• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation

    2015-06-09 21:37:22GEXuyangMAYueZHOUShunwuandTimLI
    Advances in Atmospheric Sciences 2015年8期
    關(guān)鍵詞:財經(jīng)類民辦教學(xué)管理

    GE Xuyang,MA Yue,ZHOU Shunwu,and Tim LI

    1Key Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044

    2International Pacific Research Center,University of Hawaii,Hawaii 96822,USA

    Sensitivity of the Warm Core of Tropical Cyclones to Solar Radiation

    GE Xuyang?1,MA Yue1,ZHOU Shunwu1,and Tim LI2

    1Key Laboratory of Meteorological Disaster,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044

    2International Pacific Research Center,University of Hawaii,Hawaii 96822,USA

    To investigate the impacts of solar radiation on tropical cyclone(TC)warm-core structure(i.e.,the magnitude and height), a pair of idealized simulations are conducted by specifying different strengths of solar shortwave radiation.It is found that the TC warm core is highly sensitive to the shortwave radiative effect.For the nighttime storm,a tendency for a more intense warm core is found,with an elevated height compared to its daytime counterpart.As pointed out by previous studies,the radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection,which enhances the TC’s intensity.Due to the different inertial stabilities,the diabatic heating in the eyewall will force different secondary circulations.For a strong TC with a deeper vertical structure,this promotes a thin upper-level inflow layer.This inflow carries the lower stratospheric air with high potential temperature and descends adiabatically in the eye, resulting in significant upper-level warming.The Sawyer–Eliassen diagnosis further confirms that the height of the maximum temperature anomaly is likely attributable to the balance among the forced secondary circulations.

    tropical cyclone,warm core,structure,solar radiation

    1.Introduction

    It is well known that the warm core is a prominent feature of tropical cyclones(TCs).For a typical cyclone,its primary circulation(tangential wind)decreases with altitude.Hence, to satisfy the thermal wind balance relationship,it is required that the temperature weakens with the radius(Willoughby, 1990).The result is the so-called TC warm core.The characteristics of the warm core(i.e.,the magnitude and altitude) are closely linked to TC intensity and structure.For instance, the higher the altitude of the peak warming,the lower the surface pressure and thus the more intense the TC is.Previous studies(Hawkins and Rubsam,1968;Hawkins and Imbembo,1976;Emanuel,1986;Chen and Zhang,2013)have found that the height of the maximum warm core usually occurs in the upper levels,such as 200–300 hPa.Interestingly, Stern and Nolan(2012)examined the structure of simulated TCs,and found that the warm core generally maximized in the mid-troposphere(i.e.,z=5–6 km,z stands for height), which was in contrast to the widely held view that this occurs in the upper troposphere.The recent observational study by Durden(2013)revealed that the altitude of the warm core shows large variability.That is,the warm core may occur anywhere between 700 and 200 hPa,and in some cases may even have multiple centers.Hence,there is debate surrounding the characteristics of the TC warm core,which encourages us to investigate the possible processes responsible for the structure of the TC warm core.

    Numerous investigators(Webster and Stephens,1980; Tao et al.,1996;Dai,2001;Nesbitt and Zipser,2003)have examined the impacts of the diurnal variation of solar radiation on the tropical climate system.Possible mechanisms have been put forward regarding the roles of solar variation in modulating tropical convection.Recent numerical studies(Ge et al.,2014;Melhauser and Zhang,2014)point out that the environmental stability and deep moist convection are substantially modulated by the diurnal variation of radiation.The radiative cooling during nighttime destabilizes the local and large-scale environment and thus promotes deep moist convection,which enhances TC intensity.However, these studies mainly focused on the early stage of TC development,and the impacts of the diurnal variation of radiation on TC warm-core structure remain less clear.In the present study,the primary purpose is to demonstrate the potential impacts of solar radiation on the structure of the TC warm core.

    The remainder of the paper is organized as the follows. In section 2,the characteristics of the TC warm core(i.e.,the height and intensity)are discussed.Possible physical interpretations are presented in section 3.The results of sensitiv-ity tests using different model schemes are presented in section 4.And finally,a short summary and further discussion is given in section 5.

    2.Preliminary results

    In our previous study(Ge et al.,2014),the impacts of the diurnal cycle of radiation on TC development and size were examined.Three idealized experiments were conducted by specifying different levels of solar radiation.In the control experiment(CTL),the TC developed with a full diurnal cycle of solar radiation.In the sensitivity experiments,the solar radiation was either excluded or artificially extreme.Specifically,shortwave solar radiation was excluded in the NIGHT experiment,whereas it was strongest in the DAY experiment. Further details,including a description of the model and the design of the experiments can be found in the paper(Ge et al.,2014).In the present companion study,the primary goal is to understand the possible mechanisms accounting for the structure of the TC warm core.

    The simulations showed salient differences in TC development and size,especially between NIGHT and DAY.The storm in CTL bore many similarities as that in NIGHT.To emphasize the discrepancies,the NIGHT and DAY results in particular are further compared in the present study.Figure 1 displays the evolution of the intensity(represented by the central minimum sea level pressure,MSLP)in NIGHT and DAY,respectively.The weak vortices eventually develop into stronger TCs in both experiments,although there are marked differences in terms of the intensification rate.The NIGHT (DAY)simulation exhibits a faster(slower)intensification rate.For instance,in NIGHT,the MSLP starts to fall rapidly shortly after t=36 h,which is nearly 24 hours earlier than in DAY.This suggests that,under the identical initial environmental conditions,the timing of rapid intensification(RI) varies with different radiative effects.Specifically,the TC is likely to develop quicker during nighttime than daytime.The possible mechanisms involved in the influence of solar radiation on TC intensification have been discussed in previous studies(Ge et al.,2014;Melhauser and Zhang,2014).

    Figure 2 compares the azimuthally averaged radial circulations and temperature perturbations during the mature stage.In this study,the temperature averaged within a particular annulus(i.e.,the radius between 600 and 700 km) is taken as the environmental value,and thus the deviation from this value reflects the characteristics of the TC warm core.Importantly,when the potential temperature is used to calculate the perturbation,the features of the warm core are qualitatively similar.Hence,the perturbation temperature is selected to represent the behavior of the warm core in the following sections.Generally,in the upper outflow layer, the warming spreads outward more radially.Obviously,there are pronounced differences in the warm-core areas between NIGHT and DAY.In NIGHT,the peak of the warm core is located at the same level as the outflow layer.However,in DAY,the height of peak warming is much lower than the outflow layer.More specifically,the height of the warm core in NIGHT is z=12–14 km,which is much higher than that in the DAY storm(i.e.,z=6–8 km).Furthermore,the magnitude is approximately 16?C in NIGHT,which is also greater than its counterpart(12?C).

    The structural difference of the warm core is dynamically consistent with the intensity changes.According to thehydrostatic balance relationship,the surface pressure deficit can be derived as follows:

    here ΔPsis the pressure difference between the TC center and the environment,Tvis the virtual temperature,PTis the pressure at the top of the troposphere,and other symbols are traditional meteorological variables.It can be inferred from Eq. (1),due to the“d P/P”effect,the surface pressure will be lower if the warming anomaly is highly elevated.This agrees with the fact that the NIGHT storm has a much lower MSLP compared with the DAY storm.

    Besides the differences in the magnitude and height of maximum perturbation temperature,the areal coverage of the warm core shows remarkable dissimilarities.For instance, the radial extension of the warm core in NIGHT is much wider than that in DAY,which is consistent with the fact that the former is large in size,as shown in Ge et al.(2014).For a typical TC,there is a lower(upper)-level radial inflow(outflow),and the updraft arises in the eyewall region.The maximum speed of the upper-level out flow jet exceeds 25 m s-1in NIGHT,which is much faster than in DAY(~20 m s-1). Consequently,the boundary inflow layer is slightly deeper in NIGHT,indicating a robust inward mass flux convergence, and thus helps the TC spin up.Accompanied by the strong in-up-out secondary circulation,the diabatic heating in the TC inner-core area is greatly enhanced in NIGHT.

    To gain perspective on the variation ofthe warm core,Fig. 3 presents the time–vertical cross sections of the perturbation temperature averaged within the eye region(i.e.,within a radius of 30 km).In both NIGHT and DAY,during the initially slow intensification period(prior to t=48 h),there are very few temperature perturbations.Accompanied by the period of rapid intensification,pronounced warm temperature deviations are established in the middle levels(z=6–8 km).For the NIGHT storm,after t=72 h,a second warm core occurs in the upper troposphere(i.e.,z=12–16 km).During the following short period(t=72–84 h),two discrete warming centers appear at z=6–8 and 12–16 km,respectively.The upper-level one further intensifies and becomes the dominant one.Eventually,it exhibits a single upper warm-core structure.Note that thisupper-levelentity showsa slow downward displacement with time.In DAY,the peak warming center remains at an essentially constant height(about z=8 km),and does not elevate very much during the whole integration.

    Numerous studies(Emanuel,1986;Holland,1997; Braun,2002;Knaff et al.,2004;Halverson et al.,2006; Powell et al.,2009;Chen and Zhang,2013)have suggested that the upper-tropospheric warm core is a common characteristic of TCs.In the present study,the NIGHT storm has an upper-tropospheric warm core(z=14 km),which is consistent with this widely believed viewpoint.However,in DAY,the maximum warm core occurs in the mid-troposphere (z=8 km),which is similar to the findings of Stern and Nolan(2012).Given the different structure of the warm core between NIGHT and DAY,the question arises as to what causes such discrepancies.In the following section,closer examination is made to disclose the possible mechanisms involved.

    3.Physical interpretations

    Numerous studies(Schubert and Hack,1982;Hack and Schubert,1986;Nolan et al.,2007)have suggested that the diabatic heating in the eyewall will force a secondary circulation.That is,the updraft coincides with the heating,and compensating subsidence appears on either side of the heating. These studies may explain the formation of mid-tropospheric warm cores.However,it is difficult to apply this explanation to upper-level warming via the aforementioned mechanisms, since there is little diabatic heating in the upper troposphere (i.e.,above z=14 km).The results here suggest that upperlevelhorizontaladvection likely playsan importantrole in the formation of upper level warm cores,and thus further studies are needed.

    Chen and Zhang(2013)proposed that the formation of the upper-level warm core is attributable to deep convective cells,such as vortical hot towers(“VHTs”).This motivates us to investigate the convective activity in the TC inner region.Previous studies(Ge et al.,2014;Melhauser and Zhang,2014)have suggested that TC convective activity is highly sensitive to solar radiative effects.That is,the diurnal solar radiation can considerably modulate the pregenesis environmental conditions and thus the behavior of moist convection.In general,nighttime destabilization of the local and large-scale environment through radiative cooling may promote deep moist convection and increase the genesis potential.On the contrary,daytime solar radiation will enhance the static stability and thus suppress convection.To this end,the statistics of convective activity in the inner area are compared.Figure 5 displays the temporal evolution of the vertical distribution of grid points of deep convection. The numbers of strong updrafts within a radius of 100 km at each level are calculated.Here,vertical velocity greater than 2 m s-1is considered as a strong updraft.Although the threshold of 2 m s-1is somewhat arbitrary,it is true that the areal percentage of updrafts greater than this value is quiet small,and the conclusion is qualitatively similar as long as the threshold is larger than 1.5 m s-1.Obviously,deep convection is much stronger in NIGHT during the whole model integration.Specifically,in NIGHT,the number is generallylarger than 250 after t=96 h,whereas it seldom reaches 250 in DAY.This indicates that the convective activity is more active in NIGHT.Along with the increase of the updrafts,the warm core becomes more prominent.

    To also gain insight into the relationship between the warm core and the inner-core convection,Figs.6–7 compare snapshots of 200 hPa vertical motion and temperature tendency in NIGHT and DAY,respectively.Following Chen and Zhang(2013),the temperature tendency is defined as the temperature difference:ΔT=Ti+1-Ti,where i indicates the modeloutputatthe i th time step(time interval:15 min).Convective bursts(CBs)occur frequently in the inner core(i.e., within radius=100 km).Generally,the CB band is conducive to cyclonic movement as the storm intensifies,and becomes more symmetric over time.Note that the areal coverage of the updraft is significant larger in NIGHT,which also coincides with pronounced positive temperature tendencies. The updraft core coincides with the maximum temperature tendency,suggesting that the CB plays an important role in the formation of the warm core.This result agrees well with Chen and Zhang(2013).Furthermore,the significant warming is likely attributable to the subsidence associated with the updrafts that penetrate into the upper troposphere(Holland et al.,1984;Heymsfield et al.,2001;Chen and Zhang,2013). Since there is little diabatic heating within the eye,the collective effect of intense downdrafts should play an essential role.Chen and Zhang(2013)revealed that an upper inflow layer,residing just above the upper out flow channel,plays a substantial role in the establishment of the upper warm core. This in flow layer,located above the out flow layˉer,will effectively carry the higher potential temperature(θ)air into the TC eye,where it descends adiabatically and isentropically to induce signi ficant warming.To test this hypothesis,Fig.8 compares the height–radius cross section of potential temperature,vertical velocity,and radial in flow iˉnNIGHT and DAY,separately.Notice that the surfaces ofθin both cases are displaced downward in the inner-core region.The differences in the downward displacement suggest different locally static stabilities in the eye.Another salient feature is that a strong in flow layer is located near z=18 km in NIGHT. In contrast,accompanied by a much weaker upper-level inflow,the upper-level warming is insignificant in DAY.The results suggest that the upper-level radial in flow layer likely plays an important role in upper-level warming,since the altitude of the warm core is attributable to the strength of the upper-level in flow.It is hypothesized that,while lower stratospheric air moves inward radially along the isentropic surface,the adiabatic descent may result in a warming therein. Chen and Zhang(2013)argued that this thin radial in flow layer is likely induced by the mass sink and lower pressure in the eye.To further determine the possible mechanism for this upper in flow layer,the Sawyer–Eliassen(SE)diagnosis is applied here to solve the forced problem.The SE equation in the radius-pseudoheight coordinates(Hendricks and Montgomery,2004)can be written as

    Figure 9 displays the radial cross sections of azimuthal mean inertial stability,tangential wind,diabatic heating,and the forced massstreamfunction ofsecondary circulation.Figures 9a and b compare the tangential wind and the associated inertial stability in NIGHT and DAY,respectively.It is obvious that,compared with the DAY storm,the NIGHT storm has a vertically deeper structure in which the top extends to higher altitude,indicating a greater inertial stability in the inner area.Given the different inertial stabilities,the change in the local Rossby deformation radius will lead to different extensions of the response to the forcing.Schubert and Hack (1982)pointed out that,for a given heating forcing,an increase in inertial stability results in a decrease in the forced secondary circulation and thus a change in the radial distri-bution of local temperature,with enhanced temperature tendency in the region of high inertial stability.Figures 9c and d compare the radial vertical cross section of the mass streamfunction of the secondary circulation forced by the diabatic heating.In general,the maximum mass streamfunction is located just outside the eyewall at the 10 km height,and the minimum exists inside the eyewall.This pattern is consistent with the typical in-up-out secondary circulation,with the updraft at the location of the diabatic heating.The minimum center inside the heating suggests that descending motion appears in the eye.Note the remarkable differences in the mass streamfunctions in the two cases.That is,the amplitude is much more significant in NIGHT.As such,the strong horizontal gradient of mass streamfunction results in more robust downward flow in the eye.Furthermore,the minimum streamfunction extends outward atthe upperlevel(i.e.,z=15km)in NIGHT.This suggests a positive vertical gradient in the inner-core area,just above 15 km.As a result,an upperlevel inflow appears therein,as shown in Fig.8.This result confirms that the upper-level inflow is forced by the TC diabatic heating.Ohno and Satoh(2014)proposed that upperlevel subsidence is closely associated with TC structure.For instance,the upper-level subsidence is enhanced in the eye when the vortex is sufficiently tall to penetrate the statically stable stratosphere.It can be deduced that the height of the maximum temperature anomaly is largely attributable to the balance among forced secondary circulations.In this regard, since the NIGHT storm has both a stronger intensity and diabatic heating source,the greater inertial stability may extend the response to the heating to the upper troposphere and causeupper-level adiabatic warming.

    4.Sensitivity to model schemes

    The results show that the storm intensifies more rapidly in the NIGHT scenario for all the sensitivity experiments(not shown),which agrees wellwith Ge etal.(2014).Note thatthe warm-core structures show salient differences.That is,accompanied by the more intense TC in NIGHT,an upper-level warm core emanates,whereas only a mid-tropospheric entity emerges in its counterpart.Figure 10 shows the horizontal– vertical cross sections of temperature perturbations in the sensitivity experiments.It is clear that there is a distinctly higher warm core in NIGHT than in DAY,indicating that the results are robust and not sensitive to the different model configurations.

    Table 1.List of sensitivity experiments.See the text(section 4)for the definitions of the abbreviations.

    5.Conclusio n

    The sensitivity of TC warm-core structure to shortwave radiation was examined by conducting highly idealized experiments.It was found that solar radiation not only impacts on TC intensification,but also on the warm-core structure. In the NIGHT experiment,which excluded solar radiation, the TC favored the establishment of a significant warm core at higher altitude.Previous studies suggest that significant convective activity in the inner-core region is an important ingredient in the generation of an upper-level warm core.In the presentstudy,Sawyer–Eliassen diagnosis furthersuggeststhat the height of the maximum temperature anomaly is likely attributable to the balance among forced secondary circulations.It is proposed that strong CBs lead to strong diabatic heating and thus favor a more intense TC with larger inertial stability.As a result,the forced secondary circulation promotes a thin upper-level inflow layer.This radial inflow will effectively carry the lower-stratospheric air with high potential temperature and descend adiabatically in the eye,resulting in significant upper-level warming.

    Admittedly,the results are only based on highly idealized numerical simulations,since the radiation is artificially extreme.Solar radiation modulates the static stability and thus influences the convective activity,which affects TC intensity and structure.The response to the diabatic heating is sensitive to the vortex structure.With different inertial stability,the diabatic heating in the eyewall will force differentsecondary circulations,resulting in a large variability of TC warm-core structure.By this reasoning,the conclusion here may represent the scenario for TCs with different intensity and structure.For instance,under favorable environmental conditions,strong CBs likely favor a stronger TC and thus a preferred upper-level warm core.In contrast,weak convective activity in the TC inner-core area may lead to a much lower entity.Moreover,in the current model configuration, TCs develop under the most favorable environmental conditions(i.e.,no mean flows).In reality,a TC is also highly dependent on the underlying oceanic state,the large-scale environment,and storm-scale dynamics(Wu et al.,2011;Ge etal.,2013;Liang et al.,2014).Hence,more sensitivity experiments involving complex environmental flows should be conducted in the future.

    Acknowledgements.This work was jointly sponsored by the National Key Basic Research Program of China(Grant No. 2015CB452803),the National Natural Science Foundation of China (Grant No.41275095),the“Six peaks of high-level talent”funding project of Jiangsu,the Key University Science Research Project of Jiangsu Province(Grant No.14KJA170005),and the China Meteorological Administration Henan Key Laboratory of Agrometeorological Support and Applied Technique(Grant No.AMF201403). This paper is Earth system modeling center(ESMC)contribution number 032.

    REFERENCES

    Braun,S.A.,2002:A cloud-resolving simulation of Hurricane Bob(1991):Storm structure and eyewall buoyancy.Mon. Wea.Rev.,130,1573–1592.

    Chen,H.,and D.-L.Zhang,2013:On the rapid intensification of Hurricane Wilma(2005).Part II:Convective bursts and the upper-level warm core.J.Atmos.Sci.,70,146–172.

    Dai,A.G.,2001:Global precipitation and thunderstorm frequencies.Part II:Diurnal variations.J.Climate,14,1112–1128.

    Durden,S.L.,2013:Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa.Mon.Wea.Rev.,141,4256–4268.

    Emanuel,K.A.,1986:An air-sea interaction theory for tropical cyclones.Part I:Steady-state maintenance.J.Atmos.Sci.,43, 585–604.

    Ge,X.,Y.Ma,S.W.Zhou,and T.Li,2014:Impacts of the diurnal cycle of radiation on tropical cyclone intensification and structure.Adv.Atmos.Sci.,31,1377–1385,doi:10.1007/ s00376-014-4060-0.

    Ge,X.Y.,T.Li,and M.Peng,2013:Effects of vertical shears and mid-level dry air on tropical cyclone developments.J.Atmos. Sci.,70,3859–3875.

    Hack,J.J.,and W.H.Schubert,1986:Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J.Atmos.Sci.,43,1559–1573.

    Halverson,J.B.,J.Simpson,G.Heymsfield,H.Pierce,T.Hock, and L.Ritchie,2006:Warm core structure of Hurricane Erin diagnosed from high altitude dropsondes during CAMEX-4. J.Atmos.Sci.,63,309–324.

    Hawkins,H.F.,and D.T.Rubsam,1968:Hurricane Hilda,1964. II:Structure and budgets of the hurricane on October 1,1964. Mon.Wea.Rev.,96,617–636.

    Hendricks,E.A.,and M.T.Montgomery,2004:The role of“vortical”hot towers in the formation of tropical cyclone Diana (1984).J.Atmos.Sci.,61,1209–1232.

    Heymsfield,G.M.,J.B.Halverson,J.Simpson,L.Tian,and T. P.Bui,2001:ER-2 Doppler radar investigations of the eyewallof Hurricane Bonnie during the Convection and Moisture Experiment-3.J.Appl.Meteor.,40,1310–1330.

    Holland,G.J.,1997:The maximum potential intensity of tropical cyclones.J.Atmos.Sci.,54,2519–2541.

    Holland,G.J.,T.D.Keenan,and G.D.Crane,1984:Observations of a phenomenal temperature perturbation in Tropical Cyclone Kerry(1979).Mon.Wea.Rev.,112,1074–1082.

    Hong,S.-Y.,and J.-O.J.Lim,2006:The WRF single-moment 6-class microphysics scheme(WSM6).Journal of the Korean Meteorological Society,42,129–151.

    Hong,S.-Y,Y.Noh,and J.Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon.Wea.Rev.,134,2318–2341.

    Knaff,J.A.,S.A.Seseske,M.DeMaria,and J.L.Demuth,2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU.Mon.Wea.Rev.,132,2503–2510.

    Liang,J.,L.G.Wu,and H.J.Zhong,2014:Idealized numerical simulations of tropical cyclone formation associated with monsoon gyres.Adv.Atmos.Sci.,31,305–315,doi: 10.1007/s00376-013-2282-1.

    目前大部分普通高校都是根據(jù)教育部的要求定位數(shù)學(xué)教學(xué)目標(biāo)、設(shè)定數(shù)學(xué)教學(xué)內(nèi)容,但是民辦院校需要結(jié)合自己的學(xué)生情況,適度調(diào)整數(shù)學(xué)教學(xué)目標(biāo),把專業(yè)化要求轉(zhuǎn)化到職業(yè)化領(lǐng)域內(nèi)。為提高財經(jīng)專業(yè)應(yīng)用能力,民辦高校往往增加專業(yè)課比重。院校的教學(xué)管理部門對于數(shù)學(xué)在財經(jīng)類專業(yè)的重要性也往往認(rèn)識不夠,加之學(xué)生數(shù)學(xué)學(xué)習(xí)能力相對較低,為了減少對學(xué)生學(xué)習(xí)時間的占用,降低學(xué)生考試焦慮,減輕學(xué)生學(xué)習(xí)壓力,弱化數(shù)學(xué)教學(xué)內(nèi)容經(jīng)常成為民辦財經(jīng)類高校的最先選項。

    Lin,Y.L.,R.D.Rarley,and H.D.Orville,1983:Bulk parameterization of the snow field in a cloud model.J.Appl.Meteor.,22,1065–1092.

    Mlawer,E.J.,S.J.Taubman,P.D.Brown,M.J.Iacono,and S.A. Clough,1997:Radiative transfer for inhomogeneous atmospheres:RRTM,a validated correlated-k model for the longwave.J.Geophys.Res.,102,16 663–16 682.

    Melhauser,C.,and F.Q.Zhang,2014:Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl(2010). J.Atmos.Sci.,71,1241–1259.

    Mellor,G.L.,and T.Yamada,1982:Development of a turbulence closure model for geophysical fluid problems.Rev.Geophys. Space Phys.,20,851–875.

    Nesbitt,S.W.,and E.J.Zipser,2003:The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements.J.Climate,16,1456–1475.

    Nolan,D.S.,Y.Moon,and D.P.Stern,2007:Tropical cyclone intensification from asymmetric convection:Energetics and efficiency.J.Atmos.Sci.,64,3377–3405.

    Ohno,T.,and M.Satoh,2014:On the Warm core of the tropical cyclone formed near the tropopause.J.Atmos.Sci.,doi: 10.1175/JAS-D-14-0078.1.(in press)

    Powell,M.D.,E.W.Uhlhorn,and J.D.Kepert,2009:Estimating maximum surface winds from hurricane reconnaissance measurements.Wea.Forecasting,24,868–883.

    Schubert,W.H.,and J.J.Hack,1982:Inertial stability and tropical cyclone development.J.Atmos.Sci.,39,1687–1697.

    Stern,D.P.,and D.S.Nolan,2012:On the height of the warm core in tropical cyclones.J.Atmos.Sci.,69,1657–1680.

    Tao,W.K.,S.Lang,J.Simpson,C.H.Sui,B.Ferrier,and M.D., Chou,1996:Mechanisms of cloud-radiation interaction in the Tropics and midlatitudes.J.Atmos.Sci.,53,2624–2651.

    Webster,P.J.,and G.L.Stephens,1980:Tropical uppertropospheric extended clouds:Inferences from winter MONEX.J.Atmos.Sci.,37,1521–154.

    Willoughby,H.E.,1990:Gradient balance in tropical cyclones.J. Atmos.Sci.,47,265–274.

    Wu,L.G.,J.Liang,and C.-C.Wu,2011:Monsoonal influence on Typhoon Morakot(2009).Part I:Observational analysis. J.Atmos.Sci.,68,2208–2221.

    :Ge,X.Y.,Y.Ma,S.W.Zhou,and T.Li,2015:Sensitivity of the warm core of tropical cyclones to solar radiation. Adv.Atmos.Sci.,32(8),1038–1048,

    10.1007/s00376-014-4206-0.

    18 September 2014;revised 5 December 2014;accepted 26 December 2014)

    ?Corresponding author:GE Xuyang

    Email:xuyang@nuist.edu.cn

    猜你喜歡
    財經(jīng)類民辦教學(xué)管理
    民辦本科院校開展文科復(fù)合型人才培養(yǎng)的創(chuàng)新與實踐
    成才(2023年13期)2023-10-24 08:48:32
    新時代加強(qiáng)民辦中小學(xué)黨建工作的必要性
    教學(xué)管理信息化問題研究
    大學(xué)(2021年2期)2021-06-11 01:13:24
    新時期高中教學(xué)管理改革與實踐
    甘肅教育(2020年17期)2020-10-28 09:01:24
    談教學(xué)管理的藝術(shù)
    甘肅教育(2020年4期)2020-09-11 07:41:24
    基于學(xué)科競賽的民辦本科高校會計實踐教學(xué)改革探討
    “雙平臺嵌入式”的“糧味”財經(jīng)類專業(yè)人才培養(yǎng)模式創(chuàng)新與實踐
    貼近生活的商業(yè)財經(jīng)類期刊
    民辦少兒英文圖書館工作初探
    財經(jīng)類MBA院校案例研發(fā)隊伍建設(shè)研究
    麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 久久国产乱子伦精品免费另类| 美女黄网站色视频| 免费看十八禁软件| 国产av一区在线观看免费| 久久久久免费精品人妻一区二区| av中文乱码字幕在线| 国产一区二区在线av高清观看| 男插女下体视频免费在线播放| 日本在线视频免费播放| 久热爱精品视频在线9| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| 日本一二三区视频观看| 男女那种视频在线观看| 亚洲专区国产一区二区| 国产私拍福利视频在线观看| 香蕉丝袜av| 久久中文字幕一级| 国产精品一及| www.自偷自拍.com| 日本成人三级电影网站| 国产一区二区三区视频了| 男男h啪啪无遮挡| 夜夜夜夜夜久久久久| 国产亚洲精品久久久久5区| 在线免费观看的www视频| 免费看a级黄色片| 99久久久亚洲精品蜜臀av| 中文亚洲av片在线观看爽| 超碰成人久久| 亚洲成av人片在线播放无| 午夜精品一区二区三区免费看| 久久精品国产99精品国产亚洲性色| 久久久精品国产亚洲av高清涩受| 精品日产1卡2卡| 精品久久久久久久久久免费视频| 亚洲中文字幕一区二区三区有码在线看 | 1024视频免费在线观看| 免费看日本二区| 脱女人内裤的视频| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清无吗| 国产欧美日韩一区二区三| 成在线人永久免费视频| 国产精品自产拍在线观看55亚洲| 99国产综合亚洲精品| 国产精华一区二区三区| www.精华液| 亚洲av成人一区二区三| 国产爱豆传媒在线观看 | 两性夫妻黄色片| 国产亚洲欧美98| 亚洲在线自拍视频| 黑人欧美特级aaaaaa片| 久久精品aⅴ一区二区三区四区| 亚洲国产高清在线一区二区三| 亚洲 欧美一区二区三区| 国产aⅴ精品一区二区三区波| 精品久久久久久成人av| 午夜福利成人在线免费观看| 非洲黑人性xxxx精品又粗又长| 无人区码免费观看不卡| 制服诱惑二区| 高清毛片免费观看视频网站| 亚洲精品久久国产高清桃花| 男女视频在线观看网站免费 | 国产视频内射| 中文字幕最新亚洲高清| 欧美日韩精品网址| avwww免费| 黄色视频,在线免费观看| 青草久久国产| 九色国产91popny在线| 亚洲最大成人中文| 久久国产乱子伦精品免费另类| 免费高清视频大片| 色精品久久人妻99蜜桃| 午夜成年电影在线免费观看| 国产精品国产高清国产av| 亚洲精品在线观看二区| 露出奶头的视频| 禁无遮挡网站| 最近最新中文字幕大全电影3| 在线十欧美十亚洲十日本专区| 亚洲 国产 在线| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 一个人免费在线观看的高清视频| 成年人黄色毛片网站| 欧洲精品卡2卡3卡4卡5卡区| 成人国产综合亚洲| 搡老岳熟女国产| 久久久久久大精品| 99热6这里只有精品| 啦啦啦观看免费观看视频高清| 亚洲欧美精品综合一区二区三区| 亚洲片人在线观看| 色精品久久人妻99蜜桃| 成人亚洲精品av一区二区| 亚洲午夜理论影院| 国产精品久久久久久亚洲av鲁大| 成在线人永久免费视频| 日本撒尿小便嘘嘘汇集6| 一级毛片女人18水好多| 国产精品久久久久久久电影 | 免费看日本二区| 精品久久蜜臀av无| 欧美性长视频在线观看| 美女午夜性视频免费| 亚洲人成77777在线视频| 好男人在线观看高清免费视频| 欧美国产日韩亚洲一区| 在线a可以看的网站| 在线视频色国产色| 最近最新中文字幕大全免费视频| 成人国语在线视频| 欧美绝顶高潮抽搐喷水| 黄色 视频免费看| 91成年电影在线观看| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 亚洲美女黄片视频| 国产成人精品无人区| 免费看日本二区| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 久久久久久久久久黄片| 亚洲成av人片免费观看| 高潮久久久久久久久久久不卡| 免费在线观看视频国产中文字幕亚洲| 久久人妻av系列| 欧美性猛交黑人性爽| 欧美zozozo另类| 香蕉丝袜av| 床上黄色一级片| 婷婷精品国产亚洲av在线| 老汉色∧v一级毛片| 色噜噜av男人的天堂激情| 午夜亚洲福利在线播放| 无人区码免费观看不卡| 黑人操中国人逼视频| 成人av一区二区三区在线看| 男女床上黄色一级片免费看| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 亚洲中文av在线| 久久九九热精品免费| 日本三级黄在线观看| 国产精品国产高清国产av| 日韩欧美精品v在线| 久久久久久久午夜电影| x7x7x7水蜜桃| 国产伦一二天堂av在线观看| 国产在线观看jvid| 免费人成视频x8x8入口观看| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 精华霜和精华液先用哪个| a级毛片a级免费在线| 99精品久久久久人妻精品| 国内精品久久久久精免费| 在线观看66精品国产| 日韩欧美一区二区三区在线观看| 欧美成狂野欧美在线观看| 欧美久久黑人一区二区| 男人舔女人的私密视频| 欧美日韩乱码在线| 国产激情久久老熟女| 欧美乱码精品一区二区三区| 久久久国产欧美日韩av| 亚洲性夜色夜夜综合| 久久草成人影院| 久久久久国产精品人妻aⅴ院| 美女免费视频网站| 夜夜爽天天搞| www.熟女人妻精品国产| 国产亚洲av高清不卡| 美女黄网站色视频| 18禁黄网站禁片午夜丰满| 成人欧美大片| 2021天堂中文幕一二区在线观| or卡值多少钱| 校园春色视频在线观看| 久久香蕉精品热| 精品乱码久久久久久99久播| 成人av在线播放网站| 国产免费男女视频| 亚洲国产精品999在线| 搡老妇女老女人老熟妇| 亚洲欧洲精品一区二区精品久久久| 精品福利观看| 国产欧美日韩精品亚洲av| 久久九九热精品免费| 99热这里只有是精品50| 久久久久亚洲av毛片大全| 国产精品精品国产色婷婷| 亚洲欧美激情综合另类| 日韩精品中文字幕看吧| 国产蜜桃级精品一区二区三区| 在线观看美女被高潮喷水网站 | 最近在线观看免费完整版| 婷婷丁香在线五月| 正在播放国产对白刺激| 亚洲国产欧美网| 久久精品亚洲精品国产色婷小说| 18禁观看日本| 在线观看一区二区三区| 99精品欧美一区二区三区四区| 九色成人免费人妻av| 亚洲精品粉嫩美女一区| 一个人观看的视频www高清免费观看 | 国产高清视频在线播放一区| 欧美+亚洲+日韩+国产| 国产成人一区二区三区免费视频网站| 亚洲人与动物交配视频| 一进一出抽搐动态| 国产亚洲欧美98| 欧美乱色亚洲激情| 中文字幕人成人乱码亚洲影| 国产精华一区二区三区| 麻豆一二三区av精品| 伊人久久大香线蕉亚洲五| 国产精品精品国产色婷婷| 91字幕亚洲| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 久久久国产成人精品二区| 超碰成人久久| 亚洲美女视频黄频| 禁无遮挡网站| 中文字幕av在线有码专区| 男女午夜视频在线观看| 欧美成人一区二区免费高清观看 | 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 亚洲成人中文字幕在线播放| 国产精品久久久久久人妻精品电影| 日本三级黄在线观看| 欧美三级亚洲精品| 久久精品影院6| 亚洲人成伊人成综合网2020| 久久国产精品影院| 久久久久久国产a免费观看| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| 欧美黑人精品巨大| 欧美日韩福利视频一区二区| 岛国在线观看网站| www.999成人在线观看| 久久性视频一级片| 一本综合久久免费| 村上凉子中文字幕在线| 不卡一级毛片| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 欧美日韩瑟瑟在线播放| 亚洲片人在线观看| 一进一出抽搐动态| 中文字幕高清在线视频| 九色成人免费人妻av| 在线看三级毛片| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| cao死你这个sao货| 亚洲欧美精品综合久久99| 99久久国产精品久久久| 婷婷精品国产亚洲av| 日韩欧美三级三区| 久久久国产成人精品二区| 一级黄色大片毛片| 天天添夜夜摸| 两个人看的免费小视频| 亚洲成人精品中文字幕电影| 亚洲色图 男人天堂 中文字幕| 看黄色毛片网站| 美女免费视频网站| 久久香蕉激情| 国产免费男女视频| 十八禁网站免费在线| x7x7x7水蜜桃| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 免费看十八禁软件| 亚洲一区二区三区不卡视频| 亚洲精品色激情综合| 国产成人av教育| 在线十欧美十亚洲十日本专区| 午夜免费观看网址| 十八禁人妻一区二区| 日本撒尿小便嘘嘘汇集6| 欧美大码av| 久热爱精品视频在线9| 日本五十路高清| 老汉色av国产亚洲站长工具| a级毛片在线看网站| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 性色av乱码一区二区三区2| www.熟女人妻精品国产| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放 | 国产av一区二区精品久久| 午夜精品在线福利| 日韩精品中文字幕看吧| 色综合站精品国产| 欧美国产日韩亚洲一区| 日韩欧美精品v在线| 久久久久九九精品影院| 91九色精品人成在线观看| 免费av毛片视频| 国产成人aa在线观看| 亚洲欧美日韩东京热| 美女黄网站色视频| 夜夜夜夜夜久久久久| 亚洲欧美日韩高清在线视频| 三级男女做爰猛烈吃奶摸视频| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 不卡av一区二区三区| 欧美午夜高清在线| 免费看日本二区| 亚洲国产高清在线一区二区三| 精品久久久久久久毛片微露脸| 日本三级黄在线观看| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 91在线观看av| 午夜免费观看网址| av片东京热男人的天堂| 在线观看66精品国产| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| www.自偷自拍.com| 午夜福利视频1000在线观看| 成人国产综合亚洲| 亚洲中文av在线| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| 日日干狠狠操夜夜爽| 50天的宝宝边吃奶边哭怎么回事| 成人三级黄色视频| 国产成人aa在线观看| 国产精品99久久99久久久不卡| 亚洲国产欧美人成| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| 一夜夜www| 久久这里只有精品19| 91成年电影在线观看| 女生性感内裤真人,穿戴方法视频| 一级片免费观看大全| 精品日产1卡2卡| 一本大道久久a久久精品| 天堂动漫精品| www.熟女人妻精品国产| 国产爱豆传媒在线观看 | 男人的好看免费观看在线视频 | 床上黄色一级片| 精品久久蜜臀av无| 日韩免费av在线播放| 国产成人精品久久二区二区91| 精品国内亚洲2022精品成人| 午夜福利欧美成人| 日韩有码中文字幕| 午夜免费观看网址| 国产单亲对白刺激| av天堂在线播放| 欧美乱妇无乱码| 欧美 亚洲 国产 日韩一| 免费电影在线观看免费观看| 麻豆成人午夜福利视频| 午夜日韩欧美国产| 中文字幕人妻丝袜一区二区| 欧美一级毛片孕妇| 久久欧美精品欧美久久欧美| 国产成人精品久久二区二区91| 精品国产乱子伦一区二区三区| 国产男靠女视频免费网站| 欧美黑人巨大hd| 麻豆一二三区av精品| 1024香蕉在线观看| 一卡2卡三卡四卡精品乱码亚洲| 男人舔奶头视频| 18禁裸乳无遮挡免费网站照片| 亚洲av成人一区二区三| 99精品欧美一区二区三区四区| 精品日产1卡2卡| 久久精品人妻少妇| 在线观看免费日韩欧美大片| 国产精品99久久99久久久不卡| 国产精品精品国产色婷婷| 50天的宝宝边吃奶边哭怎么回事| 色综合亚洲欧美另类图片| 欧美一级毛片孕妇| 亚洲真实伦在线观看| 久久久久国内视频| 又黄又爽又免费观看的视频| 国产高清视频在线观看网站| 日本在线视频免费播放| 天天躁狠狠躁夜夜躁狠狠躁| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| av有码第一页| 久久国产精品人妻蜜桃| 在线观看一区二区三区| 女人被狂操c到高潮| 国产高清视频在线播放一区| 久久久久国内视频| 激情在线观看视频在线高清| 亚洲av电影在线进入| 男女那种视频在线观看| 久久99热这里只有精品18| xxxwww97欧美| 每晚都被弄得嗷嗷叫到高潮| 99riav亚洲国产免费| 岛国在线观看网站| 日日干狠狠操夜夜爽| 男男h啪啪无遮挡| 免费在线观看完整版高清| 无人区码免费观看不卡| 欧美绝顶高潮抽搐喷水| 欧美国产日韩亚洲一区| 一级黄色大片毛片| 97人妻精品一区二区三区麻豆| 欧美日韩乱码在线| 久久伊人香网站| 精品不卡国产一区二区三区| 一进一出好大好爽视频| 18美女黄网站色大片免费观看| 真人做人爱边吃奶动态| 中文字幕人妻丝袜一区二区| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 777久久人妻少妇嫩草av网站| 99国产综合亚洲精品| 男男h啪啪无遮挡| 一a级毛片在线观看| 成年免费大片在线观看| 久久久久久人人人人人| 99在线视频只有这里精品首页| 国产亚洲精品久久久久久毛片| 大型av网站在线播放| 亚洲国产日韩欧美精品在线观看 | 欧美日韩亚洲国产一区二区在线观看| 香蕉av资源在线| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡| 国产黄色小视频在线观看| 欧美高清成人免费视频www| 国产一区二区在线av高清观看| 精品第一国产精品| 免费电影在线观看免费观看| 国产高清videossex| 巨乳人妻的诱惑在线观看| aaaaa片日本免费| 亚洲国产看品久久| 久久热在线av| 久久久精品欧美日韩精品| 又黄又爽又免费观看的视频| 欧美乱妇无乱码| 久久欧美精品欧美久久欧美| 亚洲国产中文字幕在线视频| 亚洲18禁久久av| 亚洲国产日韩欧美精品在线观看 | 欧美黑人欧美精品刺激| 欧美日本视频| 1024视频免费在线观看| 久久久久久九九精品二区国产 | 午夜两性在线视频| 精品久久久久久久末码| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 国产精品亚洲一级av第二区| 久久精品91无色码中文字幕| 色老头精品视频在线观看| 少妇裸体淫交视频免费看高清 | 身体一侧抽搐| 俺也久久电影网| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 亚洲欧美日韩东京热| 制服丝袜大香蕉在线| 黑人操中国人逼视频| 国产精品自产拍在线观看55亚洲| 国产亚洲精品av在线| 亚洲av电影在线进入| 黑人操中国人逼视频| 国产精品自产拍在线观看55亚洲| 韩国av一区二区三区四区| 九九热线精品视视频播放| 亚洲国产中文字幕在线视频| 国产高清激情床上av| www.精华液| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 伦理电影免费视频| 在线免费观看的www视频| 观看免费一级毛片| 欧美黑人欧美精品刺激| 精品国内亚洲2022精品成人| 99在线人妻在线中文字幕| 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 国产av麻豆久久久久久久| 老汉色av国产亚洲站长工具| 亚洲欧美日韩高清在线视频| 国产精品日韩av在线免费观看| 精品日产1卡2卡| 国产爱豆传媒在线观看 | 中文字幕高清在线视频| 丰满的人妻完整版| 一级作爱视频免费观看| 老司机福利观看| 久久久久免费精品人妻一区二区| 欧美黄色片欧美黄色片| 日本三级黄在线观看| 亚洲自拍偷在线| x7x7x7水蜜桃| 亚洲国产高清在线一区二区三| 听说在线观看完整版免费高清| 亚洲精品av麻豆狂野| 亚洲精品国产精品久久久不卡| 久久精品国产99精品国产亚洲性色| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| x7x7x7水蜜桃| 午夜视频精品福利| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| 免费在线观看亚洲国产| www.自偷自拍.com| 国产亚洲欧美98| 午夜免费成人在线视频| 性欧美人与动物交配| 美女午夜性视频免费| 国产精品永久免费网站| 丰满人妻一区二区三区视频av | 岛国在线观看网站| 亚洲黑人精品在线| 夜夜看夜夜爽夜夜摸| 亚洲人成电影免费在线| 欧美又色又爽又黄视频| 国产成人欧美在线观看| 男女下面进入的视频免费午夜| 亚洲天堂国产精品一区在线| 哪里可以看免费的av片| 9191精品国产免费久久| 国产精品精品国产色婷婷| 不卡av一区二区三区| 欧美在线一区亚洲| 亚洲国产精品合色在线| 99riav亚洲国产免费| 国产精品免费视频内射| 热99re8久久精品国产| 国产一区在线观看成人免费| 国产精品永久免费网站| 久久久久久久久久黄片| 日日摸夜夜添夜夜添小说| 一个人免费在线观看的高清视频| 国产免费男女视频| 一个人观看的视频www高清免费观看 | 两个人视频免费观看高清| 变态另类成人亚洲欧美熟女| 十八禁人妻一区二区| 亚洲成人久久性| 久久久精品国产亚洲av高清涩受| 午夜福利18| 久久草成人影院| 一区福利在线观看| 精品第一国产精品| 亚洲精品国产精品久久久不卡| 在线观看舔阴道视频| 51午夜福利影视在线观看| 国产精品99久久99久久久不卡| tocl精华| 最好的美女福利视频网| 精品日产1卡2卡| 日韩欧美三级三区| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| www日本在线高清视频| 国模一区二区三区四区视频 | 91老司机精品| 国产av一区二区精品久久| 久久精品人妻少妇| 可以在线观看的亚洲视频| 亚洲欧美日韩无卡精品| 精品久久久久久成人av| 亚洲av美国av| 国产1区2区3区精品| 免费观看人在逋| 国产精品免费视频内射| 欧美日韩一级在线毛片| 国产成人系列免费观看| 国产高清videossex| 国产午夜精品久久久久久| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 777久久人妻少妇嫩草av网站| 精品欧美国产一区二区三| 男人舔女人的私密视频| 久久草成人影院|