• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models

    2015-06-09 21:37:22FENGJuanLIJianpingZHUJianleiLIFeiandSUNCheng
    Advances in Atmospheric Sciences 2015年8期

    FENG Juan,LI Jianping,ZHU Jianlei,LI Fei,and SUN Cheng

    1College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    3Joint Center for Global Change Studies,Beijing 100875

    4Department of Lower Atmosphere Observation Research,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    Simulation of the Equatorially Asymmetric Mode of the Hadley Circulation in CMIP5 Models

    FENG Juan1,2,3,LI Jianping?1,3,ZHU Jianlei2,LI Fei4,and SUN Cheng1,3

    1College of Global Change and Earth System Science,Beijing Normal University,Beijing 100875

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    3Joint Center for Global Change Studies,Beijing 100875

    4Department of Lower Atmosphere Observation Research,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    The tropical Hadley circulation(HC)plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics,spatial structure,and temporal evolution of the long-term variation of the principal mode of the annual mean HC(i.e.,the equatorially asymmetric mode,EAM)was examined in model simulations from the Coupled Model Intercomparison Project Phase 5(CMIP5).The results showed that all the models are moderately successful in capturing the HC’s climatological features,including the spatial pattern,meridional extent,and intensity,but not the spatial or temporal variation of the EAM.The possible reasons for the poor simulation of the long-term variability of the EAM were explored.None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere(SH)and Northern Hemisphere(NH),which is considered to be an important driver for the variation of the AM.Most of the models produce a faster warming in the NH than in the SH,which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH,and contributes to the poor simulation of EAM variability.Thus,this aspect of the models should be improved to provide better simulations of the variability of the HC.This study suggests a possible reason for the poor simulation of the HC,which may be helpful for improving the skill of the CMIP5 models in the future.

    tropical Hadley circulation,equatorially asymmetric mode,CMIP5,sea surface temperature

    1.Introduction

    The Hadley circulation(HC)is the largest atmospheric circulation system on the planet,and is defined as the zonalmean meridional mass circulation in the atmosphere bounded approximately by 30?S and 30?N.The HC is a thermally driven meridional circulation with poleward mass transport in the upper troposphere and equatorward mass transport in the lower troposphere(Quan et al.,2004).The HC plays an essential role in influencing the climate at low,mid,and high latitudes,and is thus of great importance to the global climate(e.g.,Lindzen,1994;Chang,1995;Hou,1998;Diaz and Bradley,2004;Feng et al.,2013).

    Recently,the long-term variability of the HC has been studied intensively,with the width and intensity of the HC being the key issues(Hu and Zhou,2009).Many studies,using a variety of observational and reanalysis data,have consistently shown that the width of the HC shows an obvious poleward expansion trend,and the rate of expansion has been quantified(Fu et al.,2006;Hudson et al.,2006;Frierson et al.,2007;Lu et al.,2007;Seidel et al.,2008;Johanson and Fu,2009;Hu et al.,2011).In terms of intensity,observations show enhanced average annual HC intensity in the 1990s(Chen et al.,2002;Wielicki et al.,2002).The significant increasing trend of the Northern Hemisphere(NH)winter HC can be traced back to the 1950s(Quan et al.,2004; Ma and Li,2008;Hu and Zhou,2009).However,the intensity of the boreal summer HC shows no obvious trend(Quan et al.,2004;Feng et al.,2011).Furthermore,the intensity of the HC since 1979 has been examined(Stachnik and Schumacher,2011;Nguyen et al.,2013),revealing inconsistent trends among different datasets.

    In addition to its intensity and width,the spatial struc-ture of the long-term variability is another important aspect of the HC,and has received considerable attention in recent years.The annual cycle of the HC consists of equatorially symmetric and asymmetric parts(Dima and Wallace,2003). More recently,the first principal mode of the long-term variability of the HC was found to be equatorially asymmetric in both boreal winter and summer,with variability that is considered to be closely related to the sea surface temperature (SST)over the Indo-Pacific warm pool(IPWP;Ma and Li, 2008;Feng et al.,2011).A further study by Li and Feng (2015)indicated that the faster warming of SST within the IPWP in the Southern Hemisphere(SH),as compared to the NH,is responsible for the variation of the equatorially asymmetric mode(EAM)in both boreal winter and summer.Feng et al.(2013)also studied the long-term variability of the boreal spring HC,and reported that the structure of the principal mode of the HC is also equatorially asymmetric.They found that the long-term strengthening trend in the AM contributes to frequent droughts in the extra-tropics during boreal spring. These studies raise the possibility that the spatial structure of the principal mode of the HC is independent of its climatological structure,and that the unequal warming in the tropical NH and SH may contribute to its long-term variability.This possibility is further supported by the findings of Feng and Li (2013),who investigated the influence of different types of El Ni?no–Southern Oscillation events on the HC,and revealed that the spatial structure of the SST meridional gradient is responsible for the spatial anomalies of the HC.

    The above review of the present status of HC research suggests that the variability of the HC is complex.Given that the variation of the HC is closely linked to changes in global atmospheric circulation,and has major impacts on weather and climate on the global scale,it is important to understand the long-term variability of the HC as well as its future changes.Of more practical importance,if numerical models can successfully simulate the variation of the HC, this would be of great interest for identifying and understanding the changes in the HC,and would also be important for predicting future climate change.Recent work by Hu et al.(2013)discussed Coupled Model Intercomparison Project Phase 5(CMIP5)simulations of the poleward expansion of the HC,and reported that the simulated poleward expansion in CMIP5 is much weaker than in observations.However, few studies evaluating model performance have focused on the spatial structure of the principal mode of long-term HC variability.Such an approach would not only improve understanding of the variability of the HC,but would also provide some reference points for improvements to climate models.

    CMIP5 has provided a comprehensive evaluation of stateof-the-art multi-model datasets of coupled general circulation models(CGCMs),and has proved to be a useful benchmark for model sensitivity and predictability experiments to SST forcing(Taylor et al.,2012).However,current climate models still possess clear deficiencies in simulating the variability of climatic modes(Guo et al.,2013;Zheng et al.,2013; Zhu et al.,2013).Although considerable advances have been made in improving the performance of CGCMs,relatively little effort has been directed toward obtaining a proper simulation of the long-term variation of climatic circulation.In the present study,the performance of CGCMs in simulating the complex long-term variation of the HC,in particular the primary mode of the annual mean HC,is examined with the aim of identifying the possible causes of unsatisfactory simulations,and thus contribute to the improvement of current CGCMs.

    The remainder of the paper is organized as follows.Section 2 describes the models,observational datasets,and methods used in the study.Section 3 outlines the performance of CMIP5 models in reproducing the spatial and temporal evolution of the EAM of the HC.Section 4 discusses the possible causes of unsatisfactory simulation of the EAM.And finally, conclusions and further discussion are provided in section 5.

    2.Models,observationaldatasets,and methodology

    2.1.Models

    CMIP5 has brought together more than 20 international climate modeling centers to conduct a comprehensive set of long-term simulations of 20th century climate and different climate change scenarios in the 21st century.CMIP5 is a standard experimental protocol for global CGCMs.It provides a community-based infrastructure in support of climate model diagnosis,intercomparison,validation,data access, and documentation.

    The simulations from 10 coupled models developed at different modeling centers(see Table 1)were used in the present study.Models were selected on the basis of data availability and model diversity.Considering that the simulation periods for each model are different,the model simulations of monthly meridional wind and surface temperature from January 1961 to December 2000 were chosen to provide a common study period.Multiple simulations are available from most models,with different realizations based on different initial conditions,but only the first standard simulations were used in this study.

    2.2.Observational datasets

    The reanalysis data used in this study were from the National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR)dataset,from the late 1940s to the present day(Kalnay et al.,1996).The 40-year European Centre for Medium-Range Weather Forecasts Reanalysis(ERA40)from 1958 to mid-2002(Uppala et al., 2005)was also used to verify the long-term variation of the HC.Two SST datasets were extracted:one from the Met Office Hadley Centre Sea Ice and SST dataset version 1,on a 1?×1?latitude–longitude grid(HadISST;Rayner et al., 2003),and the other from the Improved Extended Reconstruction SST dataset(ERSST;Smith and Reynolds,2004) with 2?×2?horizontal resolution,to explore and con firm the impacts of tropical SST on the long-term variability of the HC.Based on the coverage and availability of the modelsimulations and reanalysis data,the period 1961–2000 was selected to examine the long-term variability of the principal mode of the annual mean HC,and to evaluate the simulation performance of the CMIP5 models.

    Table 1.List of the CMIP5 models used in this study.

    2.3.Methodology

    The HC was characterized by the mass stream function (MSF)of the mean meridional circulation(MMC).The MSF was obtained by vertically integrating the zonal-mean meridional winds in the conventional way(Li,2001),and was defined by

    where R is the mean radius of the earth,φis the latitude,[ˉv]is the zonal mean meridional wind,g is the gravitational acceleration,and p the pressure.The operatorsˉand[]represent temporal and zonal averaging,respectively.As the annual mean HC has a two-cell structure and tends to be symmetric about the equator(Figs.1 and 2),and to avoid one cell dominating the calculated intensity,the HC intensity(HCI)was calculated separately in the NH and SH,and defined as the maximum of the absolute value of the annual mean MSF in each hemisphere.The locations of the poleward edges and ascending branch of the HC were identified as the latitudes where the MSF reached zero at 500 hPa.These were obtained using linear interpolation,and then the width of the HC could be derived from the differences between the poleward edge locations in each hemisphere.

    EOF analysis was employed to determine the principal mode of year-to-year variability of the annual mean MMC. North’s rule was employed to determine whether the EOF modes could be significantly separated.That is,the adjacent significant separated modes of the EOF’s eigenvalues should satisfy the relation

    whereλis the eigenvalue,and N is the valid degrees of freedom.The relationship between the principal mode of the annual mean HC and SST was investigated by correlation analysis.Linear trends were computed using least-squares linear regression.The statistical significance of the values of the correlations and linear trends was assessed by means of the two-sided Student’s t-test.

    3.Performance of CMIP5 models in reproducing the EAM of the annual mean HC

    3.1.Climatological HC simulated by CMIP5 models

    The southern component of the HC based on ERA40 data is more intense than that based on NCEP/NCAR data,but nonetheless there is good agreement between the spatial patterns of the HC(Figs.1a and b).The northern and southern components of the HC have equivalent extent and magnitude, with descending branches around 30?latitude in each hemisphere and an ascending branch near the equator.

    Table 2.Locations of the southern and northern edges and the ascending branch of the climatological Hadley circulation(HC),together with its extent and intensity(HCI).The HCIs of both the Southern Hemisphere(SH)and Northern Hemisphere(NH)are shown.The numbers in parentheses are the corresponding standard deviations;R1 is the correlation of the PCs of the long-term variability of the annual mean HC between observations and models;R2 is the spatial correlation of SST trends between observations and models within the range (20?S–20?N,0?–358?E).

    3.2.Evaluation of the simulated EAM of long-term HC variability

    In this section,the spatial pattern of the principal mode of the annual mean HC is analyzed.The explained variance of the first leading mode of the long-term variability of the HC is close to 50%in boreal winter(Ma and Li,2008),spring (Feng et al.,2013),and summer(Feng et al.,2011),giving us confidence that the first leading mode captures the main variation of the HC.Large differences in the amplitude and structure of the second-and higher-order modes are found in different reanalyses(Feng et al.,2013;Li and Feng,2015).In addition,in the present study,large discrepancies are apparent in the second and third modes of the annual mean MSF calculated from ERA40 and NCEP/NCAR data,and the second and third modes in the NCEP/NCAR data are not fully separable according to North’s rule(not shown).Therefore, only the first leading mode,together with its variability,will be discussed.

    The first principal mode of the annual mean HC,in both the NCEP/NCAR and EAR40 data,displays an EAM dominating the variability of the annual mean HC.Note that thismode is consistently observed in the two reanalysis datasets, and explains~50%of the variance of the annual mean HC, indicating that this mode can be reliably identified.In fact, this mode is consistently observed in four reanalyses[i.e., NCEP/NCAR,ERA,JRA25(Japanese 25-year Reanalysis) and the NCEP-DOE(Department of Energy)Reanalysis] within the period 1979–2000 with an explained variance of around 50%,further establishing the robustness of our results.The stronger component of this mode is centered to the north of the equator,extending from 10?S to 30?N.The ascending branch of this component is located to the south of the equator,with a descending branch in the NH.In contrast, the counterpart in the SH is weak in both extent and magnitude,and has its descending branch at~30?S.Note that the first principal mode here is similar to those observed during boreal winter(Ma and Li,2008)and spring(Feng et al., 2013).

    The principal components(PCs)of the EAM show similar significant upward trends in both the NCEP/NCAR and ERA40 dataset(Figs.1e and f),indicating a strengthening of the EAM during 1961–2000,which would intensify the northern component of the HC.The PCs determined fromthe two reanalysis datasets are highly correlated,with a correlation coefficient of 0.91.However,there are many uncertainties in the PCs from the CMIP5 model simulations(Fig. 5).Even those models that successfully simulate the spatial structure of the EAM have PCs with insignificant trends, and none of the correlation coefficients between their interannual variation and that in the reanalyses is significant(see R1 in Table 2).A similar result is seen when the low-latitude band is analyzed,except the significant downward trend in FGOALS-s2 vanishes(not shown).This result implies that none of the models can simulate the long-term trend or the interannual variation of the first leading mode of the annual mean HC variability.

    4.Possible causes of the poor simulation of the EAM of the HC

    The above results indicate that the CMIP5 models perform poorly in simulating the leading mode of the annual mean HC’s long-term variability.In this section,we explore the possible causes of this poor performance for the purposeof providing some reference points for improving the simulation skill of these models.The HC is a thermally driven meridional circulation,and its variation is closely linked to the underlying thermal structure(Lindzen and Nigam,1987; Hou and Lindzen,1992).Therefore,the potential contribution of tropical SST to the variation of the EAM is examined.

    First,the distribution of the correlation between the PCs of the EAM and SST is considered,as well as the warming trend of SST during 1961–2000,based on ERSST and HadISST data(Fig.6).Significant positive correlation over the south of the eastern tropical Pacific,tropical Atlantic,and in the IPWP is apparent(Figs.6a and b).The areas of significant correlation overlap the regions with a significant warming trend(Figs.6c and d),indicating that the interannual variation of the PCs is associated with the variation of tropical SST.Note that the warming of tropical SST is equatorially asymmetric(i.e.a stronger signal in the SH than in the NH),and to further explore this,we next consider the temporal evolution of SST averaged over the tropical region in each hemisphere(20?S–0?and 0?–20?N)(Fig.7).Based onERSST data,both the southern and northern components of averaged SST exhibit signi ficant warming trends,with coefficients of 1.23?C(100 yr)-1and 0.79?C(100 yr)-1respectively from 1961 to 2000.Similarly,based on HadISST,the results are 1.15 and 0.82?C(100 yr)-1.That is,the warming in the tropical SH is more rapid than in the NH in both reanalyses,and this is also clear in their difference(Figs.7e and f). Their difference[i.e.SST in(20?S–0?)minus SST in(0?–20?N)]shows an obvious upward trend,with a coefficient of 0.45?C(100 yr)-1and 0.34?C(100 yr)-1based on ERSST and HadISST data respectively,both statistically significant at the 0.05 confidence level,indicating that the meridional thermal gradient of the tropics in each hemisphere reduced during 1961–2000.As shown theoretically by Feng et al. (2013),the anomalous spatial pattern of HC is closely linked to the structure of the meridional thermal gradient.Furthermore,they also established that the location of the ascending branch of the anomalous HC corresponds exactly to the position where the SST meridional gradient passes through zero from positive to negative.The possible influence on the HC of the SST difference between the southern and northern tropics can be further seen from the composite difference in the HC MSF between the years of larger and smaller SST difference(Fig.8).The variation of the tropical hemisphere gradient is associated with an anomalous vertical circulation with anomalous ascent located in the SH,similar to the EAM of the HC.This implies that the difference between the tropical SH and NH SST contributes to the intensity of the EAM.

    Accordingly,we further explore the long-term trends of SST in the CMIP5 model results(Fig.9).The significant warming trends in the IPWP and tropical Atlantic are captured well by all the models,but not the warming in the south of the eastern tropical Pacific.In addition,the cooling in the north of the central Pacific is not reproduced in all the models.The quality of the simulation of the long-term trend of SST within the tropics(i.e.20?S–20?N,0?–360?E)is further seen in the spatial correlation coefficients between the observations(based on ERSST;R2 in Table 2)and the models.The correlation coefficients are all above 0.34, indicating a reasonable response of the model simulations to the underlying thermal forcing.

    The discussion above indicates that most of the simulations of the underlying thermal forcing in CMIP5 models are inconsistent with observations,which may explain the poor simulation of the spatial structure and temporal evolution of the EAM.

    5.Discussions and Conclusion

    This study did not identify why the models cannot reproduce the warming differences between the tropical SH and NH,since the variation of the underlying SST is a complex issue that is not only linked to atmospheric processes,but is also affected by processes in the interior ocean,as well as air–sea interaction.Nevertheless,a possible cause of the poor simulation by CMIP5 models of the long-term variability of the principal mode of the annual mean HC is highlighted in this paper,and we hope the resultwillbe helpfulin improving CMIP5 model simulations.

    Acknowledgements.This work was jointly supported by the National Natural Science Foundation of China(Grant Nos. 41205046 and 41475076),the 973 Program(Grant No.2013CB 430203).We thank the World Climate Research Programme’s Working Group on Coupled Modeling,which is responsible for CMIP,and the climate modeling groups(listed in Table 1 of this paper)for producing and making available their model output.

    REFERENCES

    Bao,Q.,and Coauthors,2013:The flexible global oceanatmosphere-land system model,version 2:FGOALS-s2.Adv. Atmos.Sci.,30,561–576,doi:10.1007/s00376-012-2113-9.

    Bentsen,M.,and Coauthors,2012:The Norwegian earth system model,NorESM1-M—part 1:Description and basic evaluation.Geosci.Model Dev.Discuss.,5,2843–2931.

    Chylek,P.J.,J.Li,M.K.Dubey,M.Wang,and G.Lesins,2011: Observed and model simulated 20th century Arctic temperature variability:Canadian Earth system model CanESM2. Atmos.Chem.Phys.Diss.,11,22 893–22 907.

    Chang,E.K.M.,1995:The influence of Hadley circulation intensity changes on extratropical climate in an idealized model.J. Atmos.Sci.,52,2006–2024.

    Chen,J.Y.,B.E.Carlson,and A.D.Del Genio,2002:Evidence for strengthening of the tropical general circulation in the 1990s.Science,295,838–841.

    Diaz,H.F.,and R.Bradley,2004:The Hadley Circulation: Present,Past and Future.Kluwer Academic Publishers,The Netherlands,511 pp.

    Dima,I.M.,and J.M.Wallace,2003:On the seasonality of the Hadley cell.J.Atmos.Sci.,60,1522–1527.

    Feng,J.,and J.P.Li,2013:Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation.J.Climate,26,4773–4789.

    Feng,R.,J.P.Li,and J.C.Wang,2011:Regime change of the boreal summer Hadley circulation and its connection with the tropical SST.J.Climate,24,3867–3877.

    Feng,J.,J.P.Li,and F.Xie,2013:Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific warm pool.J.Climate,26,532–544.

    Fu,Q.,C.M.Johanson,J.M.Wallace,and T.Reichler,2006:Enhanced mid-latitude tropospheric warming in satellite measurements.Science,312,1179.

    Frierson,D.M.W.,J.Lu,and G.Chen,2007:Width of the Hadley cell in simple and comprehensive general circulation models. Geophys.Res.Lett.,34(18),L18804,doi:10.1029/2007GL 031115.

    Guo,Y.,W.J.Dong,F.M.Ren,Z.C.Zhao,and J.B.Huang,2013: Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations.Progressus Inquisitiones De Mutatione Climatis,9(3), 181–186.(in Chinese)

    Hou,A.Y.,1998:Hadley circulation as a modulator of the extratropical climate.J.Atmos.Sci.,55,2437–2457.

    Hou,A.Y.,and R.S.Lindzen,1992:The influence of concentrated heating on the Hadley circulation.J.Atmos.Sci.,49(14),1233–1241.

    Hu,Y.Y.,and C.Zhou,2009:Decadal changes in the Hadley circulation.Adv.Geosci.,J.H.Oh,Ed.,World Scientific Publishing Company,Singapore,250 pp.

    Hu,Y.Y.,C.Zhou,and J.P.Liu,2011:Observational evidence for poleward expansion of the Hadley circulation.Adv.Atmos. Sci.,28(1),33–44.

    Hu,Y.Y.,L.J.Tao,and J.P.Liu,2013:Poleward expansion of the Hadley circulation in CMIP5simulations.Adv.Atmos.Sci.,30(3),790–795.

    Hudson,R.D.,M.F.Andrade,M.B.Follette,and A.D. Frolov,2006:The total ozone field separated into meteorological regimes-part II:Northern Hemisphere mid-latitude total ozone trends.Atmos.Chem.Phys.,6,5183–5191.

    Johanson,C.M.,and Q.Fu,2009:Hadley cell widening:Model simulations versus observations.J.Climate,22,2713–2725.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–472.

    Li,J.P.,2001:Atlas of Climate of Global Atmospheric Circulation I.Climatological Mean State.China Meteorological Press, Beijing,279 pp.(in Chinese)

    Li,J.P.,and J.Feng,2015:Tropical large-scale atmosphere-ocean interaction in association with subtropical aridity trend.On Aridity Trend in Northern China.C.B.Fu.,Ed.,World Scientific.(in press)

    Lindzen,R.S.,1994:Climate dynamics and global change.Annual Review of Fluid Mechanics,26,353–378.

    Lindzen,R.S.,and S.Nigam,1987:On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics.J.Atmos.Sci.,44,2418–2436.

    Lu,J.,G.A.Vecchi,and T.Reichler,2007:Expansion of the Hadley cell under global warming.Geophys.Res.Lett.,34, L06805,doi:10.1029/2006GL028443.

    Jiang,Y.,Y.Luo,and Z.C.Zhao,2010:Projection of wind speed changes in China in the 21st century by climate models.Chinese J.Atmos.Sci.,34,323–336.

    Ma,J.,and J.P.Li,2008:The principal modes of variability of the boreal winter Hadley cell.Geophys.Res.Lett.,35,L01808, doi:10.1029/2007GL031883.

    Nguyen,H.,A.Evans,C.Lucas,I.Smith,and B.Timbal,2013: The Hadley circulation in reanalyses:Climatology,variability,and change.J.Climate,26,3357–3376.

    Qiao,F.L.,Z.Y.Song,Y.Bao,Y.J.Song,S.Qi,C.J.Huang, and W.Zhao,2013:Development and evaluation of an earth system model with surface gravity waves.J.Geophys.Res.,118,4514–4524.

    Quan,X.W.,H.F.Diaz,and M.P.Hoerling,2004:Change in the tropical Hadley cell since 1950.The Hadley Circulation: Present,Past and Future,H.F.Diaz and R.S.Bradley,Eds., Springer,85–120.

    Rayner,N.A.,D.E.Parker,E.B.Horton,C.K.Folland,L. V.Alexander,D.P.Rowell,E.C.Kent,and A.Kaplanand, 2003:Global analyses of sea surface temperature,sea ice, and nightmarine airtemperature since the late nineteenth century.J.Geophys.Res.,104(D14),4407,doi:10.1029/2002JD 002670.

    Seidel,D.J.,Q.Fu,W.J.Randel,and T.J.Reichler,2008:Widening of the tropical belt in a changing climate.Nature Geoscience,1,21–24.

    Smith,T.M.,and R.W.Reynolds,2004:Improved extended reconstruction of SST(1854–1997).J.Climate,17,2466–2477.

    Stachnik,J.P.,and C.Schumacher,2011:A comparison of the Hadley circulation in modern reanalyses.J.Geophys.Res., 116,D22102,doi:10.1029/2011JD016677.

    Stevens,B.,and Coauthors,2013:The atmospheric component of the MPI-M Earth system model:ECHAM6.J.Adv.Model Earth Syst.,5,146–172.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485–498.

    Uppala,S.M.,and Coauthors,2005:The ERA-40 re-analysis. Quart.J.Roy.Meteor.Soc.,131,2961–3012.

    Voldoire,A.,and Coauthors,2013:The CNRM-CM5.1 global climate model:Description and basic evaluation.Climate Dyn., 40,2091–2121.

    Volodin,E.M.,N.A.Dianskii,A.V.Gusev,2010:Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations.Atmos. Ocean.Phy.,46(4),414–431.

    Wielicki,B.A.,and Coauthors,2002:Evidence for large decadal variability in the tropical mean radiative energy budget.Science,295,841–844.

    Zheng,F.,J.P.Li,R.T.Clark,and H.C.Nnamchi,2013:Simulation and projection of the Southern Hemisphere Annular Mode in CMIP5 models.J.Climate,26,9860–9879.

    Zhu,X.,W.J.Dong,and Y.Guo,2013:Comparison of simulated winter and spring Arctic oscillation variability by CMIP5 and CMIP3 coupled models.Progressus Inquisitiones De Mutatione Climatis,9(3),165–172.(in Chinese)

    :Feng,J.,J.P.Li,J.L.Zhu,F.Li,and C.Sun,2015:Simulation of the equatorially asymmetric mode of the Hadley circulation in CMIP5 models.Adv.Atmos.Sci.,32(8),1129–1142,

    10.1007/s00376-015-4157-0.

    14 July 2014;revised 26 December 2014;accepted 5 January 2015)

    ?Corresponding author:LI Jianping

    Email:ljp@bnu.edu.cn

    国产高清videossex| 一级作爱视频免费观看| 1024视频免费在线观看| 黄片大片在线免费观看| 日本一区二区免费在线视频| 亚洲成国产人片在线观看| 欧美成人一区二区免费高清观看 | 亚洲片人在线观看| 午夜a级毛片| 色综合亚洲欧美另类图片| 成人三级黄色视频| 大型黄色视频在线免费观看| 国产男靠女视频免费网站| 亚洲国产毛片av蜜桃av| 国产精品久久久av美女十八| 久久精品aⅴ一区二区三区四区| 一级a爱片免费观看的视频| 精品国产美女av久久久久小说| 在线观看免费视频日本深夜| 亚洲中文字幕日韩| 此物有八面人人有两片| 久久精品人妻少妇| 欧美+亚洲+日韩+国产| 日韩精品青青久久久久久| 国产野战对白在线观看| www日本黄色视频网| 国产不卡一卡二| 亚洲精品久久成人aⅴ小说| 香蕉av资源在线| 中文字幕人妻丝袜一区二区| 国产午夜精品久久久久久| 嫩草影院精品99| 亚洲av熟女| 中亚洲国语对白在线视频| 男人操女人黄网站| 特大巨黑吊av在线直播 | 亚洲国产精品sss在线观看| 精华霜和精华液先用哪个| 国产三级在线视频| 国产又爽黄色视频| 18禁黄网站禁片免费观看直播| 午夜a级毛片| 欧美黄色片欧美黄色片| 色综合站精品国产| 母亲3免费完整高清在线观看| 久久精品国产亚洲av高清一级| 丝袜美腿诱惑在线| 69av精品久久久久久| 国产亚洲av嫩草精品影院| 久久这里只有精品19| √禁漫天堂资源中文www| 伦理电影免费视频| 亚洲免费av在线视频| 一级毛片女人18水好多| 久久久久免费精品人妻一区二区 | 亚洲精品久久成人aⅴ小说| 久久久水蜜桃国产精品网| 免费高清在线观看日韩| 久久久久久久精品吃奶| 成年人黄色毛片网站| 女人被狂操c到高潮| 成年女人毛片免费观看观看9| 色av中文字幕| 正在播放国产对白刺激| 日日夜夜操网爽| 99国产精品一区二区三区| 少妇粗大呻吟视频| 久久婷婷人人爽人人干人人爱| 天天添夜夜摸| 亚洲aⅴ乱码一区二区在线播放 | 欧美乱妇无乱码| 国产成人欧美在线观看| 最近最新中文字幕大全电影3 | 久久香蕉精品热| 欧美+亚洲+日韩+国产| 男人舔女人的私密视频| 日韩欧美一区二区三区在线观看| 亚洲无线在线观看| av视频在线观看入口| 成人亚洲精品av一区二区| 美女国产高潮福利片在线看| 免费电影在线观看免费观看| 免费在线观看黄色视频的| 一级毛片精品| 97人妻精品一区二区三区麻豆 | 色综合婷婷激情| 国产av在哪里看| 国产精品精品国产色婷婷| 欧美中文日本在线观看视频| 麻豆成人av在线观看| 1024香蕉在线观看| 操出白浆在线播放| 欧美国产精品va在线观看不卡| www日本黄色视频网| 一个人观看的视频www高清免费观看 | 曰老女人黄片| 亚洲精品色激情综合| 久9热在线精品视频| 日日夜夜操网爽| 婷婷精品国产亚洲av在线| 欧美日韩亚洲综合一区二区三区_| 最新在线观看一区二区三区| 亚洲欧美精品综合一区二区三区| 长腿黑丝高跟| 精品无人区乱码1区二区| 国产成+人综合+亚洲专区| 国产在线观看jvid| 久久久久国内视频| 一级毛片高清免费大全| 97人妻精品一区二区三区麻豆 | 黄色毛片三级朝国网站| 日本黄色视频三级网站网址| 人人妻,人人澡人人爽秒播| 久久精品人妻少妇| 国产一区二区三区视频了| 色在线成人网| 99热只有精品国产| 精品久久久久久久末码| aaaaa片日本免费| 久久人妻av系列| 天堂影院成人在线观看| 国产1区2区3区精品| 亚洲中文日韩欧美视频| 老司机在亚洲福利影院| 国产成人欧美| 此物有八面人人有两片| 此物有八面人人有两片| 日韩欧美一区视频在线观看| 国产欧美日韩精品亚洲av| 亚洲一码二码三码区别大吗| 午夜激情福利司机影院| 午夜久久久久精精品| 亚洲一区中文字幕在线| 一边摸一边做爽爽视频免费| 午夜福利欧美成人| 免费人成视频x8x8入口观看| 精品久久蜜臀av无| 成年版毛片免费区| 国产不卡一卡二| 最近最新免费中文字幕在线| 国产精品久久电影中文字幕| 久久久久免费精品人妻一区二区 | or卡值多少钱| 久久久国产成人免费| 人妻久久中文字幕网| 亚洲国产精品成人综合色| 日韩欧美一区视频在线观看| 欧美zozozo另类| 国产日本99.免费观看| 看免费av毛片| 麻豆久久精品国产亚洲av| 亚洲成av片中文字幕在线观看| 欧美日韩亚洲综合一区二区三区_| 欧美乱妇无乱码| 日本三级黄在线观看| av免费在线观看网站| 国产真人三级小视频在线观看| 国产91精品成人一区二区三区| 欧美成人性av电影在线观看| 很黄的视频免费| 50天的宝宝边吃奶边哭怎么回事| 午夜两性在线视频| 久热这里只有精品99| 久久久精品欧美日韩精品| 亚洲成av人片免费观看| 亚洲精品国产一区二区精华液| 欧美最黄视频在线播放免费| 国产精品免费视频内射| 国产不卡一卡二| 免费高清在线观看日韩| 国产欧美日韩一区二区精品| 国产aⅴ精品一区二区三区波| 老司机深夜福利视频在线观看| 嫩草影视91久久| 久久久久久久久久黄片| 99国产精品一区二区蜜桃av| 日本撒尿小便嘘嘘汇集6| 亚洲精品av麻豆狂野| 久久精品91蜜桃| 国产不卡一卡二| 欧美日韩乱码在线| 久久香蕉激情| 一级毛片女人18水好多| 欧美精品亚洲一区二区| 久久婷婷人人爽人人干人人爱| 亚洲国产欧美一区二区综合| 国产成人欧美在线观看| 女人爽到高潮嗷嗷叫在线视频| 日本免费一区二区三区高清不卡| 国产精品一区二区三区四区久久 | √禁漫天堂资源中文www| 一级黄色大片毛片| 午夜福利在线在线| 一个人免费在线观看的高清视频| 老司机午夜十八禁免费视频| 99国产精品99久久久久| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 一级毛片精品| 国产高清视频在线播放一区| 十八禁网站免费在线| a在线观看视频网站| 日韩欧美国产在线观看| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 大型av网站在线播放| 正在播放国产对白刺激| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| а√天堂www在线а√下载| 色综合欧美亚洲国产小说| 国产亚洲精品av在线| 色哟哟哟哟哟哟| 国产欧美日韩精品亚洲av| 国产一区二区激情短视频| av超薄肉色丝袜交足视频| 午夜成年电影在线免费观看| 日韩精品中文字幕看吧| 色在线成人网| 免费看美女性在线毛片视频| 欧美黄色淫秽网站| 男男h啪啪无遮挡| 精品电影一区二区在线| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡免费网站照片 | 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区视频在线观看| 亚洲精品久久国产高清桃花| 国产人伦9x9x在线观看| 久久精品91蜜桃| 天堂√8在线中文| 黄片大片在线免费观看| 亚洲 欧美一区二区三区| 亚洲 国产 在线| 黑丝袜美女国产一区| 国产国语露脸激情在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 男女床上黄色一级片免费看| 中国美女看黄片| 欧美日韩亚洲国产一区二区在线观看| 欧美绝顶高潮抽搐喷水| 亚洲精品一区av在线观看| av在线天堂中文字幕| 国产亚洲欧美98| 国产精品亚洲美女久久久| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 性色av乱码一区二区三区2| 精品久久久久久成人av| 人人妻人人澡欧美一区二区| 禁无遮挡网站| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清 | 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 欧美乱妇无乱码| 亚洲国产日韩欧美精品在线观看 | 国产高清激情床上av| 日本 欧美在线| 正在播放国产对白刺激| 亚洲欧美精品综合一区二区三区| 国产91精品成人一区二区三区| 大香蕉久久成人网| 国产99久久九九免费精品| 国产99白浆流出| 欧美性猛交╳xxx乱大交人| 国产成人啪精品午夜网站| 精品国产超薄肉色丝袜足j| 男女下面进入的视频免费午夜 | 美女高潮到喷水免费观看| 狂野欧美激情性xxxx| 国产精品野战在线观看| 久久精品人妻少妇| 久久中文字幕一级| 久久伊人香网站| 精品不卡国产一区二区三区| 国产一区二区激情短视频| 成年免费大片在线观看| 国产精品免费视频内射| 日韩欧美三级三区| 在线观看午夜福利视频| 免费在线观看日本一区| 亚洲 国产 在线| 久久亚洲真实| 久久 成人 亚洲| 国产成人系列免费观看| 又大又爽又粗| 亚洲精品av麻豆狂野| 久久狼人影院| 91国产中文字幕| 91在线观看av| 国产91精品成人一区二区三区| 久9热在线精品视频| 日日夜夜操网爽| av中文乱码字幕在线| 国产高清有码在线观看视频 | aaaaa片日本免费| 两性午夜刺激爽爽歪歪视频在线观看 | 日日夜夜操网爽| 国产精品影院久久| or卡值多少钱| 亚洲一区高清亚洲精品| 亚洲午夜精品一区,二区,三区| 久久精品国产清高在天天线| 久久久久国内视频| 免费在线观看日本一区| 午夜免费观看网址| 亚洲精品国产一区二区精华液| 亚洲欧美日韩无卡精品| 在线av久久热| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲国产高清在线一区二区三 | 欧美乱码精品一区二区三区| 成人亚洲精品一区在线观看| 精品高清国产在线一区| 亚洲人成77777在线视频| 一级毛片精品| 亚洲av成人av| 久久午夜综合久久蜜桃| 欧美午夜高清在线| 成人18禁在线播放| 少妇被粗大的猛进出69影院| 欧美日韩亚洲国产一区二区在线观看| 国产精品香港三级国产av潘金莲| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 可以免费在线观看a视频的电影网站| 亚洲精品一区av在线观看| av福利片在线| 18禁观看日本| 精品熟女少妇八av免费久了| 999久久久国产精品视频| 午夜精品在线福利| 色哟哟哟哟哟哟| 18禁裸乳无遮挡免费网站照片 | 黄色视频,在线免费观看| 国内精品久久久久精免费| 1024香蕉在线观看| 级片在线观看| 国产精品久久久久久精品电影 | 国产精品二区激情视频| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 欧美另类亚洲清纯唯美| 一区福利在线观看| www.熟女人妻精品国产| 色综合亚洲欧美另类图片| 熟女少妇亚洲综合色aaa.| 中文字幕人成人乱码亚洲影| av片东京热男人的天堂| 国产av在哪里看| 欧美人与性动交α欧美精品济南到| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放 | 国产免费av片在线观看野外av| 国产v大片淫在线免费观看| 国产精品久久久av美女十八| 欧美一级毛片孕妇| 美女午夜性视频免费| aaaaa片日本免费| 韩国精品一区二区三区| 老司机午夜十八禁免费视频| 欧美日本亚洲视频在线播放| 女人被狂操c到高潮| 波多野结衣av一区二区av| e午夜精品久久久久久久| 免费看a级黄色片| 亚洲人成伊人成综合网2020| 色在线成人网| 久久久国产成人精品二区| 色在线成人网| 99久久综合精品五月天人人| www日本黄色视频网| 亚洲人成伊人成综合网2020| 色老头精品视频在线观看| 美女午夜性视频免费| 曰老女人黄片| 99re在线观看精品视频| 亚洲成av人片免费观看| 中文资源天堂在线| 中文字幕人成人乱码亚洲影| 亚洲人成电影免费在线| 99国产精品一区二区三区| 国产精品,欧美在线| 女警被强在线播放| 欧美不卡视频在线免费观看 | 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 欧美zozozo另类| 久久久久国产精品人妻aⅴ院| 亚洲av熟女| 又黄又爽又免费观看的视频| 啪啪无遮挡十八禁网站| 国产亚洲精品久久久久久毛片| 大香蕉久久成人网| 亚洲成人久久性| videosex国产| 日日爽夜夜爽网站| 国产精品自产拍在线观看55亚洲| 一本大道久久a久久精品| 狠狠狠狠99中文字幕| 亚洲一区中文字幕在线| 51午夜福利影视在线观看| 一区二区三区国产精品乱码| 日韩欧美三级三区| 国产亚洲欧美精品永久| 欧美又色又爽又黄视频| 亚洲精品久久国产高清桃花| 一本综合久久免费| 国产一区二区在线av高清观看| 高清在线国产一区| 国产野战对白在线观看| 欧美在线一区亚洲| 国产亚洲精品av在线| 自线自在国产av| 一级片免费观看大全| 一区二区三区国产精品乱码| 日韩欧美三级三区| 成人国语在线视频| 欧美绝顶高潮抽搐喷水| 一二三四社区在线视频社区8| 欧美色欧美亚洲另类二区| 日本成人三级电影网站| 亚洲人成77777在线视频| 国产aⅴ精品一区二区三区波| 国产精品香港三级国产av潘金莲| 国产又黄又爽又无遮挡在线| 亚洲成av片中文字幕在线观看| 级片在线观看| 国内揄拍国产精品人妻在线 | 波多野结衣av一区二区av| 99久久综合精品五月天人人| 黄色女人牲交| 91大片在线观看| 黄色视频不卡| 好看av亚洲va欧美ⅴa在| 免费看美女性在线毛片视频| 曰老女人黄片| 欧美乱妇无乱码| 久久久久久九九精品二区国产 | 久久久久免费精品人妻一区二区 | 9191精品国产免费久久| 亚洲七黄色美女视频| 国产亚洲精品av在线| 成人亚洲精品一区在线观看| 亚洲人成电影免费在线| 国产精品 欧美亚洲| 麻豆久久精品国产亚洲av| 制服丝袜大香蕉在线| 夜夜躁狠狠躁天天躁| 欧美在线黄色| e午夜精品久久久久久久| 亚洲 国产 在线| 1024手机看黄色片| 久久国产精品影院| 高清毛片免费观看视频网站| 日韩欧美 国产精品| 99热6这里只有精品| 中文字幕人成人乱码亚洲影| 久久午夜综合久久蜜桃| 亚洲无线在线观看| 黑人操中国人逼视频| 日日干狠狠操夜夜爽| 久久国产精品影院| 日韩有码中文字幕| 亚洲国产精品sss在线观看| 高清在线国产一区| 日韩三级视频一区二区三区| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 久久精品亚洲精品国产色婷小说| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 首页视频小说图片口味搜索| 在线永久观看黄色视频| 一区二区三区国产精品乱码| 最近最新中文字幕大全免费视频| 国产一级毛片七仙女欲春2 | 成人特级黄色片久久久久久久| 国产成人av教育| 日韩成人在线观看一区二区三区| 久久午夜综合久久蜜桃| videosex国产| 国产精品一区二区精品视频观看| 国产av又大| 91成人精品电影| 黄色丝袜av网址大全| 免费高清视频大片| 不卡av一区二区三区| www.www免费av| 久久精品人妻少妇| 成人亚洲精品av一区二区| 男女床上黄色一级片免费看| 韩国av一区二区三区四区| 亚洲国产欧美一区二区综合| 少妇粗大呻吟视频| 成人三级做爰电影| 国产精品二区激情视频| 久久青草综合色| 久久精品影院6| 国产精品电影一区二区三区| 亚洲熟妇熟女久久| 日日夜夜操网爽| 在线天堂中文资源库| 国产精品 欧美亚洲| 1024香蕉在线观看| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 精品久久久久久久久久久久久 | 少妇 在线观看| 一边摸一边抽搐一进一小说| 激情在线观看视频在线高清| 国产一区二区激情短视频| 亚洲午夜理论影院| 90打野战视频偷拍视频| 在线国产一区二区在线| 午夜福利免费观看在线| 精品高清国产在线一区| 国产精品自产拍在线观看55亚洲| 精品国产乱子伦一区二区三区| 亚洲精品美女久久久久99蜜臀| 精品第一国产精品| 啦啦啦 在线观看视频| 99国产精品99久久久久| 久久久精品欧美日韩精品| xxx96com| 亚洲久久久国产精品| 高潮久久久久久久久久久不卡| 变态另类丝袜制服| 亚洲欧美日韩高清在线视频| 久久香蕉国产精品| 精品高清国产在线一区| 91成年电影在线观看| 亚洲专区字幕在线| 精品免费久久久久久久清纯| 欧美不卡视频在线免费观看 | av超薄肉色丝袜交足视频| 亚洲国产精品合色在线| 两个人视频免费观看高清| 欧美日韩精品网址| av超薄肉色丝袜交足视频| 婷婷精品国产亚洲av| 久久久久九九精品影院| 动漫黄色视频在线观看| tocl精华| 999久久久国产精品视频| 18禁黄网站禁片午夜丰满| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 日韩中文字幕欧美一区二区| 两性夫妻黄色片| 午夜福利高清视频| 可以在线观看的亚洲视频| 日韩免费av在线播放| 国产亚洲欧美98| 国产一区在线观看成人免费| 成熟少妇高潮喷水视频| 美女免费视频网站| 特大巨黑吊av在线直播 | 亚洲欧美精品综合久久99| 成人三级黄色视频| 午夜久久久在线观看| 日韩欧美一区二区三区在线观看| 91大片在线观看| 亚洲国产欧洲综合997久久, | 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 国产一区二区在线av高清观看| 亚洲国产欧美网| 久久久精品欧美日韩精品| 精品卡一卡二卡四卡免费| а√天堂www在线а√下载| 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 特大巨黑吊av在线直播 | 日本在线视频免费播放| 国产成年人精品一区二区| 午夜免费鲁丝| 国产黄a三级三级三级人| 国产伦一二天堂av在线观看| 91av网站免费观看| av免费在线观看网站| 亚洲五月婷婷丁香| 久久婷婷成人综合色麻豆| 亚洲免费av在线视频| 国产精品香港三级国产av潘金莲| xxx96com| 久久天堂一区二区三区四区| 人妻丰满熟妇av一区二区三区| 亚洲av日韩精品久久久久久密| 精品卡一卡二卡四卡免费| 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 午夜免费成人在线视频| e午夜精品久久久久久久| 国产高清激情床上av| 午夜福利成人在线免费观看| 国产一区在线观看成人免费| 日本一本二区三区精品| 天堂√8在线中文| 国产伦一二天堂av在线观看| а√天堂www在线а√下载| 777久久人妻少妇嫩草av网站| 一本一本综合久久| 亚洲全国av大片| 精品午夜福利视频在线观看一区| 少妇被粗大的猛进出69影院| 国产aⅴ精品一区二区三区波| or卡值多少钱| 在线十欧美十亚洲十日本专区|