• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Thermally Coupled Reactive Distillation Column for the Hydrolysis of Methyl Acetate

    2015-06-22 14:38:29ZhaiJianLiuYuliangSunLanyiWangRujun
    中國煉油與石油化工 2015年2期
    關鍵詞:節(jié)約能源河網(wǎng)節(jié)約用水

    Zhai Jian; Liu Yuliang; Sun Lanyi; Wang Rujun

    (1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580; 2. China Petroleum Engineering Co., Ltd., Beijing Company, Beijing 100085)

    A Novel Thermally Coupled Reactive Distillation Column for the Hydrolysis of Methyl Acetate

    Zhai Jian1; Liu Yuliang1; Sun Lanyi1; Wang Rujun2

    (1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580; 2. China Petroleum Engineering Co., Ltd., Beijing Company, Beijing 100085)

    A different pressure thermally coupled reactive distillation column (DPT-RD) for the hydrolysis of methyl acetate (MeAc) is developed, and its design and optimization procedures are investigated. The sensitivity analysis is carried out to minimize the energy consumption, which is associated with the total annual cost (TAC). The influence of the proposed DPTRD scheme on energy consumption and economic efficiency are evaluated in comparison with the conventional reactive distillation column (CRD). Both the DPT-RD and CRD are simulated with the Aspen Plus?, and it can be observed that for the DPT-RD the energy consumption and the TAC are reduced, and the thermodynamic efficiency is increased as compared with the CRD process.

    different pressure thermally coupled distillation; reactive distillation; thermodynamic efficiency; energy savings; total annual cost

    1 Introduction

    Distillation columns are widely used in the petrochemical process, but they are also well-known for their high energy consumption and low thermodynamic efficiency. As a result, the process intensification becomes an important trend in chemical industry, which can improve process efficiency and decrease energy consumption by linking different separation units together or integrating with other processes[1]. Many kinds of energy integration techniques have been developed, such as the dividing wall column[2-3], the internally heat-integrated distillation column[4-6], the heat pump-assisted distillation column[7-8], etc. The different pressure thermally coupled distillation (DPT-CD) column is an example of internally thermally coupled distillation technology developed to achieve energy conservation[9]. In this technology, a distillation column is divided into two columns operating under different pressures. The top stream from the high-pressure column is used as the heat source for the reboiler of the low-pressure column. In this way, the thermally coupled process is realized. Li, et al.[9]analyzed the energy saving of DPT-CD by taking the separation of propane-propylene and C4hydrocarbons as an example, and found out that upon comparing with ordinary distillation technologies, the energy consumption could be reduced by 92.3% and 87.1% in these two DPT-CD processes, respectively.

    Reactive distillation is an innovative process with numerous applications in the petroleum and chemical industries. It combines the reaction and separation operations together, which can reduce the energy consumption and capital costs[10-11]. This technique is specifically applied to the equilibrium-limited reactions such as esteri fication and ester hydrolysis reactions. The conversion rate can be increased far beyond what is expected due to the continuous removal of reaction products from the reactive zone. Researchers’ results[12-13]showed that reactive distillation has great economic and environmental advantages. Gao Xin, et al.[14]proposed a new process based on the catalytic distillation for MeAc hydrolysis, and the energy saving for this process is 28.6%. Fuchigami[15]applied reactive distillation to the hydrolysis of MeAc by using reactive column packing made of ion-exchange resin molded with polyethylene powder in a furnace, investigated the in fluence of operating variables on the conversion of MeAc, and finally found out that the total energy requirement of

    the optimum process was only about 50% as much as that of the conventional process. Han, et al.[16]proposed adding a pre-reactor before the reactive distillation column, and got a great improvement in MeAc throughput compared with the traditional process. Lee, et al.[17]proposed a novel process for MeAc hydrolysis, in which the reflux drum of the distillation column was used as the fixed bed reactor packed with solid acid catalysts.

    The different pressure thermally coupled reactive distillation column (DPT-RD) proposed in this article combines DPT-CD and reactive distillation to form a new process intensification technology. Gao Xin and coworkers[18]investigated this novel configuration in the process for tert-amyl methyl ether synthesis. The results showed that the total annual cost (TAC) of this process was by about 6.6% lower than the conventional reactive distillation column (CRD) process. As a typical ester hydrolysis reaction, the hydrolysis of MeAc is investigated in this paper. The design and optimization procedures of the DPT-RD proposed are evaluated and the thermodynamic efficiency and economic performance of the DPTRD are studied.

    2 Process Description

    2.1 Conventional reactive distillation column

    Upon considering the conversion of MeAc and the need of subsequent separation process, the process flow diagram in Figure 1 is supposed as the conventional process in this work.

    Figure 1 Conventional reactive distillation process for MeAc hydrolysis

    The CRD column has 27 stages, which can be divided into three sections, namely the rectifying section, the stripping section and the reactive section (6thto 17thstage). The separation occurs in all sections. In the reactive section, the MeAc hydrolysis reaction takes place:

    The reaction is rate controlled with a liquid holdup of 0.063 m3in the reactive section. The NKC-9 ion exchange resin is chosen as the catalyst, and Quan Xia, et al.[19]provided the reaction kinetics equations which are shown as follows:

    where R is the reaction rate, L/(mol·h); xiis the molar fraction of component i; and kfand krare reaction kinetic constants of the forward and reverse reaction, respectively, L/(mol·h). The reactive section is packed with acid catalyst. The assumptions are made as follows: the catalyst loading occupies half of the tray holdup volume, and the tray holdup is determined by assuming a weir height of 50 mm with a tray spacing of 0.6 m.

    A mixture of MeAc and methanol (65:35 in molar ratio) is fed to the bottom of reactive zone with a flow rate of 76.92 kmol/h, and water is routed to the top of column with a flow rate of 250 kmol/h. The vapor condensed at the top of the column is totally recycled. The reflux ratio (reflux ratio=FL/FDas shown in Figure 2) of the CRD is specified at 10 and the top stage/condenser pressure is 0.112 1 MPa with a stage pressure drop of 0.000 7 MPa. The flow sheet of CRD implemented in the Aspen Plus is shown in Figure 2, and Table 1 gives its design parameters.

    Figure 2 Flow sheet of CRD implemented in Aspen Plus

    Table 1 Design parameters of CRD

    2.2 Different pressure thermally coupled reactive distillation column

    DPT-RD contains an atmospheric column and a column with higher pressure. As the hydrolysis of MeAc is an endothermic reaction, high pressure and temperature is in favor of positive reaction, and a configuration of the reaction taking place in the high-pressure column is chosen in this work. The model of DPT-RD in the platform of the Aspen Plus is shown in Figure 3. DPT-RD mainly contains a high-pressure column (T1), a low-pressure column (T2), a compressor (COMPR), a main heat exchanger (HE1), an assisted reboiler (HE3) and an assisted condenser (HE2). The reactive zone of DPT-RD is wholly placed in the high-pressure column (T1).

    The feedstocks and products of DPT-RD are identical with CRD to keep the comparability of the two processes. The design parameters of DPT-RD are detailed in Table 2. In this study, the split fractions of splitters SP1 and SP2 are defined as

    where FT1D-CR, FT1D-1, FT2B-P, and FT2Bare the flow rate of T1D-CR, T1D-1, T2B-P and T2B in Figure 3, respectively.

    Figure 3 Flow sheet model of DPT-RD implemented in Aspen Plus

    Table 2 Design parameters of DPT-RD

    3 Design and Simulation

    There are three steps for the development of DPT-RD: shortcut design, rigorous simulation and optimization. The design method of the DPT-RD is based on the CRD. The feed conditions, product specifications and column operating conditions are available from either the plant or the given examples depending on the situation.

    The simulation of the DPT-RD is carried out using the rigorous distillation module RadFrac of Aspen Plus?. The UNIQUAC method is adopted for the calculation of the activity coefficients in liquid phase and the Hayden-O’Conell equation of state is used to describe the vapor phase behavior. The predicted azeotropic temperatures and compositions agree well with experimental results[20], as shown in Table 3.

    The shortcut design of the DPT-RD can be obtained by dividing a CRD into two columns with different pressures and by exchanging heat between the top stream from the high-pressure column and the bottom stream of the lowpressure column. And a compressor is adopted to provide the upward vapor for the high-pressure column.

    The RadFrac module of Aspen Plus?, a rigorous model for simulating all types of multistage vapor-liquid fractionation operations, is selected for the simulation of the flowchart as shown in Figure 3. The UNIQ-HOC physicalproperty method is adopted when the simulation is implemented using the Aspen Plus. Rigorous simulation used in the present study is based on the equilibrium-stage model, which uses the mass, equilibrium, summation of molar fractions and enthalpy (MESH) equations for each stage. The stage numbers of the whole column and reaction section in DPT-RD are the same as those of CRD respectively, with the purpose of comparing the performance of the two processes. And for both of DPT-RD and CRD, the stages are numbered in a downward direction.

    Table 3 Properties of azeotropic mixtures obtained during hydrolyzation of MeAc

    According to the features of DPT-RD (Figure 3), many sensitivity tests have been carried out in the optimization process to adjust the design and operating variables. Here, the design variables considered are the top pressure of T1, the compression ratio, the feeding stages of water and MeAc, the split fraction of SP1, and the split fraction of SP2. By keeping the input conditions identical for both distillation schemes, the variables of the DPT-RD are systematically adjusted to obtain the conditions that meet the product specifications.

    3.1 Selection of top pressure of T1

    Here, the heat transfer temperature difference refers to the difference between the top temperature of T1 and the bottom temperature of T2. Only after the heat transfer temperature difference reaches a specific value, the DPTRD then can operate effectively, which is very crucial for the good performance of DPT-RD. Figure 4 illustrates how the top pressure of T1 affects the heat transfer temperature difference of DPT-RD. It shows that, along with the increase in the top pressure of T1, the top temperatureof T1 would increase while the bottom temperature of T2 remains nearly unchanged, and the temperature difference would enlarge finally. When the heat duty keeps constant, the heat-exchange area should increase with the reduction of the temperature difference. Upon considering the cost of heat exchanger and the normal operation of DPT-RD, the top pressure of T1 was set at 0.233 0 MPa.

    Figure 4 Effect of pressure on heat transfer temperature difference

    3.2 Selection of compression ratio

    The influence of compression ratio on product purity and energy consumption of DPT-RD is presented in Figure 5 with other variables remaining unchanged. Obviously, as the compression ratio increases, the molar fraction of MeAc in the product stream drawn from the bottom of T2 slightly decreases. However, the energy consumed by the compressor significantly increases with an increasing compression ratio. Finally, the compression ratio is selected as 2.5 to meet the product specification.

    Figure 5 Effect of compression ratio on product purity andenergy consumption

    3.3 Selection of feeding stage of water

    The influence of the feeding stage of water on the product purity and energy consumption is displayed in Figure 6. This simulation experiment is performed with the values of other variables fixed. It can be concluded that the feeding stage of water has little impact on product purity and energy consumption. The 6th stage (numbered from top downward) is chosen as the stage of water feeding, where the molar fraction of MeAc in product stream and the compressor duty would change relatively quickly.

    Figure 6 Effect of feeding stage of water on product purity and energy consumption

    3.4 Selection of feeding stage of MeAc and methanol

    The feeding stage of MeAc and methanol has been varied from 8th to 19th (numbered from top downward), while the values of other variables remain the same as those shown in Table 3. Figure 7 shows how the feeding stage of MeAc and methanol affects the product purity and energy consumptionof DPT-RD. Both of the molar fraction of MeAc and the compressor duty nearly remain constant before the feeding stage moves to the 16th stage, but when the feeding stage continues to move downward, the compressor consumes more energy and the product purity drops sharply. The stream of MeAc and methanol is fed at 16th stage hereupon to achieve the desired product purity in this work.

    3.5 Selection of split fraction of SP1

    Figure 8 shows the effect of split fraction of SP1 on product purity and energy consumption, with other variables remaining constant. It’s clear that, when the split fraction of SP1 increases, the product purity also increases, but the energy consumption increases constantly as well. This happens because of the increase in the flow rates inside the column. To save energy as much as possible, the split fraction of SP1 is chosen as 0.43.

    Figure 8 Effect of split fraction of SP1 on product purity and energy consumption

    3.6 Selection of split fraction of SP2

    The top pressure of T1, the compression ratio, the feeding stage of water, the feeding stage of MeAc and methanol, and the split fraction of SP1 are specified at 0.233 0 MPa, 2.5, 4, 17, and 0.43, respectively, as required by the test process. When the split fraction of SP2 varies, the corresponding product purity and energy consumption profiles are presented in Figure 9. As the split fraction of SP2 increases, the product purity at first remains unchanged and then drops quickly, while the energy consumption decreases continuously. This happens because the hydrolysis of MeAc is an equilibrium-limited reaction, and the continuous removal of reaction products facilitates the conversion of MeAc. From this sensitivity test, the split

    另外,美國“河網(wǎng)”組織于2009年10月26日舉辦了主題為“節(jié)約用水,節(jié)約能源:應對氣候變化和保護河流的綜合方法”的研討會,其主要議題就是水—能、節(jié)水和節(jié)能的關系。相信隨著全球氣候變化導致的水資源供給不穩(wěn)定性加劇以及能源緊缺,該領域?qū)蔀槲磥淼囊粋€研究熱點。

    Figure 9 Effect of split fraction of SP2 on product purity and energy consumption

    fraction of SP2 can be selected as 0.55. Based on the aforementioned work, the optimum parameters of DPT-RD for the hydrolysis of MeAc can be obtained, and the simulation results of DPT-RD under optimal conditions are shown in Table 4.

    4 Results and Discussions

    There are manyReferences for the calculation of thermodynamic efficiency and total annual cost (TAC)[21-22]. The thermodynamic analysis results and TAC of CRD and DPT-RD for the hydrolysis of MeAc are summarized in Table 5.It can be seen that the CRD requires a heat duty of 7 062.3 kW while the energy consumption of the DPT-RD is 2 441.1 kW, which shows that the DPT-RD can save the energy by 36.1% compared to the CRD. The total heat transfer area of the reboilers of the CRD is 357.3 m2, while that of the DPT-RD is 149.3 m2, which can achieve a reduction of 58.2%. The reduction in total heat transfer area of the condensers is about 90.6% with the value equating to 560.6 m2for the CRD and 54.1 m2for the DPT-RD, respectively. The capital cost investment for the DPT-RD is increased compared to the CRD because of the expensive cost of compressor used in the DPT-RD. As regards the operating cost aspects, the CRD requires both a bottom reboiler and a top condenser, whereas DPT-RD could omit the bottom reboiler. Hence, the operating cost for the DPT-RD is relatively low. As a result, compared to the CRD, the TAC for the DPT-RD is decreased by about 41.3% over a period of 5 years of plant life time with the value equating to 2 238.2×103$/a for the CRD and 1 314.0×103$/a for the DPT-RD, respectively. Besides, the thermodynamic efficiency is enhanced by 2.9%. According to the above analysis, it is obvious that the DPT-RD is an economic option and can save much energy and TAC for the hydrolysis of MeAc.

    Table 5 Thermodynamic analysis results and TAC of CRD and DPT-RD for the hydrolysis of MeAc

    5 Conclusions

    In this study, the hydrolysis of MeAc is studied using a CRD and a different pressure thermally coupled reactive distillation column (DPT-RD). The design configuration and optimization of this technology are investigated. The optimal design flow sheet of DPT-RD is obtained by minimizing the total energy consumption of the process by means of the sensitivity analysis. The results show that the proposed DPT-RD can achieve significant energy savings and improve the thermodynamic efficiency by around 2.9%, and its TAC is reduced by 41.3% in comparison with the CRD. Obviously, the DPT-RD provides advantages in terms of higher energy savings and a lower TAC.

    Acknowledgements: This work was supported by the National Natural Science Foundation of China (Grant Nos. 21276279, 21476261); the Key Technologies Development Project of Qingdao Economic and Technological Development Zone (Grant No. 2013-1-57); the Fundamental Research Funds for the Central Universities (No. 14CX05030A; No. 14CX06108A). Furthermore, the authors are grateful to the editor and the anonymous reviewers for their helpful comments and constructive suggestions with regard to the revision of the paper.

    [1] R eay D. The role of process intensification in cutting greenhouse gas emissions[J]. Applied Thermal Engineering, 2008, 28(16): 2011-2019

    [2] M ueller I, Kenig E Y. Reactive distillation in a dividing wall column: Rate-based modeling and simulation[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3709-3719

    [3] P remkumar R, Rangaiah G P. Retrofitting conventional column systems to dividing-wall columns[J]. Chemical Engineering Research and Design, 2009, 87(1): 47-60

    [5] N akaiwa M, Huang K, Endo A, et al. Internally heatintegrated distillation columns: A review[J]. Chemical Engineering Research and Design, 2003, 81(1): 162-177

    [6] Naito K, Nakaiwa M, Huang K, et al. Operation of a bench-scale ideal heat integrated distillation column (HID-iC): an experimental study[J]. Computers & Chemical Engineering, 2000, 24(2-7): 495-499

    [7] Gadalla M, Oluji? ?, De Rijke A, et al. Reducing CO2emissions of internally heat-integrated distillation columns for separation of close boiling mixtures[J]. Energy, 2006, 31(13): 2409-2417

    [8] Annakou O, Mizsey P. Rigorous investigation of heat pump assisted distillation[J]. Heat Recovery Systems and CHP, 1995, 15(3): 241-247

    [9] Li H, Li X, Luo M. Different pressure thermally coupled distillation technology for energy saving [J]. Chemical Industry and Engineering Progress, 2008, 27(7): 1125-1128

    [10] Luyben W L, Yu C C. Reactive Distillation Design and Control[M]. Wiley-AIChE, 2008

    [11] Sundmacher K, Kienle A. Reactive Distillation: Status and Future Directions[M]. Wiley-VCH, 2006

    [12] Taylor R., Krishna R. Modelling reactive distillation[J]. Chemical Engineering Science, 2000, 55(22): 5183-5229

    [13] Malone M F. Reactive distillation[J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 3953-3957

    [14] Gao X, Li X, Li H. Hydrolysis of methyl acetate via catalytic distillation: Simulation and design of new technological process[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(12): 1267-1276

    [15] Fuchigami Y. Hydrolysis of methyl acetate in distillation column packed with reactive packing of ion exchange resin[J]. Journal of Chemical Engineering of Japan, 1990, 23(3): 354-359

    [16] Han S J, Jin Y, Yu Z Q. Application of a fluidized reaction-distillation column for hydrolysis of methyl acetate[J]. Chemical Engineering Journal, 1997, 66(3): 227-230

    [17] Lee M K, Kim T J. Method and apparatus for hydrolyzing methyl acetate: KR, 2000072037[P], 2000-12-05

    [18] Gao X, Wang F Z, Li H., et al. Heat-integrated reactive distillation process for TAME synthesis[J]. Separation and Purification Technology, 2014, 132: 468-478

    [19] Quan X, Chen X, Wei K. Kinetics of the hydrolysis of methyl acetate catalyzed by NKC-9 cation-exchange resin[J]. Industrial Catalysis, 2006, 14(10): 31-35 (in Chinese)

    [20] Gmehling J, Menke J, Krafczyk J, et al. Azeotropic Data, Volume 3[M]. VCH Verlag, Weinheim, 2004

    [21] Mane A, Jana A K. A new intensified heat integration in distillation column[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 9534-9541

    [22] SunlY, Chang X W, Qi C X, et al. Implementation of ethanol dehydration using dividing-wall heterogeneous azeotropic distillation column[J]. Separation Science and Technology, 2011, 46(8): 1365-1375

    date: 2014-12-14; Accepted date: 2015-04-06.

    Professor Sun Lanyi, Telephone: +86-13854208340; Fax: +86-532-86981787; E-mail: sunlanyi@upc.edu.cn.

    猜你喜歡
    節(jié)約能源河網(wǎng)節(jié)約用水
    可穿戴設備高效自供電結(jié)構(gòu)設計研究
    基于小世界網(wǎng)絡的海河流域河網(wǎng)結(jié)構(gòu)及功能響應
    水科學進展(2023年4期)2023-10-07 11:23:44
    廣 告 目 次
    節(jié)約用水
    品牌研究(2022年23期)2022-08-24 03:38:58
    節(jié)約能源(公益宣傳)
    節(jié)約用水
    基于PSR模型的上海地區(qū)河網(wǎng)脆弱性探討
    節(jié)約用水
    節(jié)約用水
    不同引水水源對平原河網(wǎng)影響分析
    男女午夜视频在线观看 | 一级毛片 在线播放| 国产黄色免费在线视频| 在线天堂中文资源库| 成年女人在线观看亚洲视频| 天天躁夜夜躁狠狠躁躁| 久久精品国产a三级三级三级| 高清在线视频一区二区三区| 尾随美女入室| 国产精品国产av在线观看| 国产欧美日韩一区二区三区在线| 少妇猛男粗大的猛烈进出视频| 久久97久久精品| 成年人午夜在线观看视频| 少妇熟女欧美另类| 少妇精品久久久久久久| av.在线天堂| 国产熟女午夜一区二区三区| 国产片内射在线| 国语对白做爰xxxⅹ性视频网站| 亚洲精品第二区| 免费黄频网站在线观看国产| 国产一区二区激情短视频 | 精品国产露脸久久av麻豆| 交换朋友夫妻互换小说| av免费在线看不卡| 色哟哟·www| 有码 亚洲区| 色哟哟·www| 亚洲国产最新在线播放| 午夜精品国产一区二区电影| 极品少妇高潮喷水抽搐| www.av在线官网国产| 18在线观看网站| 少妇的丰满在线观看| 婷婷色综合大香蕉| 桃花免费在线播放| 大香蕉97超碰在线| 一级爰片在线观看| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡动漫免费视频| 亚洲av福利一区| 91在线精品国自产拍蜜月| 国产日韩欧美视频二区| 国产精品国产av在线观看| 亚洲精品美女久久久久99蜜臀 | 中文天堂在线官网| 亚洲av福利一区| 国产精品久久久久久av不卡| 晚上一个人看的免费电影| tube8黄色片| 亚洲人成网站在线观看播放| 日韩欧美一区视频在线观看| 成年人午夜在线观看视频| 国产一区亚洲一区在线观看| 男女边吃奶边做爰视频| 激情五月婷婷亚洲| 校园人妻丝袜中文字幕| 色视频在线一区二区三区| 国产免费一区二区三区四区乱码| 9热在线视频观看99| 熟妇人妻不卡中文字幕| 国产精品国产av在线观看| 女人久久www免费人成看片| 人人妻人人澡人人爽人人夜夜| 久久av网站| 熟女av电影| 夫妻性生交免费视频一级片| 欧美精品一区二区大全| 91aial.com中文字幕在线观看| 观看av在线不卡| 日本色播在线视频| 日韩制服骚丝袜av| 国产亚洲午夜精品一区二区久久| 国产综合精华液| 多毛熟女@视频| 日日摸夜夜添夜夜爱| 久久综合国产亚洲精品| 成人国语在线视频| 日韩伦理黄色片| 国产黄色免费在线视频| 日本午夜av视频| 日韩大片免费观看网站| 午夜福利网站1000一区二区三区| 国产男女超爽视频在线观看| a级毛片在线看网站| 国产国语露脸激情在线看| 久久久久精品久久久久真实原创| 国产麻豆69| 欧美bdsm另类| 免费女性裸体啪啪无遮挡网站| 99视频精品全部免费 在线| 纵有疾风起免费观看全集完整版| 满18在线观看网站| 亚洲精品自拍成人| 91国产中文字幕| 男女边摸边吃奶| 成人黄色视频免费在线看| 精品国产一区二区久久| av播播在线观看一区| 亚洲美女搞黄在线观看| 九九爱精品视频在线观看| 久久久精品区二区三区| 国产深夜福利视频在线观看| 国产深夜福利视频在线观看| 成人综合一区亚洲| 久久天堂一区二区三区四区| 日韩欧美一区视频在线观看| 老汉色av国产亚洲站长工具| 国产成人精品在线电影| 男女之事视频高清在线观看| 亚洲精品久久成人aⅴ小说| av欧美777| 国产精品1区2区在线观看. | 午夜福利欧美成人| 国产主播在线观看一区二区| 国产xxxxx性猛交| 午夜免费观看网址| 五月开心婷婷网| 超色免费av| 久久久国产一区二区| 99国产精品一区二区三区| 大型黄色视频在线免费观看| 免费在线观看完整版高清| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 久久精品亚洲熟妇少妇任你| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 很黄的视频免费| 精品卡一卡二卡四卡免费| 亚洲专区中文字幕在线| 天堂√8在线中文| 高清毛片免费观看视频网站 | 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 国产精品免费视频内射| 国产av一区二区精品久久| 一级,二级,三级黄色视频| 国产97色在线日韩免费| 女人精品久久久久毛片| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 婷婷成人精品国产| 亚洲,欧美精品.| a在线观看视频网站| 午夜成年电影在线免费观看| 精品一区二区三区视频在线观看免费 | 视频在线观看一区二区三区| 欧美精品av麻豆av| 欧美日韩av久久| 久久久精品免费免费高清| 亚洲精品自拍成人| av国产精品久久久久影院| 婷婷成人精品国产| 午夜福利欧美成人| 国产色视频综合| 欧美日韩av久久| 日韩 欧美 亚洲 中文字幕| 久久精品国产亚洲av高清一级| 一级片'在线观看视频| av免费在线观看网站| 1024香蕉在线观看| 国产一区二区三区在线臀色熟女 | 亚洲中文字幕日韩| 久久久久久久国产电影| 在线视频色国产色| 亚洲成av片中文字幕在线观看| 午夜福利在线免费观看网站| 少妇裸体淫交视频免费看高清 | 色婷婷久久久亚洲欧美| 亚洲av片天天在线观看| 午夜两性在线视频| 午夜两性在线视频| 久久人人97超碰香蕉20202| 9热在线视频观看99| 18禁观看日本| 亚洲精品一二三| 日韩欧美免费精品| 亚洲色图 男人天堂 中文字幕| 国产精品秋霞免费鲁丝片| 国产成人欧美在线观看 | 亚洲av片天天在线观看| 日日夜夜操网爽| 老司机在亚洲福利影院| 国精品久久久久久国模美| 色老头精品视频在线观看| 亚洲精品国产区一区二| 在线永久观看黄色视频| 19禁男女啪啪无遮挡网站| 黄频高清免费视频| 麻豆国产av国片精品| 国产精品久久电影中文字幕 | 动漫黄色视频在线观看| 欧美黑人欧美精品刺激| 日韩有码中文字幕| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 香蕉国产在线看| 怎么达到女性高潮| 国产一区有黄有色的免费视频| 天天操日日干夜夜撸| 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 日韩三级视频一区二区三区| tocl精华| 成年女人毛片免费观看观看9 | 免费观看a级毛片全部| 亚洲av熟女| 69精品国产乱码久久久| 777米奇影视久久| 国产激情欧美一区二区| 久久国产精品影院| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 亚洲国产精品合色在线| 亚洲av美国av| 国产欧美日韩综合在线一区二区| 亚洲专区字幕在线| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 日韩欧美在线二视频 | 日韩免费av在线播放| 午夜福利免费观看在线| 午夜久久久在线观看| 日韩中文字幕欧美一区二区| 久久中文字幕人妻熟女| 久久ye,这里只有精品| 国产成人欧美| 丝袜美腿诱惑在线| av一本久久久久| 一区二区三区激情视频| 一个人免费在线观看的高清视频| 精品午夜福利视频在线观看一区| 亚洲成人免费电影在线观看| 91成年电影在线观看| 日韩一卡2卡3卡4卡2021年| www日本在线高清视频| 国产精品国产av在线观看| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 精品福利观看| 亚洲中文字幕日韩| 亚洲精品在线观看二区| 99re6热这里在线精品视频| 在线看a的网站| 99热网站在线观看| 人人妻人人添人人爽欧美一区卜| 伊人久久大香线蕉亚洲五| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 天天添夜夜摸| 中文欧美无线码| 欧美中文综合在线视频| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放 | 成人手机av| 亚洲国产欧美网| 亚洲欧美色中文字幕在线| 这个男人来自地球电影免费观看| 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播| 在线看a的网站| 欧美久久黑人一区二区| 亚洲全国av大片| 18禁美女被吸乳视频| 大香蕉久久网| 人妻久久中文字幕网| 国产视频一区二区在线看| 捣出白浆h1v1| 欧洲精品卡2卡3卡4卡5卡区| 日本五十路高清| 精品福利永久在线观看| 免费观看精品视频网站| 久久精品aⅴ一区二区三区四区| 一边摸一边抽搐一进一小说 | 老汉色av国产亚洲站长工具| 精品无人区乱码1区二区| av不卡在线播放| 国产91精品成人一区二区三区| 国产成人av教育| 老司机在亚洲福利影院| 亚洲av电影在线进入| 视频区图区小说| 老司机深夜福利视频在线观看| 日韩欧美一区视频在线观看| aaaaa片日本免费| 曰老女人黄片| 久久中文字幕人妻熟女| 黄色a级毛片大全视频| 波多野结衣av一区二区av| 一区二区三区精品91| 天天躁日日躁夜夜躁夜夜| 91麻豆精品激情在线观看国产 | 看免费av毛片| 亚洲男人天堂网一区| 老司机福利观看| 午夜免费成人在线视频| 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 18禁美女被吸乳视频| 久久精品国产综合久久久| 另类亚洲欧美激情| 黄色片一级片一级黄色片| 岛国在线观看网站| 视频区欧美日本亚洲| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址 | 在线观看舔阴道视频| 日韩 欧美 亚洲 中文字幕| 成人黄色视频免费在线看| 99国产精品一区二区三区| 19禁男女啪啪无遮挡网站| 国产男女内射视频| 久久人人97超碰香蕉20202| 免费观看人在逋| 亚洲在线自拍视频| 欧美在线黄色| 麻豆国产av国片精品| 午夜激情av网站| 国产三级黄色录像| 国产精品一区二区免费欧美| 免费少妇av软件| 视频区图区小说| 国产精品1区2区在线观看. | aaaaa片日本免费| 久久久久国产精品人妻aⅴ院 | 国内久久婷婷六月综合欲色啪| www.熟女人妻精品国产| 欧美日韩瑟瑟在线播放| 色在线成人网| avwww免费| 一区二区日韩欧美中文字幕| 国产有黄有色有爽视频| 一进一出抽搐动态| av一本久久久久| av免费在线观看网站| 欧美黄色片欧美黄色片| 欧美激情高清一区二区三区| 久久久国产成人精品二区 | 国产精品二区激情视频| 精品一区二区三区四区五区乱码| 国产精品乱码一区二三区的特点 | 欧美日韩瑟瑟在线播放| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 国产淫语在线视频| 99久久国产精品久久久| 动漫黄色视频在线观看| 电影成人av| 国产亚洲精品一区二区www | 男女高潮啪啪啪动态图| 每晚都被弄得嗷嗷叫到高潮| 在线看a的网站| 在线国产一区二区在线| 99在线人妻在线中文字幕 | 国产精品久久久久成人av| 亚洲精品美女久久av网站| 高清av免费在线| 日韩制服丝袜自拍偷拍| 国产av又大| 欧美性长视频在线观看| 亚洲一码二码三码区别大吗| 国产精品99久久99久久久不卡| 啪啪无遮挡十八禁网站| 女同久久另类99精品国产91| 人人妻人人澡人人爽人人夜夜| 亚洲第一欧美日韩一区二区三区| 首页视频小说图片口味搜索| 啦啦啦视频在线资源免费观看| 久久国产精品影院| 国产精品香港三级国产av潘金莲| 亚洲七黄色美女视频| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 国产深夜福利视频在线观看| 黑丝袜美女国产一区| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看| 在线观看一区二区三区激情| 一区二区三区精品91| 午夜日韩欧美国产| 日韩欧美一区视频在线观看| 中文欧美无线码| 精品久久久精品久久久| 精品亚洲成a人片在线观看| 成人亚洲精品一区在线观看| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 国产亚洲av高清不卡| 日本黄色日本黄色录像| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 久久久国产成人免费| 国产精品电影一区二区三区 | 亚洲第一av免费看| 亚洲人成电影观看| av天堂久久9| 纯流量卡能插随身wifi吗| 人人妻人人爽人人添夜夜欢视频| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| avwww免费| 两性夫妻黄色片| 王馨瑶露胸无遮挡在线观看| 午夜免费成人在线视频| 国产有黄有色有爽视频| 色婷婷av一区二区三区视频| 国产精品国产高清国产av | 亚洲国产精品sss在线观看 | 久久久久久久国产电影| 亚洲黑人精品在线| 一级毛片精品| 日韩免费av在线播放| 99riav亚洲国产免费| 我的亚洲天堂| 变态另类成人亚洲欧美熟女 | 亚洲性夜色夜夜综合| 校园春色视频在线观看| 成人18禁在线播放| 成人国语在线视频| 欧美日韩精品网址| 国产又色又爽无遮挡免费看| 一区二区日韩欧美中文字幕| 午夜福利一区二区在线看| 欧美乱妇无乱码| 国产高清国产精品国产三级| 韩国精品一区二区三区| 一进一出抽搐gif免费好疼 | 精品国产一区二区三区久久久樱花| 久久久国产一区二区| 黄色成人免费大全| 国产高清激情床上av| 高清毛片免费观看视频网站 | netflix在线观看网站| 欧美精品高潮呻吟av久久| 一级片免费观看大全| 夜夜躁狠狠躁天天躁| 极品少妇高潮喷水抽搐| 一级,二级,三级黄色视频| 99精品在免费线老司机午夜| 这个男人来自地球电影免费观看| 亚洲五月婷婷丁香| 9热在线视频观看99| 国产伦人伦偷精品视频| 国产免费男女视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精品在线美女| 日本vs欧美在线观看视频| 精品一区二区三卡| 两个人看的免费小视频| 老司机影院毛片| 久久久久国产精品人妻aⅴ院 | 在线观看免费视频日本深夜| 国产欧美日韩综合在线一区二区| 在线观看一区二区三区激情| 丰满迷人的少妇在线观看| 女性生殖器流出的白浆| 岛国在线观看网站| 欧美成狂野欧美在线观看| 自线自在国产av| 大码成人一级视频| 午夜福利,免费看| 久久国产亚洲av麻豆专区| 一夜夜www| 久久香蕉精品热| 18禁黄网站禁片午夜丰满| 在线观看一区二区三区激情| 精品第一国产精品| 天天添夜夜摸| 国产精品1区2区在线观看. | 在线观看www视频免费| 两性夫妻黄色片| 国产高清视频在线播放一区| 久久久国产成人免费| 国产一区二区三区视频了| 两性夫妻黄色片| 国产一区二区三区视频了| 国产黄色免费在线视频| 超碰成人久久| 男女之事视频高清在线观看| 香蕉久久夜色| 欧美日韩亚洲综合一区二区三区_| 男男h啪啪无遮挡| 99精品欧美一区二区三区四区| 国产精品久久电影中文字幕 | 黄片大片在线免费观看| 女人被躁到高潮嗷嗷叫费观| 中文字幕色久视频| 欧美黑人欧美精品刺激| 一本大道久久a久久精品| 18禁裸乳无遮挡免费网站照片 | 欧美人与性动交α欧美精品济南到| 女人高潮潮喷娇喘18禁视频| svipshipincom国产片| 深夜精品福利| 欧美人与性动交α欧美软件| 成人手机av| 午夜影院日韩av| 久久ye,这里只有精品| 国产免费现黄频在线看| 久久精品亚洲熟妇少妇任你| 亚洲熟女精品中文字幕| 在线观看一区二区三区激情| 50天的宝宝边吃奶边哭怎么回事| 精品国产乱码久久久久久男人| 女同久久另类99精品国产91| 精品久久久久久电影网| 他把我摸到了高潮在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲一区二区三区欧美精品| 99国产极品粉嫩在线观看| 高清在线国产一区| 国产男女超爽视频在线观看| 一二三四在线观看免费中文在| 18禁黄网站禁片午夜丰满| 国产淫语在线视频| 黄色毛片三级朝国网站| 母亲3免费完整高清在线观看| 午夜两性在线视频| 99香蕉大伊视频| 999久久久国产精品视频| x7x7x7水蜜桃| 日韩成人在线观看一区二区三区| 99久久综合精品五月天人人| 精品久久久久久,| 免费久久久久久久精品成人欧美视频| 一a级毛片在线观看| 欧美国产精品一级二级三级| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看 | 婷婷精品国产亚洲av在线 | 日本五十路高清| 大码成人一级视频| 亚洲精品久久成人aⅴ小说| 色尼玛亚洲综合影院| 亚洲第一青青草原| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 丁香六月欧美| 亚洲国产欧美一区二区综合| 99久久人妻综合| 国产高清videossex| 黄色视频,在线免费观看| 黑人巨大精品欧美一区二区mp4| 日本vs欧美在线观看视频| 18禁国产床啪视频网站| av电影中文网址| 成年人黄色毛片网站| 久久国产精品男人的天堂亚洲| 亚洲精品久久午夜乱码| 大型av网站在线播放| 欧美日韩亚洲高清精品| √禁漫天堂资源中文www| 久久精品人人爽人人爽视色| 一边摸一边做爽爽视频免费| 在线av久久热| 天堂动漫精品| 下体分泌物呈黄色| 国产欧美日韩一区二区精品| 精品一品国产午夜福利视频| 精品卡一卡二卡四卡免费| 桃红色精品国产亚洲av| 无遮挡黄片免费观看| 免费观看精品视频网站| 久久久久久久久久久久大奶| 人人妻,人人澡人人爽秒播| 久久国产精品人妻蜜桃| 亚洲国产精品一区二区三区在线| 国产欧美日韩一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 极品教师在线免费播放| 亚洲精品国产区一区二| 欧美一级毛片孕妇| 国产不卡av网站在线观看| 亚洲一区二区三区不卡视频| 亚洲熟女精品中文字幕| 日韩欧美一区视频在线观看| 韩国av一区二区三区四区| 成年人黄色毛片网站| av欧美777| 欧美日韩国产mv在线观看视频| 久久精品亚洲av国产电影网| 无遮挡黄片免费观看| 亚洲精品久久午夜乱码| 最近最新免费中文字幕在线| 国产野战对白在线观看| 两个人看的免费小视频| 99国产精品一区二区蜜桃av | 免费久久久久久久精品成人欧美视频| 人人妻人人澡人人爽人人夜夜| 国产亚洲一区二区精品| 熟女少妇亚洲综合色aaa.| videosex国产| 亚洲中文字幕日韩| 亚洲综合色网址| 91成年电影在线观看| 国产99白浆流出| 午夜成年电影在线免费观看| 叶爱在线成人免费视频播放| 成人av一区二区三区在线看| av一本久久久久| 日本a在线网址| 亚洲全国av大片| 黑人欧美特级aaaaaa片| 啪啪无遮挡十八禁网站| 久久久国产欧美日韩av|