• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Differential Optical Absorption Spectroscopy Method for XCO2Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam

    2015-06-09 21:37:22HUOYanfengDUANMinzhengTIANWenshouandMINQilong
    Advances in Atmospheric Sciences 2015年8期

    HUO Yanfeng,DUAN Minzheng,TIAN Wenshou,and MIN Qilong

    1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    2Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10029

    3Wuhan University,Wuhan 430000

    4 Atmospheric Science Research Center,State University of New York,Albany,NY 12203,USA

    A Differential Optical Absorption Spectroscopy Method for XCO2Retrieval from Ground-Based Fourier Transform Spectrometers Measurements of the Direct Solar Beam

    HUO Yanfeng1,2,DUAN Minzheng?2,TIAN Wenshou1,and MIN Qilong3,4

    1Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences,Lanzhou University,Lanzhou 730000

    2Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 10029

    3Wuhan University,Wuhan 430000

    4 Atmospheric Science Research Center,State University of New York,Albany,NY 12203,USA

    A differential optical absorption spectroscopy(DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam.Different to the spectral fitting method,which minimizes the difference between the observed and simulated spectra,the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve XCO2from measurements of the shortwave infrared(SWIR)band.Based on sensitivity tests,a super channel-pair is carefully selected to reduce the effects of solarlines,water vapor,air temperature,pressure,instrument noise,and frequency shift on retrieval errors.The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method.Multi-day Total Carbon Column Observing Network(TCCON)measurements under clear-sky conditions at two sites(Tsukuba and Bremen)are used to derive XCO2for the algorithm evaluation and validation.The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

    CO2Retrieval,ground-based measurement,hyper-spectrum,shortwave infrared band

    1.Introduction

    Carbon dioxide(CO2)is considered to be the main greenhouse gas causing current global warming(Solomon et al., 2007).However,Easterling and Wehner(2009)reported that records of surface air temperature show no warming trend or even a slight cooling trend,while greenhouse gas levels are still increasing.The disagreement about climate change is mostly due to the lack of long-term records of CO2measurements,especially for large area measurements and CO2sources and sinks(Stephens et al.,2007;Canadell et al., 2010).

    It is advantageous to use satellite remote sensing to monitor atmospheric CO2globally.However,at present,only the satellite datasets of column-averaged dry-air mole fraction of CO2(XCO2)from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography(SCIAMACHY) on board the Environmental Satellite(ENVISAT)(Bovensmann et al.,1999)and the Thermal and Near-infrared Sensor for Carbon Observation–Fourier Transform Spectrometer (TANSO-FTS)on board the Greenhouse Gases Observing Satellite(GOSAT)(Kuze et al.,2009),are used to estimate regional CO2fluxes.Both instruments use the reflected solar radiation in the shortwave infrared(SWIR)spectral region, making them sensitive to the variation of near-surface CO2concentrations.Unfortunately,the low spectral resolution of SCIAMACHY limits the inversion accuracy,with a single retrieval precision of about 2.5 ppm,as compared to ground-based Fourier transform spectrometer(FTS)measurements(Buchwitz et al.,2005;Reuter et al.,2011).The biases and standard deviations of the column-averaged dryair mole fraction of carbon dioxide(XCO2)from the SWIR L2 V02.xx GOSAT retrieval algorithm reach-1.48 and 2.09ppm,respectively(Morino et al.,2011;Yoshida et al.,2011; Yoshida et al.,2013).

    Compared with satellite observations of reflected light, ground-based observations of the direct solar beam are less influenced by surface albedo,aerosolsetc.Therefore,groundbased observations can achieve higher accuracy and precision in determining the CO2total column amount.However,at present,the Total Carbon Column Observing Network(TCCON)is the only existing network that retrieves the total column concentration of CO2from ground-based FTS measurements for satellite validation.TCCON achieves a networkwide uncertainty of XCO2of better than 0.8 ppm,with 2σafter correcting for an airmass-dependent bias and calibrating to aircraft vertical profiles(Wunch et al.,2011a,b).

    A Chinese satellite for CO2monitoring is planned for launch in 2015(Liu et al.,2013).To validate the satellite retrievals,a surface observation network has been set up to measure the hyper-spectrum of the direct solar beam in the SWIR bands.To derive the total column amount of CO2from these spectral measurements,a retrieval algorithm is needed. In this paper,a new DOAS-like algorithm is developed,in which multiple pairs of CO2absorption ratios(one in the weak CO2absorption channel and one in the strong CO2absorption channel)are used to derive the column CO2.More importantly,both channels in the pair are carefully selected to reduce their sensitivity to the surface pressure,air temperature,water vapor,noise and frequency shift.Compared with the spectral fitting method,DOAS-like retrievals are less sensitive to temperature and H2O uncertainty.

    2.Retrieval algorithm

    2.1.Physical basis

    Ourretrievalalgorithm isbased on the factthatthe photon path lengths within a narrow spectral range are equal.Therefore,the ratio of the channel pair is proportional to XCO2if the surface pressure,temperature profile and water vapor are known.Based on the Lambert–Beer law,a ground-based measurement of the direct solar beam for a fixed wavelength can be expressed as

    where Iλis the downward radiance measured at the bottom of the atmosphere for wavelengthλ,Isca,λis the forward scattering contribution in the incident direction,and I0is the incoming solar radiance at the top of the atmosphere.m is the air mass factor.τis the optical depth in the vertical optical path,which can be written as

    where the right-hand terms represent optical depth of CO2absorption,water vapor absorption,aerosol extinction,and Rayleigh scattering,respectively.The scattering term of Isca,λin Eq.(1)is negligible due to a very small field of view (FOV)(~2.4 mrad)ofthe spectrometer,particularly forsmall aerosol particles and small aerosol optical depths(Min et al., 2004;Min and Duan,2005;Wunch et al.,2011a).Therefore, the radiance can be simplified as

    In a very limited spectral range,the variation ofτaerandτRayacross the spectral range can be ignored.Therefore the ratio of the selected channel pair is insensitive to the loading of aerosol and Rayleigh scattering.Hence,we have

    Letting r=Iλ1/Iλ2and r0=I0,λ1/I0,λ2,Eq.(4)can be rewritten as

    By taking the logarithm of Eq.(5),we have

    The optical depthτCO2is proportional to the total number of molecules of CO2per surface area,which is positively correlated to XCO2if the surface pressure,air temperature and CO2volume mixing ratio(VMR)profile are assumed to be known.Furthermore,only channel pairs with weak H2O absorption interference are selected.Therefore,the difference associated with water vapor is small and can be treated as a correction coefficient.Then,Eq.(6)is simplified as

    Through the about pair selection procedure,the retrieval,i.e., Eq.(7),is weakly sensitive to the atmospheric state uncertainty(temperature and water vapor).Nonetheless,the coefficients of a and b are weakly dependent on temperature and water vapor in the atmosphere.To further reduce the error associated with the atmospheric state,we can calculate bothcoefficients with the surface pressure of in-situ measurements collected by automatic meteorological stations and reanalysis/forecasting atmospheric profiles.The profiles can be fixed for multiple measurements within some specific time period because only channels that are independent of temperature and water vapor are used in our retrieval algorithm.To illustrate the feasibility of fixed profiles,several inversions calculated by the different coefficients a and b at 0000,0600 and 1200 UTC are shown in Fig.1.All the errors are less than 0.15 ppm.The DOAS-like algorithm of Eq.(7)only has one unknown parameter.Hence,no iteration is needed.

    2.2.Forward model

    2.3.Channel selection

    The DOAS-like method could reduce computational cost, but the super channel-pair must be carefully selected to reduce the impacts of H2O absorption,the solar Fraunhofer lines,and other factors such as instrument noise,temperature, pressure,frequency shift etc.In our channel-pair,the mean of 430 channels with very weak CO2absorption is regarded as the weak absorption channel in the super channel-pair,which is applied to the following analyses,and the mean of some strong CO2absorption channels is regarded as the strong absorption channel in the super channel-pair,as shown in Fig. 2.The selection of the strong absorption channel in the super channel-pair is presented in the following paragraphs.

    The effects of random noise are also analyzed in the strong absorption channel selection to avoid large errors.Figure 3 illustrates the errors due to instrument noise in differently positioned strong CO2absorption channels if only one strong CO2absorption channel is used in XCO2retrieval.It is clearly shown that when the strong CO2absorption channel located at the far wing is used,large errors could be introduced due to the reduced information content of CO2(Fig. 3a);while in the line center,low signal-to-noise ratio(SNR) results in large uncertainty(Fig.3c).

    The line strength and absorption coefficients depend on pressure and temperature.For the ultra-high spectral resolution measurements,an inaccurate pressure and temperatureprofile will introduce extra errors in the retrieval of CO2.Figure 4 shows the XCO2errors of each channel for a+1 hPa bias of surface pressure,which is calculated by comparing inversions with and without a 1 hPa change,when the channel is regarded as the only strong CO2absorption channel.In the error calculations,the coefficients a and b are calculated under the surface pressure,while the“measurements”are given under the+1 hPa bias of the surface pressure.Similarly,Fig. 5 shows the XCO2errors for a+1 K shift of the temperature profile.As shown in Fig.4,inversion errors caused by the +1 hPa pressure bias of most channels are positive,except for some channels in the weak absorption area.To reduce theimpact of pressure,only channels with an inversion error of less than 1 ppm are selected to be the component of the strong absorption channels in the super channel-pair.Different from that of pressure,the errordue to the+1 K offset of the temperature profile could be either positive or negative,and it could be minimized by careful channel selection in real retrievals.

    Inaccurate wavelength registration is anothersource oferror in retrievals.As shown in Fig.6,the errors in XCO2retrieval due to a frequency shift of 0.003 cm-1could be up to 25 ppm if only one strong CO2absorption channel located on one side of the line center is used.But if strong CO2absorption channels located on both sides of the line center are used, the errors due to the frequency shift tend to be very small,or even zero.

    Based on the above sensitivity studies,and the additional removal of the channels with strong H2O absorption and Fraunhofer lines,the final 588 strong CO2absorption channels are used in our retrieval.In order to evaluate the dependence of the DOAS-like method on the atmospheric state uncertainty,one-year prior profiles in Tsukuba,as shown in Fig.7,are used in simulated inversions.The results for both the DOAS-like and spectral fitting methods are listed in Table 1,in which errors of 1 K for the temperature profile,+5%for water vapor,+1 hPa for surface pressure,and 0.001 cm-1for frequency offset are assumed for solar zenith angles(SZAs) at 20?and 70?.For specific atmospheric parameter analysis, both the spectral fitting and DOAS-like method have one unknown state vector.Relatively,the DOAS-like retrievals are less sensitive to the temperature and H2O uncertainties,especially for large SZAs and high H2O amounts.The effects of surface pressure and frequency shift to being slightly better in the spectral fitting method.

    3.Case studies and comparisons

    To validate the DOAS-like algorithm,TCCON data in Tsukuba,Japan(36.0513?N,140.1215?E)and Bremen,Germany(53.10?N,8.85?E)are used.The spectra at both stations are measured with an FTS(IFS 125HR,Bruker Optics GmbH,Germany).The absorption spectrum is calculated by a Fourier transform of the interferogram,which is formed by beams reflected from a moving mirror and a static mirror. The resolution and sample rate of the FTS are determined bythe maximum optical path differences(MOPDs)and speed of the moving mirror.The MOPDs of the FTS in Tsukuba and Germany are 45.01 and 64.29 cm,respectively.The retrieved XCO2using the DOAS-like method are illustrated in Fig.8 (left panels),and the results of the official TCCON algorithm are also included for comparison.At first sight,the XCO2of the DOAS-like method is smaller than that of the official TCCON algorithm.After comparing the difference between the TCCON and DOAS-like retrievals with the SZA(Fig.8, right panels),we find that the difference is linearly dependent on the SZA(Fig.9).Moreover,the linear relationship does not vary with time and place.For the TCCON results,a postretrieval algorithm is used to correct an airmass-dependent bias based on the assumption that any symmetric variability within a day should be an artifact(Deutscher et al.,2010; Wunch et al.,2011a).Through a simple correction process in which the linear dependency on the SZA is removed,the DOAS-like and TCCON results agree well with each other, as shown in Fig.10.The standard deviation of the difference between the TCCON and DOAS-like methods is less than 0.8 ppm,both in Tsukuba and Bremen(Fig.11).This suggests that the DOAS-like algorithm provides retrievals with similar precision to TCCON.However,the temporal variability of the atmospheric state in Fig.12 limits the possibility of a higher inversion accuracy.Certainly,there could be many other factors for the low values of DOAS-like retrievals.For example,the solar lines provided by Kurucz used in our algorithm are not so good(Yoshida et al.,2013),and the FTS only focuses on the center of the solar disk due to its very small FOV.This inaccurate extra-terrestrial solar spectrum may be a factor for our lower value of XCO2.

    Table 1.The XCO2errors due to temperature,water vapor,surface pressure and spectral shift.

    4.Conclusions and future directions

    A new algorithm using a channel-pair ratio to derive XCO2is presented in this paper.The algorithm is similar to that of the DOAS method.For the purpose of channel selection,the effects of solar lines,water vapor,air temperature,pressure, instrument noise and wavelength registration shift on the retrieval error are analyzed through a series of sensitivity tests. One super channel-pair is used in the retrieval algorithm. FTS measurements at the TCCON stations in Tsukuba and Bremen are used to validate the new algorithm by comparing our results with the official TCCON product.Our XCO2results are lower than those of TCCON with airmass correction.Taking the TCCON data as a reference,our results are further corrected using an SZA-dependent method.After the correction,our corrected results agree well with those of the TCCON products,suggesting that this new algorithm is useful.However,due to insufficient ground measurements, the new retrieval method is validated by observations at only two stations.Clearly,a thorough validation with extensiveobservation is warranted for our DOAS-like algorithm.

    Acknowledgements.We greatly appreciate the TCCON stations at Tsukuba and Bremen for providing FTS observation spectra and auxiliary data.We also thank Atmospheric and Environmental Research(AER)for providing the LBLRTM.The research described in this paper was supported by the Strategic Priority Research Program–Climate Change:Carbon Budget and Relevant Issues(Grant No.XDA05040300),and National Natural Science Foundation of China(Grant No.41175028).

    REFERENCES

    Bovensmann,H.,J.P.Burrows,M.Buchwitz,J.Frerick,S.No¨el, V.V.Rozanov,K.V.Chance,and A.P.H.Goede,1999: SCIAMACHY:Mission objectives and measurement modes. J.Atmos.Sci.,56,127–150.

    Buchwitz,M.,and Coauthors,2005:Carbon monoxide,methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS:Year 2003 initial data set.Atmospheric Chemistry and Physics,5,3313–3329.

    Canadell,J.G.,and Coauthors,2010:Interactions of the carbon cycle,human activity,and the climate system:A researchportfolio.Current Opinion in Environmental Sustainability, 2,301–311.

    Kurucz,R.L.,1995:The solar spectrum:Atlases and line identifications.Workshop on Laboratory and Astronomical High Resolution Spectra,ASP Comference Series,No.81,A.J. Sauval,R.Blomme and N.Grevesse,17–31.

    Deutscher,N.M.,and Coauthors,2010:Total column CO2measurements at Darwin,Australia—site description and calibration against in situ aircraft profiles.Atmospheric Measurement Techniques,3,947–958.

    Easterling,D.R.,and M.F.Wehner,2009:Is the climate warming or cooling?Geophys.Res.Lett.,36,L08706,doi:10.1029/ 2009GL037810.

    Kuze,A.,H.Suto,M.Nakajima,and T.Hamazaki,2009:Thermal and near infrared sensor for carbon observation Fouriertransform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring.Appl.Opt.,48, 6716–6733.

    Liu,Y.,D.X.,Yang,and Z.N.,Cai,2013:A retrieval algorithm for TanSat XCO2observation:Retrieval experiments using GOSAT data.Chinese Science Bulletin,58,1520–1523.

    Min,Q.-L.,and M.Z.Duan,2005:Simultaneously retrieving cloud optical depth and effective radius for optically thin clouds.J.Geophys.Res.,110,D21201,doi:10.1029/2005JD 006136.

    Min,Q.L.,E.Joseph,and M.Z.Duan,2004:Retrievals of thin cloud optical depth from a multifilter rotating shadowband radiometer.J.Geophys.Res.,109,D02201,doi:10.1029/2003 JD003964.

    Morino,I.,and Coauthors,2011:Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra.Atmospheric Measurement Techniques,4,1061–1076.

    Reuter,M.,and Coauthors,2011:Retrieval of atmospheric CO2with enhanced accuracy and precision from SCIAMACHY: Validation with FTS measurements and comparison with model results.J.Geophys.Res.,116,D04301,doi:10.1029/ 2010JD015047.

    Solomon S.,and Coauthors,2007:Climate Change 2007:The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,996 pp.

    Stephens,B.B.,and Coauthors,2007:Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2.Science,316,1732–1735.

    Wunch,D.,and Coauthors,2011a:The total carbon column observing network.Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, 369,2087–2112.

    Wunch,D.,and Coauthors,2011b:A method for evaluating bias in global measurements of CO2total columns from space.Atmospheric Chemistry and Physics,11,12 317–12 337.

    Yoshida,Y.,Y.Ota,N.Eguchi,N.Kikuchi,K.Nobuta,H.Tran, I.Morino,and T.Yokota,2011:Retrieval algorithm for CO2and CH4column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite.Atmospheric Measurement Techniques,4,717–734.

    Yoshida,Y.,and Coauthors,2013:Improvement of the retrieval algorithm for GOSAT SWIR XCO2and XCH4and their validation using TCCON data.Atmospheric Measurement Techniques,6,1533–1547.

    :Huo,Y.F.,M.Z.Duan,W.S.Tian,and Q.L.Min,2015:A differential optical absorption spectroscopy method for XCO2retrieval from ground-based fourier transform spectrometers measurements of the direct solar beam.Adv.Atmos. Sci.,32(8),1119–1128,

    10.1007/s00376-015-4213-9.

    22 September 2014;revised 8 January 2015;accepted 22 January 2015)

    ?Corresponding author:DUAN Minzheng

    Email:dmz@mail.iap.ac.cn

    天天躁日日操中文字幕| 嫩草影院入口| 美女cb高潮喷水在线观看| 老司机影院成人| 1024手机看黄色片| 简卡轻食公司| 精品人妻熟女av久视频| 少妇熟女欧美另类| 国内精品宾馆在线| 18禁裸乳无遮挡免费网站照片| 男女视频在线观看网站免费| 男女视频在线观看网站免费| 给我免费播放毛片高清在线观看| 综合色av麻豆| 美女黄网站色视频| 在现免费观看毛片| 亚洲国产精品合色在线| 亚洲国产色片| 国产精品美女特级片免费视频播放器| av在线播放精品| 日本一二三区视频观看| 中国美女看黄片| 成人性生交大片免费视频hd| 精品日产1卡2卡| 午夜免费激情av| 成人无遮挡网站| 日韩欧美在线乱码| 国产麻豆成人av免费视频| 99在线视频只有这里精品首页| 免费黄网站久久成人精品| 亚洲av美国av| 精品一区二区免费观看| 黄片wwwwww| av免费在线看不卡| 久久久久久大精品| 色噜噜av男人的天堂激情| eeuss影院久久| 亚洲18禁久久av| 黄色视频,在线免费观看| 男女视频在线观看网站免费| 国产精品久久视频播放| 伦精品一区二区三区| 大香蕉久久网| 午夜视频国产福利| 免费一级毛片在线播放高清视频| 搡老熟女国产l中国老女人| 丝袜喷水一区| 黄色日韩在线| 国产一区二区三区av在线 | 我的老师免费观看完整版| 两性午夜刺激爽爽歪歪视频在线观看| 卡戴珊不雅视频在线播放| 亚洲精品成人久久久久久| 免费高清视频大片| 国产一区二区激情短视频| 丝袜美腿在线中文| 亚洲国产精品成人综合色| 精品久久久久久久末码| 在线观看午夜福利视频| av在线播放精品| 97热精品久久久久久| 一本久久中文字幕| 在线免费十八禁| 精品久久久久久久末码| 少妇猛男粗大的猛烈进出视频 | 最近最新中文字幕大全电影3| 在线观看美女被高潮喷水网站| 亚洲婷婷狠狠爱综合网| 夜夜爽天天搞| 少妇猛男粗大的猛烈进出视频 | 精品人妻熟女av久视频| 国产欧美日韩精品一区二区| 最好的美女福利视频网| 最近中文字幕高清免费大全6| av女优亚洲男人天堂| 国产精品一区二区免费欧美| 亚洲成人av在线免费| 日韩欧美一区二区三区在线观看| 国内精品宾馆在线| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 中国美女看黄片| 中文在线观看免费www的网站| 变态另类成人亚洲欧美熟女| 欧美精品国产亚洲| 99久久精品国产国产毛片| 丝袜喷水一区| 国产高潮美女av| 国产一区二区在线av高清观看| 少妇猛男粗大的猛烈进出视频 | 搡老熟女国产l中国老女人| 久久人人爽人人片av| 啦啦啦啦在线视频资源| 精品久久久久久久末码| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| videossex国产| 99热这里只有精品一区| 不卡一级毛片| 国产一区二区亚洲精品在线观看| 亚洲精品456在线播放app| 亚洲最大成人中文| 精品乱码久久久久久99久播| 少妇人妻精品综合一区二区 | 久久热精品热| 搡老妇女老女人老熟妇| 国产在视频线在精品| 全区人妻精品视频| 91久久精品国产一区二区三区| 韩国av在线不卡| 天堂网av新在线| 男女啪啪激烈高潮av片| 夜夜爽天天搞| 看片在线看免费视频| 国产精品久久久久久亚洲av鲁大| av视频在线观看入口| 亚洲国产精品久久男人天堂| 国产高潮美女av| 乱人视频在线观看| 午夜久久久久精精品| 亚洲电影在线观看av| 亚洲熟妇中文字幕五十中出| 99热6这里只有精品| 国产精品亚洲美女久久久| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 美女免费视频网站| 亚洲四区av| 美女被艹到高潮喷水动态| 此物有八面人人有两片| 一级毛片久久久久久久久女| 六月丁香七月| 国产亚洲精品av在线| 国产在视频线在精品| 国产精品永久免费网站| 国产单亲对白刺激| 亚洲国产精品国产精品| 青春草视频在线免费观看| 免费一级毛片在线播放高清视频| 免费观看在线日韩| 日日撸夜夜添| 一边摸一边抽搐一进一小说| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区四那| 亚洲自拍偷在线| 欧美xxxx黑人xx丫x性爽| av在线老鸭窝| 日产精品乱码卡一卡2卡三| а√天堂www在线а√下载| 欧美成人免费av一区二区三区| 全区人妻精品视频| 一夜夜www| 国产久久久一区二区三区| 国产精品久久久久久久电影| 免费大片18禁| 精品一区二区三区av网在线观看| 看非洲黑人一级黄片| 最后的刺客免费高清国语| 免费一级毛片在线播放高清视频| 18禁黄网站禁片免费观看直播| 男女视频在线观看网站免费| 日韩大尺度精品在线看网址| 日韩欧美精品v在线| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆 | 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 成人av一区二区三区在线看| 嫩草影院新地址| 久久久久精品国产欧美久久久| 悠悠久久av| 噜噜噜噜噜久久久久久91| 成年女人毛片免费观看观看9| h日本视频在线播放| 国产精品人妻久久久影院| 热99re8久久精品国产| 日韩,欧美,国产一区二区三区 | 少妇丰满av| 国产精华一区二区三区| 成人永久免费在线观看视频| 高清日韩中文字幕在线| 秋霞在线观看毛片| 熟女电影av网| 女人十人毛片免费观看3o分钟| 男女那种视频在线观看| 搡老岳熟女国产| 中国美女看黄片| 午夜免费男女啪啪视频观看 | 欧美一级a爱片免费观看看| 搞女人的毛片| 婷婷亚洲欧美| 男女啪啪激烈高潮av片| 久久久久久九九精品二区国产| 一进一出好大好爽视频| 国产亚洲91精品色在线| 日韩欧美免费精品| 高清毛片免费观看视频网站| 免费看av在线观看网站| 国产成人一区二区在线| 国产成人福利小说| 国产大屁股一区二区在线视频| 91午夜精品亚洲一区二区三区| 欧美日韩乱码在线| 老师上课跳d突然被开到最大视频| 中文字幕av成人在线电影| 一个人观看的视频www高清免费观看| 精品一区二区三区av网在线观看| 久久这里只有精品中国| 男人狂女人下面高潮的视频| 国产高清视频在线播放一区| 男插女下体视频免费在线播放| 成人精品一区二区免费| 在线观看一区二区三区| 69人妻影院| 精品欧美国产一区二区三| 在线观看av片永久免费下载| 日韩精品青青久久久久久| 99国产极品粉嫩在线观看| 久久精品影院6| 一个人观看的视频www高清免费观看| 中文字幕精品亚洲无线码一区| 成人美女网站在线观看视频| 91av网一区二区| 毛片女人毛片| 成人高潮视频无遮挡免费网站| 波多野结衣高清作品| 91精品国产九色| 一进一出抽搐gif免费好疼| 一区二区三区四区激情视频 | 日韩在线高清观看一区二区三区| 久久中文看片网| 欧美色欧美亚洲另类二区| 精品不卡国产一区二区三区| 日本a在线网址| 午夜精品一区二区三区免费看| 亚洲精品日韩av片在线观看| 久久精品夜色国产| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 国产成人福利小说| 国内久久婷婷六月综合欲色啪| 91久久精品电影网| 噜噜噜噜噜久久久久久91| 国产色爽女视频免费观看| 91av网一区二区| 国产成人aa在线观看| 欧美日韩综合久久久久久| 免费大片18禁| 日韩在线高清观看一区二区三区| 国产高清视频在线观看网站| 亚洲av不卡在线观看| 日韩欧美 国产精品| 一级毛片电影观看 | 一夜夜www| 免费一级毛片在线播放高清视频| 亚洲av美国av| 乱码一卡2卡4卡精品| 深夜a级毛片| 可以在线观看的亚洲视频| 国产黄片美女视频| 超碰av人人做人人爽久久| 国产精品电影一区二区三区| 亚洲熟妇中文字幕五十中出| 又黄又爽又刺激的免费视频.| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| 我要搜黄色片| 久久久久免费精品人妻一区二区| 97在线视频观看| 国产乱人偷精品视频| 国产 一区精品| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 日韩欧美精品免费久久| 欧美人与善性xxx| 国产一区二区激情短视频| 国产又黄又爽又无遮挡在线| av在线观看视频网站免费| 一本一本综合久久| 大香蕉久久网| 搡老熟女国产l中国老女人| 免费av毛片视频| 伊人久久精品亚洲午夜| 女人十人毛片免费观看3o分钟| 黄色欧美视频在线观看| 国产三级中文精品| av视频在线观看入口| 国产成年人精品一区二区| 成人av一区二区三区在线看| 超碰av人人做人人爽久久| 亚洲第一电影网av| 精品不卡国产一区二区三区| 国产蜜桃级精品一区二区三区| 简卡轻食公司| 亚洲在线自拍视频| 深夜a级毛片| 久久久色成人| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 嫩草影院精品99| 高清毛片免费看| 12—13女人毛片做爰片一| 在线免费观看的www视频| 久久99热这里只有精品18| 给我免费播放毛片高清在线观看| 国产亚洲精品av在线| 床上黄色一级片| 18禁在线无遮挡免费观看视频 | 不卡视频在线观看欧美| 亚洲美女黄片视频| 久久精品国产清高在天天线| 美女内射精品一级片tv| avwww免费| 亚洲美女视频黄频| 99久国产av精品国产电影| 欧美极品一区二区三区四区| 欧美潮喷喷水| 欧美日本亚洲视频在线播放| av视频在线观看入口| 亚洲久久久久久中文字幕| 中国美白少妇内射xxxbb| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久| 一级黄片播放器| av天堂中文字幕网| 久久国产乱子免费精品| 一个人看的www免费观看视频| 午夜福利高清视频| 一夜夜www| 三级毛片av免费| 国产精品电影一区二区三区| 人人妻人人澡人人爽人人夜夜 | 黄色日韩在线| 黄色一级大片看看| 精华霜和精华液先用哪个| 亚洲av免费高清在线观看| 国产伦一二天堂av在线观看| 欧美日韩精品成人综合77777| 国产av一区在线观看免费| av黄色大香蕉| 人人妻人人看人人澡| 亚洲真实伦在线观看| 我要搜黄色片| 女人被狂操c到高潮| 成人永久免费在线观看视频| 国产精品一及| 久99久视频精品免费| 日本成人三级电影网站| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 夜夜爽天天搞| 99视频精品全部免费 在线| 在线观看午夜福利视频| 国语自产精品视频在线第100页| 久久6这里有精品| 久久精品国产亚洲av涩爱 | 观看美女的网站| 欧美日本视频| 欧美一区二区亚洲| 免费av观看视频| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 狂野欧美激情性xxxx在线观看| 99精品在免费线老司机午夜| 91久久精品国产一区二区三区| 在线观看美女被高潮喷水网站| 免费一级毛片在线播放高清视频| 噜噜噜噜噜久久久久久91| 日本一本二区三区精品| 黑人高潮一二区| 国产 一区 欧美 日韩| 国产精品久久久久久精品电影| 精品午夜福利视频在线观看一区| 一a级毛片在线观看| 亚洲久久久久久中文字幕| 精华霜和精华液先用哪个| 成人鲁丝片一二三区免费| 国产高潮美女av| 国产成人aa在线观看| 欧美+亚洲+日韩+国产| 秋霞在线观看毛片| 亚洲精品一区av在线观看| aaaaa片日本免费| 午夜福利在线在线| 韩国av在线不卡| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 成熟少妇高潮喷水视频| 日韩中字成人| 晚上一个人看的免费电影| 午夜a级毛片| 久久久久久久久久久丰满| 香蕉av资源在线| 日本一本二区三区精品| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 精品久久久久久久久av| 中文字幕av在线有码专区| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看| 两个人视频免费观看高清| 看十八女毛片水多多多| 日韩高清综合在线| 亚洲一区二区三区色噜噜| 国产精品一区www在线观看| 人妻夜夜爽99麻豆av| 国产真实乱freesex| 久久久久久九九精品二区国产| 在线免费观看不下载黄p国产| 国产三级在线视频| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 久久精品国产鲁丝片午夜精品| 国产精品av视频在线免费观看| 国产久久久一区二区三区| 99久久中文字幕三级久久日本| 午夜精品一区二区三区免费看| 国产精品,欧美在线| 别揉我奶头 嗯啊视频| 久久精品91蜜桃| 国产伦在线观看视频一区| 欧美日韩在线观看h| 欧美zozozo另类| 久久精品夜色国产| 寂寞人妻少妇视频99o| 性插视频无遮挡在线免费观看| 亚洲成a人片在线一区二区| 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 欧美成人一区二区免费高清观看| 亚洲国产日韩欧美精品在线观看| 日韩三级伦理在线观看| 国产精品久久久久久久久免| 午夜福利视频1000在线观看| av黄色大香蕉| 99久久精品热视频| 99久久精品一区二区三区| 级片在线观看| 看非洲黑人一级黄片| 免费在线观看成人毛片| 九九在线视频观看精品| 黑人高潮一二区| 成熟少妇高潮喷水视频| 亚洲欧美成人精品一区二区| 99久久精品热视频| 成人性生交大片免费视频hd| 黄色配什么色好看| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 午夜免费激情av| 成年版毛片免费区| 少妇猛男粗大的猛烈进出视频 | 国产精品人妻久久久影院| 级片在线观看| 精品一区二区免费观看| 亚洲欧美日韩高清专用| 熟女电影av网| 午夜福利在线观看吧| av天堂中文字幕网| 国产成人a∨麻豆精品| 看免费成人av毛片| 日本a在线网址| 亚洲国产精品合色在线| 一夜夜www| 人妻制服诱惑在线中文字幕| 日本a在线网址| 亚洲丝袜综合中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久久久丰满| 国产男靠女视频免费网站| 免费看av在线观看网站| 久久人人精品亚洲av| 在线免费观看不下载黄p国产| 波多野结衣高清无吗| 久久久国产成人精品二区| 精品人妻视频免费看| 国产单亲对白刺激| 成人三级黄色视频| 欧美3d第一页| 一级a爱片免费观看的视频| 99热全是精品| 日韩av不卡免费在线播放| 能在线免费观看的黄片| 天天躁夜夜躁狠狠久久av| 简卡轻食公司| 22中文网久久字幕| 亚洲欧美日韩东京热| 尾随美女入室| 俄罗斯特黄特色一大片| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 久久久精品94久久精品| 欧美日韩国产亚洲二区| 综合色丁香网| 亚洲,欧美,日韩| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线观看播放| 亚洲无线在线观看| 小蜜桃在线观看免费完整版高清| 九九热线精品视视频播放| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| av专区在线播放| 天堂动漫精品| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 不卡一级毛片| 麻豆成人午夜福利视频| 国产爱豆传媒在线观看| 亚洲精品国产av成人精品 | 午夜福利视频1000在线观看| 我的老师免费观看完整版| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 亚洲欧美清纯卡通| 三级国产精品欧美在线观看| 日韩亚洲欧美综合| 1000部很黄的大片| 国产精品一区www在线观看| 日韩一本色道免费dvd| 午夜激情欧美在线| 久久精品人妻少妇| 午夜精品在线福利| 高清午夜精品一区二区三区 | 久久久久久久午夜电影| 久久久欧美国产精品| 久久久久久久午夜电影| 国产伦一二天堂av在线观看| 欧美zozozo另类| 久久精品国产亚洲av涩爱 | 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看 | 国产不卡一卡二| 色av中文字幕| 欧美bdsm另类| 国产v大片淫在线免费观看| 国内揄拍国产精品人妻在线| 最新在线观看一区二区三区| 成人三级黄色视频| 欧美国产日韩亚洲一区| 国产男人的电影天堂91| 91在线观看av| 99久久无色码亚洲精品果冻| 久久鲁丝午夜福利片| 综合色丁香网| 欧美最新免费一区二区三区| 美女内射精品一级片tv| 99久久九九国产精品国产免费| 成人无遮挡网站| 不卡一级毛片| 国产人妻一区二区三区在| 不卡一级毛片| 亚洲五月天丁香| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 亚洲五月天丁香| 日本-黄色视频高清免费观看| 能在线免费观看的黄片| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 午夜免费激情av| 嫩草影视91久久| 久久99热6这里只有精品| 国产一区二区三区av在线 | 亚洲精品乱码久久久v下载方式| 高清日韩中文字幕在线| 亚洲中文日韩欧美视频| 少妇的逼好多水| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| .国产精品久久| 精品欧美国产一区二区三| 97碰自拍视频| 欧美成人免费av一区二区三区| 国产私拍福利视频在线观看| 国产欧美日韩精品一区二区| 淫秽高清视频在线观看| 又黄又爽又免费观看的视频| 亚洲精品国产av成人精品 | 午夜激情欧美在线| 精品人妻视频免费看| 中文在线观看免费www的网站| 国产亚洲91精品色在线| 国产成人一区二区在线| 午夜福利在线观看吧| 免费在线观看影片大全网站| 性欧美人与动物交配| eeuss影院久久| 亚洲在线观看片| a级毛片a级免费在线| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区 | 国产中年淑女户外野战色| 国产三级在线视频| 国内久久婷婷六月综合欲色啪| 亚洲精品粉嫩美女一区| 国产伦一二天堂av在线观看| 一级毛片我不卡| 中文字幕av成人在线电影| 人妻久久中文字幕网| 日韩欧美一区二区三区在线观看|