (L), M is the molar mass of sulfur (g/mol), and m is the mass of adsorbent (g).

    2.3.3 Preparation of the Cu (II) complex

    The Cu (II) complex was prepared by static complex adsorption of CuBr2and an excess of DMS in an airtight container for 24 hours. The deposit formed during the reaction was filtered and extensively washed with n-hexane subsequently. The product was obtained after drying at room temperature.

    3 Results and Discussion

    3.1 Desulfurization performance of the modified bentonite

    The desulfurization performance of the (CH3COO)2Cu, Cu(NO3)2, CuSO4, CuBr and CuBr2modified bentonite (BE for short) were evaluated via dynamic tests at room temperature. Breakthrough curves for PM and DMS are shown in Figure 1 and Figure 2, respectively.

    Figure 1 Breakthrough curves for PM adsorption on modified bentonite calcined at 150 ℃

    It can be seen from Figure 1 that all of the modified bentonite samples could absorb more PM than the raw bentonite. Among them, the CuBr2, Cu(NO3)2, and CuSO4modified bentonite samples showed more excellent PM removal performance, which could achieve a complete elimination of PM for 5 h. Figure 2 shows that except the (CH3COO)2Cu modified bentonite sample, the other samples had a better DMS removal performance than the raw bentonite. The CuBr2modified bentonite showed the best DMS desulfurization performance, which could maintain a complete elimination of DMS for 4 h. As a result, the CuBr2modified bentonite had a better desulfurization performance for both PM and DMS compared with other samples. Therefore, CuBr2was selected as the active component.

    Figure 2 Breakthrough curves for DMS adsorption on modified bentonite calcined at 150 ℃

    3.2 Effects of the amount of Cu (II) loading on adsorption of PM and DMS

    Figure 3 Breakthrough curves for PM adsorption on CuBr2modified bentonite with different contents of Cu (II) calcined at 150 ℃

    Figure 4 Breakthrough curves for DMS adsorption on CuBr2modified bentonite with different contents of Cu (II) calcined at 150 ℃

    A correlation between desulfurization performance and contents of Cu (II) on bentonite had been tested. The results presented in Figure 3 and Figure 4 denote the breakthrough curves for PM and DMS. It can be seen from the curves shown in Figure 3 and Figure 4 that the bentonite loaded with CuBr2could adsorb more sulfur than the raw bentonite. The desulfurization performance increased gradually with an increasing amount of Cu (II) loading. When the amount of Cu (II) loading was 15%, the sulfur adsorption capacity reached a maximum for both PM and DMS. If the Cu (II) loading increased to 20%, as presented in Figure 3, there was no significant change in the desulfurization efficiency compared with the case using the 15% of Cu (II) loading. The results showed that the CuBr2modified bentonite with 15% of Cu (II) loading could be the proper adsorbent for removal of PM and DMS from the model oil.

    The X-ray diffraction analysis in Figure 5 was carried out to identify the mineralogical structure of the raw bentonite and the CuBr2modified bentonite adsorbents with different contents of Cu (II) species. The XRD patterns of the bentonite adsorbents loaded with CuBr2showed the characteristic reflections for CuBr2at 2θ = 14.42°, 24.64°, 29.08°, 29.44°, 35.94°, 46.34°, 47.24° and 60.32° corresponding to the planesof cubic CuBr2crystal, respectively. Figure 5 confirms that the strength of the peaks of CuBr2increased with an increasing Cu (II) content, and the crystallinity of the modi fied bentonite adsorbents slightly decreased. These facts suggested that CuBr2on the bentonite existed as an amorphous material with a low Cu (II) content of less than 5%. With the increase of Cu (II) content, CuBr2on the bentonite existed as a crystalline solid. Excessive CuBr2content would block the pores of the bentonite adsorbents, which could affect the adsorptive desulfurization efficiency. To investigate the type and number of surface acidic sites of the adsorbents, FT-IR spectra for the adsorption of pyridine at 200 ℃and 450 ℃ were obtained as shown in Figure 6 and Figure 7. It can be seen from Figure 6 thatthe spectra presented the adsorption band at 1 450 cm-1, which was attributed to the ν(C-C) vibration of pyridine adsorbed at the Lewis acid sites[14,17]in the Cu (II)-bentonite. When the temperature rose up to 450 ℃, as shown in Figure 7, no peak could be found. Therefore, it could be concluded that the Lewis acid sites would be increased by the addition of CuBr2on bentonite, and a certain amount of weak Lewis acid sites could contribute to the adsorption of sulfur compounds.

    Figure 5 X-ray diffraction patterns of CuBr2modified bentonite with different Cu (II) contents calcined at 150 ℃

    Figure 6 FT-IR spectra at 200 ℃ for Cu (II)-bentonite (containing 15 % of Cu (II) calcined at 150 ℃) and bentonite

    Figure 7 FT-IR spectra at 450 ℃ for Cu (II)-bentonite (containing 15 % of Cu (II) calcined at 150 ℃) and bentonite

    3.3 Effects of calcination temperature on adsorption of PM and DMS

    四川省南充市儀隴縣作為中國千千萬萬鄉(xiāng)村中的一員,其打造的現(xiàn)代農(nóng)業(yè)生產(chǎn)經(jīng)營(yíng)模式,在一定程度上帶動(dòng)著當(dāng)?shù)貐^(qū)域產(chǎn)業(yè)的快速發(fā)展。柑橘示范園區(qū)規(guī)劃采用“大園小鎮(zhèn)”模式,即鄉(xiāng)村旅游開發(fā)中所提出的一種創(chuàng)新休閑農(nóng)業(yè)的模式,也是鄉(xiāng)村發(fā)展的一種創(chuàng)新模式,使得產(chǎn)業(yè)振興不再拘泥于以往的固有模式,跳出陳舊“圈子”,打開振興新思路。

    A correlation between the desulfurization performance and the calcination temperature of the CuBr2modified bentonite has been tested. As shown in Figure 8, the sulfur adsorption capacity decreased with an increase of the calcination temperature.

    Figure 8 Effects of calcination temperature on desulfurization performance of Cu (II)-bentonite (containing 15 % of Cu (II) species)

    Figure 9 X-ray diffraction patterns of CuBr2modified bentonite at different calcination temperatures

    The modified bentonite samples calcined at different temperatures were characterized by X-ray diffraction, as shown in Figure 9. The samples calcined at 150 ℃showed the presence of the CuBr2phase. The intensity of the peaks corresponding to CuBr2decreased with an increasing calcination temperature. When the sample was calcined at 250 ℃, the XRD peaks for CuBr were noticed at 2θ=27.08°, 44.98° and 53.30°, respectively, which were attributed to the planes (111), (220) and (311), respectively. The intensity of these characteristic peaks decreased or even disappeared when the calcination temperatures went up to 350 ℃ and 450 ℃. In addition, new crystallite phases of CuO were observed and the most intense signals were located at 2θ of 35.48°, 38.66° and 48.76°, respectively. This suggests that most of CuBr species have been transformed to CuO. In order to get more structural information, the thermogravimetric analysis method under air flow was conducted to further evaluate the effect of calcination temperature on the desulfurization performance. The differential scanning calorimetry-thermogravimetric analysis (DSCTGA) curves for raw bentonite and the CuBr2modified bentonite adsorbents, which were dried at 120 ℃ for 24 h, are shown in Figure 10 and Figure 11, respectively. In the curve of raw bentonite, no single remarkable peaks in TG and endothermic or exothermic curves were found. This phenomenon indicated that the framework of the bentonite was stable in this temperature range and most of the adsorbed water would be evaporated during the pretreatment of the sample at 120 ℃. Being different from the raw bentonite, a considerable weight loss and two endothermic peaks were observed for the CuBr2modi-fied bentonite, as it can be seen in Figure 11. Combined with XRD characterization, the weight loss peaks formed in the modi fied bentonite were typically attributed to the stepwise decomposition of CuBr2·xH2O, denoting that the peak in the range of 50—150 ℃ was caused by the evaporation of water adsorbed in the bentonite and the dehydration of crystalline water in CuBr2·xH2O, while the peak in the range of 200—400 ℃ was resulted from the transformation of CuBr2to CuBr and CuO.

    Figure 10 TGA-DSC curves of the raw bentonite obtained under air flow

    Figure 11 TGA-DSC curves of the CuBr2modified bentonite adsorbent obtained under air flow

    4 Raman Characterization of the Cu (II) Complex

    With the purpose of discovering the reaction mechanism of DMS and Cu (II), the Cu (II) complex was prepared thereby. The Raman spectra of the products are presented in Figure 12.

    Figure 12 Raman spectra of CuBr2and the Cu (II) complex: (a) CuBr2; (b) Cu (II) complex

    Cu (II) atoms, with extranuclear electrons configuration (1s22s22p63s23p63d94s0), can form the usual σ bonds using the vacant s-orbitals and p-orbitals[14]. As a result, the usual S-M (σ) bonds could be obtained if sulfur atoms of DMS could provide lone pair electrons to Cu (II)[14,18]. As shown in Figure 12, the distinct peaks of Cu-S stretching vibrations at 300 cm-1and C-S vibration at 700 cm-1were detected in the Cu (II) complex, which suggested that DMS could bind to the Cu (II) species without breaking up its C-S bonds in its molecule[19,20].

    5 Conclusions

    The XRD and TGA results have synergistically demonstrated that the bentonites loaded with CuBr2are excellent adsorbents for the removal of PM and DMS from liquid fuels. Moreover the bentonite, which was loaded with 15% of Cu (II) and baked at 150 ℃, exhibited a sulfur adsorption capacity of about 200 mg-S/g of adsorbent during the desulfurization of model oil containing about 2 000 μg/g of PM and 2 000 μg/g of DMS. The FT-IR analyses indicated that a certain amount of weak Lewis acid sites could contribute to the adsorption of sulfur compounds. The characteristics of the Cu-S and C-S stretching vibrations were simultaneously identified in the Raman spectra of the Cu (II) complex. On the basis of complex adsorption reaction and hybrid orbital theory, the adsorption of DMS on the CuBr2modified bentonite occurred via the formation of S-M (σ) bonds. More studies such as the performance of the CuBr2modified bentonite prepared by different methods or the reaction of CuBr2with bentonite excavated from different regions will be needed in order to fully understand the effect of copper loading and the combination mechanism of Cu (II) species with sulfur.

    Acknowledgments: This work is financially supported by the National Natural Science Foundation of China (No. 21276086).

    [1] He Jie, Zhao Junbin, Lan Yunxiang. Adsorption and photocatalytic oxidation of dimethyl sulfide and ethyl mercaptan over layered K1-2xMnxTiNbO5and K1-2xNixTiNbO5[J]. Journal of Fuel Chemistry and Technology, 2009, 37(4): 485-488

    [2] Jieun Lee, Hee Tae Beum, Chang Hyun Ko, et al. Adsorptive removal of dimethyl disulfide in olefin-rich C4with ion-exchanged zeolites[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6382-6390

    [4] Huang Huan, Yi Dezhi, Lu Yannan, et al. Study on the adsorption behavior and mechanism of dimethyl sulfide on silver modified bentonite by in situ FTIR and temperatureprogrammed desorption[J]. Chemical Engineering Journal, 2013, 225: 447-455

    [5] Kumar S, Srivastava V C, Badoni R P. Studies on adsorptive desulfurization by zirconia based adsorbents[J]. Fuel, 2011, 90(11): 3209-3216

    [6] Tang Xiaolin, Shi Li. Study of the adsorption reactions of thiophene on Cu (I)/HY-Al2O3by Fourier transform infrared spectroscopy and temperature-programmed desorption: Adsorption, desorption, and sorbent regeneration mechanisms[J]. Langmuir, 2011, 27(19): 11999-12007

    [7] Yi Dezhi, Huang Huan, Meng Xuan, et al. Desulfurization of liquid hydrocarbon streams via adsorption reactions by silver-modified bentonite[J]. Industrial & Engineering Chemistry Research, 2013, 52(18): 6112-6118

    [8] Seyedeyn-Azad F, Ghandy A H, Aghamiri S F, et al. Removal of mercaptans from light oil cuts using Cu (II)-Y type zeolite[J]. Fuel Processing Technology, 2009, 90(12): 1459-1463

    [9] Tang Xiaolin, Meng Xuan, Shi Li. Desulfurization of model gasoline on modified bentonite[J]. Industrial & Engineering Chemistry Research, 2011, 50(12): 7527-7533

    [10] Tang Xiaolin, Le Zheting, Shi Li. Deep desulfurization via adsorption by silver modified bentonite[J]. China Petroleum Processing & Petrochemical Technology, 2011, 13(3): 16-20

    [11] Dharaskar S A, Wasewar K L, Varma M N, et al. Synthesis, characterization, and application of novel trihexyl tetradecyl phosphonium bis (2,4,4-trimethylpentyl) phosphinate for extractive desulfurization of liquid fuel[J]. Fuel Processing Technology, 2014, 123: 1-10

    [12] Srivastav A, Srivastava V C. Adsorptive desulfurization by activated alumina[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1133-1140

    [13] Heeyeon Kim, Jung Joon Lee, Sang Heup Moon. Hydrodesulfurization of dibenzothiophene compounds using fluorinated NiMo/Al2O3catalysts[J]. Applied Catalysis B: Environmental, 2003, 44: 287-299

    [14] Yi Dezhi, Huang Huan, Shi Li. Desulfurization of Model Oil via Adsorption by Copper (II) Modified Bentonite[J]. Bulletin Korean Chemical Society, 2013, 34: 777-782

    [15] Al-Ghouti M A, Al-Degs Y S, Khalili F I. Minimisation of organosulphur compounds by activated carbon from commercial diesel fuel: Mechanistic study[J]. Chemical Engineering Journal, 2010, 162: 669-676

    [16] Hart M P. Brown D R. Surface acidities and catalytic activities of acid-activated clays[J]. Journal of Molecular Catalysis A: Chemical, 2004, 212: 315-321

    [17] Kalita P, Gupta N M, Kumar R. Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce-Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies[J]. Journal of Catalysis, 2007, 245: 338-347

    [18] Hadt R G, Xie Xiangjin, Pauleta S R, et al. Analysis of resonance Raman data on the blue copper site in pseudoazurin: Excited state π and σ charge transfer distortions and their relation to ground state reorganization energy[J]. Journal of Inorganic Biochemistry, 2012, 115: 155-162

    [19] Noh J, Jang S, Lee D, et al. Abnormal adsorption behavior of dimethyl disulfide on gold surfaces[J]. Current Applied Physics, 2007, 7: 605-610

    [20] Seung ll Cho, Eun Sun Park, Kwan Kim, et al. Spectral correlation in the adsorption of aliphatic mercaptans on silver and gold surfaces: Raman spectroscopic and computational study[J]. Journal of Molecular Structure, 1999, 479: 83-92

    date: 2014-08-22; Accepted date: 2015-01-09.

    Dr. Meng Xuan, Telephone: +86-21-64252274; E-mail: mengxuan@ecust.edu.cn.

    猜你喜歡
    拘泥于儀隴縣示范園區(qū)
    所謂伊人
    儀隴縣:營(yíng)商環(huán)境大優(yōu)化 民生福祉大提升
    儀隴縣:農(nóng)民工服務(wù)專項(xiàng)行動(dòng)做足“實(shí)”字文章
    全省根治欠薪暨勞動(dòng)保障監(jiān)察工作座談會(huì)在儀隴縣召開
    龍寺水土保持科技示范園區(qū)
    儀隴縣有機(jī)蠶桑發(fā)展思考
    好吃的水果
    北京經(jīng)濟(jì)技術(shù)開發(fā)區(qū)等8個(gè)園區(qū)確定為國家知識(shí)產(chǎn)權(quán)示范園區(qū)
    做個(gè)平和的人
    陜西諾維北斗信息科技股份有限公司董事長(zhǎng)——王蓓蓓 創(chuàng)業(yè)是不拘泥于當(dāng)前
    三级国产精品片| 一级片'在线观看视频| 一个人看的www免费观看视频| 亚洲av中文字字幕乱码综合| 80岁老熟妇乱子伦牲交| 色5月婷婷丁香| 一级av片app| 建设人人有责人人尽责人人享有的 | 国产欧美日韩精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 日本vs欧美在线观看视频 | 国产永久视频网站| 你懂的网址亚洲精品在线观看| 久久国产精品大桥未久av | 久久女婷五月综合色啪小说| 美女脱内裤让男人舔精品视频| 欧美xxⅹ黑人| 成年美女黄网站色视频大全免费 | 夜夜骑夜夜射夜夜干| 一级毛片我不卡| 成人国产av品久久久| 亚洲av不卡在线观看| 麻豆乱淫一区二区| 亚洲欧美一区二区三区国产| 少妇 在线观看| 国产精品伦人一区二区| 亚洲av综合色区一区| 国产精品久久久久久精品古装| 最近2019中文字幕mv第一页| 插阴视频在线观看视频| 色视频在线一区二区三区| 国产精品欧美亚洲77777| 91久久精品国产一区二区三区| 婷婷色综合大香蕉| 三级国产精品欧美在线观看| 久久久久久久久久人人人人人人| 人人妻人人澡人人爽人人夜夜| 日韩电影二区| 国产精品久久久久久精品古装| 人人妻人人看人人澡| 国产乱人视频| 亚洲内射少妇av| 亚洲国产色片| 熟女av电影| 天天躁夜夜躁狠狠久久av| 久久久久久伊人网av| 啦啦啦视频在线资源免费观看| 欧美成人精品欧美一级黄| 亚洲丝袜综合中文字幕| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 久久精品国产亚洲网站| 在线播放无遮挡| 一区二区三区精品91| 中文精品一卡2卡3卡4更新| 毛片一级片免费看久久久久| 尤物成人国产欧美一区二区三区| 亚洲第一区二区三区不卡| 久久久成人免费电影| 嫩草影院入口| 国产免费又黄又爽又色| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 女性被躁到高潮视频| 免费少妇av软件| av.在线天堂| 亚洲伊人久久精品综合| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 插逼视频在线观看| 亚洲国产欧美在线一区| 黄色视频在线播放观看不卡| 日韩一区二区视频免费看| 熟女电影av网| 亚洲国产av新网站| 久久综合国产亚洲精品| 午夜激情福利司机影院| av在线app专区| 亚洲av二区三区四区| 精品久久久久久电影网| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验| 街头女战士在线观看网站| 免费大片18禁| 亚洲精品乱码久久久v下载方式| 女性生殖器流出的白浆| av又黄又爽大尺度在线免费看| 成年人午夜在线观看视频| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 97在线视频观看| 精品一区二区三区视频在线| 日韩电影二区| 亚洲精品乱码久久久久久按摩| 亚洲内射少妇av| 午夜激情福利司机影院| 性高湖久久久久久久久免费观看| 少妇人妻久久综合中文| 亚洲人与动物交配视频| 99re6热这里在线精品视频| 日韩中字成人| 欧美成人一区二区免费高清观看| h视频一区二区三区| 午夜日本视频在线| 男男h啪啪无遮挡| 精品亚洲成国产av| 国产黄色免费在线视频| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久| 大话2 男鬼变身卡| 日韩成人av中文字幕在线观看| 亚洲精品456在线播放app| 欧美激情国产日韩精品一区| 精华霜和精华液先用哪个| 在线观看免费高清a一片| 97在线人人人人妻| 久久精品人妻少妇| 综合色丁香网| 99久久人妻综合| 成人免费观看视频高清| 日韩av免费高清视频| 韩国av在线不卡| 色5月婷婷丁香| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 久久久久久久大尺度免费视频| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影小说 | 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 成人一区二区视频在线观看| 日本午夜av视频| 美女内射精品一级片tv| 日日啪夜夜爽| 男女免费视频国产| 搡老乐熟女国产| 极品教师在线视频| 人体艺术视频欧美日本| 丰满乱子伦码专区| 国产精品蜜桃在线观看| 色网站视频免费| 国产男人的电影天堂91| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 亚洲欧洲日产国产| 国产精品伦人一区二区| 精品国产一区二区三区久久久樱花 | 婷婷色综合www| 日韩一区二区视频免费看| 午夜福利在线在线| 欧美zozozo另类| 一个人免费看片子| 日本av免费视频播放| 毛片一级片免费看久久久久| h视频一区二区三区| 亚洲欧美日韩无卡精品| 国产老妇伦熟女老妇高清| 久久婷婷青草| 亚洲欧美成人综合另类久久久| 毛片女人毛片| 欧美老熟妇乱子伦牲交| 99久久精品热视频| 国产黄色视频一区二区在线观看| 老司机影院毛片| 国产国拍精品亚洲av在线观看| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| av国产免费在线观看| 亚洲va在线va天堂va国产| 精品久久久噜噜| 亚洲精品视频女| 久久 成人 亚洲| 一个人免费看片子| 久久影院123| 99热这里只有精品一区| 中文天堂在线官网| av国产精品久久久久影院| 亚洲国产毛片av蜜桃av| 成人黄色视频免费在线看| 日韩欧美精品免费久久| 午夜视频国产福利| 中国三级夫妇交换| 蜜桃亚洲精品一区二区三区| 三级国产精品欧美在线观看| 在线观看免费高清a一片| 亚洲三级黄色毛片| 这个男人来自地球电影免费观看 | 91久久精品国产一区二区三区| 亚洲av综合色区一区| 全区人妻精品视频| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 日本免费在线观看一区| 啦啦啦视频在线资源免费观看| 欧美97在线视频| 欧美精品一区二区免费开放| 最近手机中文字幕大全| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 国内精品宾馆在线| 99国产精品免费福利视频| 少妇人妻 视频| 国模一区二区三区四区视频| 日韩国内少妇激情av| 一本色道久久久久久精品综合| 少妇熟女欧美另类| 久久女婷五月综合色啪小说| 一级毛片久久久久久久久女| 涩涩av久久男人的天堂| 两个人的视频大全免费| 国精品久久久久久国模美| 日本欧美视频一区| 亚洲av成人精品一二三区| 丝袜脚勾引网站| 亚洲最大成人中文| 国产一区二区三区av在线| 午夜免费鲁丝| 欧美97在线视频| 亚洲欧美一区二区三区黑人 | 秋霞在线观看毛片| 三级经典国产精品| 免费av中文字幕在线| 国产爽快片一区二区三区| 日韩一本色道免费dvd| 国产综合精华液| tube8黄色片| 亚洲熟女精品中文字幕| 熟女人妻精品中文字幕| 女性生殖器流出的白浆| 我要看日韩黄色一级片| 中文字幕人妻熟人妻熟丝袜美| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 日本一二三区视频观看| 黄色一级大片看看| 多毛熟女@视频| 亚洲精品乱码久久久v下载方式| 中文天堂在线官网| 高清欧美精品videossex| 久久精品国产亚洲av涩爱| 亚洲av福利一区| 欧美日韩亚洲高清精品| 亚洲精品自拍成人| 中文字幕精品免费在线观看视频 | 夜夜骑夜夜射夜夜干| 精品少妇黑人巨大在线播放| 激情五月婷婷亚洲| 免费人成在线观看视频色| 少妇丰满av| 一级黄片播放器| 久久女婷五月综合色啪小说| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| 中文欧美无线码| 在线观看av片永久免费下载| 午夜激情久久久久久久| 国内精品宾馆在线| av线在线观看网站| 全区人妻精品视频| 国产亚洲欧美精品永久| 精品人妻熟女av久视频| 成年女人在线观看亚洲视频| 91午夜精品亚洲一区二区三区| 欧美少妇被猛烈插入视频| 建设人人有责人人尽责人人享有的 | 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 黑人高潮一二区| 色婷婷久久久亚洲欧美| 大又大粗又爽又黄少妇毛片口| 国产成人精品久久久久久| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 国产永久视频网站| a 毛片基地| 国产av精品麻豆| 久久青草综合色| 国产精品人妻久久久久久| 最近最新中文字幕免费大全7| 免费看日本二区| 亚洲精品视频女| 热99国产精品久久久久久7| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 中文在线观看免费www的网站| 日韩中字成人| 久久久久国产精品人妻一区二区| 国产爱豆传媒在线观看| 一本久久精品| 亚洲色图av天堂| 深爱激情五月婷婷| 久久亚洲国产成人精品v| 日韩中文字幕视频在线看片 | 九色成人免费人妻av| 国产在线一区二区三区精| 亚洲欧美日韩无卡精品| 超碰97精品在线观看| 国产永久视频网站| 国产精品嫩草影院av在线观看| 五月开心婷婷网| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 97在线视频观看| 免费黄频网站在线观看国产| 一级毛片 在线播放| 中文字幕免费在线视频6| 男人舔奶头视频| 女性被躁到高潮视频| 插逼视频在线观看| 精品久久久久久久末码| 十八禁网站网址无遮挡 | 欧美精品亚洲一区二区| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 插逼视频在线观看| 嫩草影院入口| 黑丝袜美女国产一区| 在线观看免费高清a一片| 男女无遮挡免费网站观看| 少妇人妻久久综合中文| av在线app专区| 搡女人真爽免费视频火全软件| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 欧美日韩国产mv在线观看视频 | av女优亚洲男人天堂| 成年美女黄网站色视频大全免费 | 久久 成人 亚洲| 国产探花极品一区二区| 色视频在线一区二区三区| 91精品一卡2卡3卡4卡| 啦啦啦在线观看免费高清www| 久久久a久久爽久久v久久| 国产一区二区在线观看日韩| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区黑人 | 高清毛片免费看| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 精品人妻偷拍中文字幕| 51国产日韩欧美| 22中文网久久字幕| 在线免费十八禁| 亚洲电影在线观看av| 国产免费一区二区三区四区乱码| www.av在线官网国产| 久久人人爽av亚洲精品天堂 | 天天躁日日操中文字幕| 亚洲经典国产精华液单| 免费观看无遮挡的男女| 成人亚洲精品一区在线观看 | 麻豆成人av视频| 国产亚洲91精品色在线| 又黄又爽又刺激的免费视频.| 国产精品av视频在线免费观看| 18禁动态无遮挡网站| 美女主播在线视频| 亚洲图色成人| 视频区图区小说| 国产欧美日韩一区二区三区在线 | freevideosex欧美| 狂野欧美白嫩少妇大欣赏| av网站免费在线观看视频| 一本一本综合久久| 22中文网久久字幕| 亚洲av免费高清在线观看| 免费观看av网站的网址| 女性被躁到高潮视频| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| 日韩av不卡免费在线播放| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 午夜福利影视在线免费观看| 我的老师免费观看完整版| 国产精品久久久久成人av| 国产有黄有色有爽视频| 久久久久网色| 男的添女的下面高潮视频| 久久久久网色| 欧美精品人与动牲交sv欧美| 秋霞在线观看毛片| av在线观看视频网站免费| 狂野欧美激情性bbbbbb| 久久99蜜桃精品久久| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 欧美精品一区二区免费开放| 中文字幕免费在线视频6| 看非洲黑人一级黄片| 男人狂女人下面高潮的视频| 欧美日韩精品成人综合77777| 免费看av在线观看网站| 亚洲欧美精品专区久久| 美女视频免费永久观看网站| 一区二区av电影网| 久久久久久久亚洲中文字幕| 五月玫瑰六月丁香| 午夜视频国产福利| 色视频在线一区二区三区| 人妻制服诱惑在线中文字幕| 少妇猛男粗大的猛烈进出视频| 亚洲经典国产精华液单| 18禁裸乳无遮挡免费网站照片| 精品熟女少妇av免费看| 欧美成人a在线观看| 大陆偷拍与自拍| 一本久久精品| 黄色日韩在线| 国产亚洲精品久久久com| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 亚洲真实伦在线观看| 成人二区视频| 日本午夜av视频| 丝瓜视频免费看黄片| 国产精品一及| 99久久精品一区二区三区| 久久ye,这里只有精品| av专区在线播放| 成人18禁高潮啪啪吃奶动态图 | 国产欧美日韩一区二区三区在线 | 日韩中字成人| 亚洲图色成人| 免费不卡的大黄色大毛片视频在线观看| 丝袜喷水一区| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 一级毛片我不卡| 国产精品久久久久久久电影| av不卡在线播放| 天天躁夜夜躁狠狠久久av| 国产中年淑女户外野战色| 在线观看免费日韩欧美大片 | 人妻系列 视频| 亚洲真实伦在线观看| 欧美 日韩 精品 国产| 国产伦精品一区二区三区视频9| 伊人久久国产一区二区| 国产精品免费大片| 91狼人影院| 亚洲精品久久午夜乱码| 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 91狼人影院| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 亚洲欧美精品专区久久| 欧美xxxx黑人xx丫x性爽| 国产一区有黄有色的免费视频| 午夜福利高清视频| 成人18禁高潮啪啪吃奶动态图 | 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 蜜臀久久99精品久久宅男| 成人二区视频| 日韩制服骚丝袜av| 一级爰片在线观看| 亚洲av电影在线观看一区二区三区| 欧美激情极品国产一区二区三区 | 91午夜精品亚洲一区二区三区| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 精品亚洲成a人片在线观看 | 性高湖久久久久久久久免费观看| 一本一本综合久久| av在线观看视频网站免费| 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 中文字幕精品免费在线观看视频 | 欧美极品一区二区三区四区| 国产精品人妻久久久影院| 久久婷婷青草| av国产精品久久久久影院| 一级毛片黄色毛片免费观看视频| 成年美女黄网站色视频大全免费 | 国产老妇伦熟女老妇高清| 日韩av不卡免费在线播放| 国产69精品久久久久777片| 99久久精品热视频| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 99久国产av精品国产电影| 久久久久久九九精品二区国产| 妹子高潮喷水视频| 亚洲av.av天堂| 日韩视频在线欧美| 欧美性感艳星| 99视频精品全部免费 在线| 97精品久久久久久久久久精品| 精品久久久久久久久亚洲| 国产乱人偷精品视频| 日韩大片免费观看网站| 中文资源天堂在线| 欧美xxxx黑人xx丫x性爽| 国产永久视频网站| 成年av动漫网址| 色吧在线观看| 国产伦理片在线播放av一区| 能在线免费看毛片的网站| 欧美三级亚洲精品| a级毛色黄片| 亚洲欧洲国产日韩| 精品一区二区三卡| 亚洲色图综合在线观看| 国产女主播在线喷水免费视频网站| 成人二区视频| 色吧在线观看| 人妻一区二区av| 97热精品久久久久久| 欧美精品一区二区大全| 国产亚洲一区二区精品| 日韩大片免费观看网站| 国产毛片在线视频| 国语对白做爰xxxⅹ性视频网站| 久久久亚洲精品成人影院| 热re99久久精品国产66热6| 十分钟在线观看高清视频www | 黑丝袜美女国产一区| 免费黄色在线免费观看| 日本vs欧美在线观看视频 | 在线观看免费日韩欧美大片 | 精品99又大又爽又粗少妇毛片| 久久久久视频综合| 久久精品国产亚洲av涩爱| 2021少妇久久久久久久久久久| 黄片无遮挡物在线观看| 日日啪夜夜爽| 国产精品精品国产色婷婷| 插逼视频在线观看| 99热全是精品| 精品久久久久久电影网| 在线播放无遮挡| 亚洲va在线va天堂va国产| 男人舔奶头视频| av黄色大香蕉| 丰满迷人的少妇在线观看| 在线天堂最新版资源| 美女高潮的动态| 日韩中文字幕视频在线看片 | 免费观看的影片在线观看| 亚洲精品,欧美精品| 国产色爽女视频免费观看| 视频中文字幕在线观看| 精品熟女少妇av免费看| 久久精品久久久久久久性| 亚洲av男天堂| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 日日啪夜夜撸| 精品亚洲乱码少妇综合久久| 国产亚洲最大av| 九九在线视频观看精品| 欧美丝袜亚洲另类| 99久久中文字幕三级久久日本| 蜜桃在线观看..| 夜夜骑夜夜射夜夜干| 亚洲天堂av无毛| 在线观看免费视频网站a站| 六月丁香七月| 亚洲精品自拍成人| 久久久久久久久久久丰满| 激情五月婷婷亚洲| 一级毛片黄色毛片免费观看视频| 免费看日本二区| 免费久久久久久久精品成人欧美视频 | 观看av在线不卡| 一级毛片aaaaaa免费看小| 久久久久久久精品精品| 日本黄大片高清| 女的被弄到高潮叫床怎么办| 高清av免费在线| 人人妻人人澡人人爽人人夜夜| a级毛色黄片| 亚洲一级一片aⅴ在线观看| 人妻一区二区av| 成年人午夜在线观看视频| 一区二区av电影网| 91狼人影院| 亚洲四区av| 深夜a级毛片| 成人美女网站在线观看视频| 一级毛片久久久久久久久女| 日本-黄色视频高清免费观看| 天堂俺去俺来也www色官网| 久久久久视频综合| 五月开心婷婷网| 久久久久性生活片| 国产男人的电影天堂91| 国产在线免费精品| 亚洲精品第二区| 中国三级夫妇交换| www.av在线官网国产| 欧美精品亚洲一区二区| 99久久中文字幕三级久久日本| 91狼人影院| 久久久色成人| 精品国产三级普通话版| 91狼人影院| 老司机影院成人| 亚洲成人中文字幕在线播放| av视频免费观看在线观看| 免费观看的影片在线观看| 最新中文字幕久久久久| 中国美白少妇内射xxxbb| 2021少妇久久久久久久久久久| 成人国产麻豆网| 在线播放无遮挡| 在线免费十八禁|