• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯還原度對(duì)P25/石墨烯復(fù)合材料光催化活性的影響

    2015-06-05 14:36:36熊吉如陸春華
    新型炭材料 2015年4期
    關(guān)鍵詞:春華催化活性光催化

    王 劍, 王 猛, 熊吉如, 陸春華

    石墨烯還原度對(duì)P25/石墨烯復(fù)合材料光催化活性的影響

    王 劍1,2, 王 猛2, 熊吉如2, 陸春華1

    (1.南京工業(yè)大學(xué)材料化學(xué)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,材料科學(xué)與工程學(xué)院,江蘇南京210009;
    2.南京倍立達(dá)新材料系統(tǒng)工程股份有限公司,江蘇南京211100)

    采用高溫?zé)釀冸x和溶劑熱過(guò)程分別還原氧化石墨和氧化石墨制備出石墨烯,進(jìn)一步使用所合成的石墨烯與P25通過(guò)一步水熱過(guò)程合成出石墨烯/P25復(fù)合材料。樣品的光催化活性通過(guò)可見(jiàn)光下降解羅丹明B進(jìn)行評(píng)測(cè),其中P25和熱剝離還原得到的石墨烯復(fù)合比P25和溶劑熱還原的石墨烯復(fù)合顯示出更優(yōu)異的光催化活性,這是由于熱剝離還原的石墨烯具有更高的還原度和更強(qiáng)的電子—空穴分離效率所致。進(jìn)一步在不同溫度下通過(guò)熱剝離法制備了還原石墨烯,探討的石墨烯/ P25復(fù)合材料的光催化活性。較高的剝離溫度有利于石墨烯還原程度的改善,導(dǎo)致光催化活性的提高。

    光催化;降解;P25;熱剝離;石墨烯還原度

    1 Introduction

    Visible-light-driven photocatalytic degradation of organic pollutants have attracted more attention in recent years to solve the environmental contamination problems[1,2].The TiO2-based materials,as a kind of stable,nontoxic and inexpensive semiconductor, are the most promising candidates for photocatalytic decontamination[3,4].At present,different TiO2compounds were prepared and modified by many methods,and showed good photocatalytic activities[5].In particular,a combination of TiO2and carbon materials is being considered as one of the most effective materials for the purification of air/water.Various carbon materials,such as activated carbons[6]and carbon nanotubes[7,8],have been widely investigated asthe supportof TiO2 owing to their stable light-absorption properties and good electronic conductivity.

    Graphene,one-atom-thick two-dimensional sheet with high surface area,high electrical conductivity and superior mechanical properties[9,10],has also been widely applied to form composites with TiO2[11,12]. The photogenerated electrons would be expected to transfer from the conduction band of TiO2into the graphene surface fast in the composites of graphene and TiO2,leading to an improvementof photocatalytic efficiency.The TiO2/graphene composites can be formed by an in-situ growth of the semiconductor material on graphene[13],or by reduction of graphene oxide(GO)previously deposited on the semiconductor[14,15].In the latter case,the graphene was usually prepared by reduction of graphene oxide under hydrothermal[11,15,16]or light-irradiation conditions[17].The photocatalytic activity of the composite photocatalysts strongly depends on the preparation method.However,there are few studies about the influence of the graphene which was prepared by different reduction methods on the photocatalytic activity of the TiO2/ graphene composites.

    At present,solvothermal and high-temperature thermal exfoliation are two of the most common methods for preparing reduced graphenes.Meanwhile,it has been reported that the graphene prepared by a thermal exfoliation method showed a much better conductivity and higher reduction degree than the direct solvothermal reduction[18].In the present work,the graphene oxide was reduced by the thermalexfoliation and solvothermal methods for synthesis of the graphene,and the commercial TiO2(P25)was further supported on the graphene as photocatalyst via a onestep hydrothermal method.The P25/graphene photocatalysts from hydrothermal method exhibited different photocatalytic activity for photodegradation of Rhodamine B,which may be caused by the difference of the graphene reduction degree.The graphene was further synthesized by thermal exfoliation method at different temperatures,and the corresponding photocatalytic activity of the P25/graphene composites was also investigated.

    2 Experimental

    2.1Synthesis of the P25/graphene composites

    Graphite oxide was purchased from Nanjing XFNANO Materials Tech Co.,Ltd.All the chemicals were of analyticalgrade and were used withoutfurther purification.The thermal exfoliated graphite was prepared according to the following method[19].200 mg of graphite oxide powder was transferred into a crucible and subjected to thermal exfoliation at 600, 800,and 1 000℃for 30 s in a tube furnace,and subsequently pulled out fast and cooled to room temperature,which were named as TG600,TG800 and TG1000 respectively.The solvothermal reduced graphene(SG)was as follows.A total of 35 mL of 0.5 mg/mL graphene oxides aqueous solution was transferred to a Teflon-lined autoclave and heated at 180℃for 6 h.

    The P25/graphene composites were prepared via a hydrothermal method.Briefly,2 mg of graphene and 0.2 g of P25 was dissolved in a solution of distilled H2O(20 mL)and ethanol(10 mL)by ultrasonic treatment for 2 h to get a homogeneous suspension.The suspension was then placed in a 40 mL Teflon-sealed autoclave and maintained at 120℃for 3 h. Finally,the resulting composite was washed by deionized water,and dried at 40℃.The composites prepared from graphenes via the thermal exfoliation and solvothermal reduction were named as P25/TG and P25/SG,respectively.

    2.2Characterizations

    X-ray diffraction(XRD)was performed on a ARL X’TRA X-ray diffractometer at room temperature,using Cu Kαradiation(λ=0.154 06 nm). The morphology of the products was characterized by transmission electron microscopy(TEM,JEM-2010, 200 kV)and field emission scanning electron microscopy(FESEM,S-4800,15 kV).The FT-IR spectra were recorded on a Vector-22 FT-IR spectrometer in the range of 4 000-400 cm-1.UV-vis diffuse reflectance spectra were recorded with a 3101 spectrometer. Photoluminescence(PL)emission spectrum was recorded on a FL3-221 fluorescence spectrophotometer equipped with a 450 W xenon lamp as the excitation source at room temperature(excitation wavelength λex=290 nm).The Brunauer-Emmett-Teller(BET) surface area were measured by a nitrogen adsorption technique at 77 K using an ASAP2020 M automated gas-sorption system(America).The electrical conductivity of the SG and TG which was prepared to be a film in advance was measured by a four point probe method(SB100 A/2,Qianfeng).The SG and TG films were prepared by the vacuum filtration method, using a cellulose ester membrane(50 mm in diameter,220 nm pore size,Shenghemo)as a filter.After being dried at60℃in a vacuum desiccator for 3 d, paper-like SG and TG films were obtained.

    2.3Photocatalytic degradation of Rhodamine B

    The photocatalytic activities of the composites were evaluated by photodegradation of Rhodamine B. Before irradiation,0.1 g photocatalysts were added into 50 mL Rhodamine B aqueous solution with aconcentration of 10 mg/L and stirred in the dark for 30 min.During the photoreaction,the suspension was irradiated by a 300 W mercury lamp with a 420 nm filter under magnetic stirring.Approximately 4 mL of aqueous solution was collected at regular intervals and centrifuged.The concentration of Rhodamine B in the centrifuged aqueous solution was determined by measuring the absorption of Rhodamine B at550 nm on a UV-Vis spectrophotometer,from which the photocatalytic activity was evaluated.

    3 Results and discussion

    3.1Structure and morphology of the thermal exfoliated graphene and the P25/graphene composites

    Fig.1(a)shows the XRD patterns of the graphite oxide and the thermal exfoliated graphene prepared under different temperatures.The XRD pattern of graphite oxide shows a typical(002)peak located at 12.3°,corresponding to an interlayer spacing of 0.776 nm.After the high-temperature treatment,the sharp peak around 12°disappears,indicating that the graphite oxide transfer into the graphene by the thermal reduction.The XRD patterns of the P25-SG,P25-TG600,P25-TG800 and P25-TG1000 are shown in Fig.1(b).Allof the P25/graphene composites have a similar XRD pattern to the pure P25,and no diffraction peaks for carbon species are observed,which might be due to the low amount of graphene in the composites.

    Fig.1 XRD patterns of(a)the graphite oxide and thermal exfoliated graphene and(b)the P25/graphene composites.

    The morphologies of the obtained TG and the P25/TG samples were observed by the SEM and TEM(Fig.2).Fig.2(a)exhibits the SEM image of the graphene synthesized by the thermal exfoliation at 1 000℃,which shows a presence of agglomerates of graphene nanosheets.Fig.2(b)is the SEM magnification image of P25/TG1000.Lots of TiO2nanoparticles and some graphenes can be observed.In order to investigate the morphology ata high magnification, the TEM images of the TG1000 and P25/TG1000 are shown in Fig.2(c)and 2(d),respectively.A twodimensional sheet structure with micrometers-long wrinkles can be found in Fig.2(c),which is an obvious feature of the graphene.Some P25 nanoparticles were well dispersed on the graphene in Fig.2(d). However,due to the little content of graphene,there is also a lot of TiO2nanoparticles that are not loaded on the surface of graphene.

    Fig.2 (a),(b)SEM and(c),(d)TEM images of the TG1000 and P25/TG1000 samples.

    3.2Photocatalytic activity of the P25/graphene composites

    To investigate the optical properties of the P25/ graphene composites,the UV-vis absorption spectra of the samples were further performed.As shown in Fig.3,there is not any absorption above 400 nm for the pure P25,however,the band edges of the P25/ SG and P25/TG1000 have an obvious red shift,which means thata more efficientutilization of the solar spectrum could be achieved.The possible reason may be due to the formation of Ti-O-C bond between P25 and graphene,similar to the case of carbon-doped TiO2composites[20,21].In order to prove this,the FT-IR spectra of the pure P25 and the P25/ TG1000 composite were characterized.Fig.4 shows the FT-IR spectra of the pure P25 and the P25/ TG1000 composite in the range of 3 000~450 cm-1with different magnifications.After the introduction of graphene,the absorption peak corresponding to Ti -O-Ti of P25 is blue-shifted to a high wavenumber. The blue shift was attributed to a combination of the vibration of Ti-O-Ti and Ti-O-C bonds[20].The FTIR results confirmed the formation of Ti-O-C bonds between P25 and graphene.

    Fig.3 UV-vis absorption spectra of the P25,P25/SG and P25/TG1000.

    Fig.4 FTIR spectra of P25 and P25/TG 1000 composite with different magnifications in the range of 3 000-450 cm-1.

    The photocatalytic activities of the P25/graphene composites were further measured by the photodegradation of Rhodamine B as model reaction under visible light irradiation.As shown in Fig.5,there is little decrease in concentration of Rhodamine B for blank test without photocatalysts.The P25/SG composite shows a better activity than the pure P25.More than 60%of the initial dye was decomposed by the P25/ SG composites,butnearly 90%of the initial dye still remained in the solution after the same time period for the bare P25 due to its limited photoresponding range. Moreover,it also can be found that all of the P25/TG composite show a larger improvement in the photodegradation rate of the dye than the P25/SG composite.The photocatlytic degradation rate of P25/TG composites increase with the thermal exfoliation temperature.

    Fig.5 Photocatalytic degradation of RhodamineB under visible-light irradiation for different photocatalysts.

    3.3Influence of reduction degree of graphene on the photocatalytic activity

    It has been reported that three factors,including the adsorption of contaminantmolecules,the lightabsorption,and the charge transportation and separation,are crucial in photodegradation reactions.The absorption ability of two different P25/graphene composites was first studied.Fig.6(a)shows the nitrogen absorption-desorption isotherms of the P25/graphene composites.The BET surface areas of the P25/ TG1000 and the P25/SG composites are 42.7 and 39.7 m2/g,respectively.The little difference in BET surface area suggests that the adsorption of the dye molecule for these two composites is almost the same during the photocatalytic degradation.From the light absorption spectra in Fig.3,it can be found that the distinction of light-absorption ability is also small for the two P25/graphene composites.

    For the P25/graphene composites,the graphene was mainly used as a good electron acceptor to promote the migration of photogenerated electron from the semiconductor to graphene.For that,the PL excitation of the P25/TG1000 and P25/SG composites was further researched.As shown in Fig.6(b),all of the P25,P25/TG1000 and P25/SG composites at 370 nm show a strong fluorescence emission peak. However,the fluorescence intensities of the P 25/TG1000 and P25/SG significantly decreased compared with the pure P25 nanoparticles,and the P25/TG1000 composite shows a lower emission intensity than the P25/SG composite,which suggessa much better photogenrated electron transfer ability from the conduction band of P25 into the graphene for the P25/TG1000 composite than P25/SG composite.

    Fig.6 (a)Nitrogen adsorption-desorption isotherms of P25/SG and P25/TG1000,(b)PL emission of P25,P25-SG and P25-TG1000.

    Based on the fact that the graphene was prepared by different reductive methods,it is easy to understand that the reduction degree of graphehe is responsible for the different separation ability of photogenerated electron and hole pairs.The XPS was employed to analyze the reduction degree of the graphene.The C 1s XPS spectra of the different kinds of graphene are shown in Fig.7.

    Fig.7 C 1s XPS spectra of the graphene reduced by the thermalexfoliation:(a)TG600,(b)TG800,(c)TG1000 and(d)SG via solvothermal method.

    The binding energies of 284.6,286.5 and 288.5 eV are attributed to the C—C bonds,the C—O and C= O functional groups,respectively. The changes of the C/O ratio of graphene indicate the different reduction degrees and are summarized in Table 1.It can be seen that the TG1000 has a larger C/O ratio than the SG,indicating that the high-temperature is helpful for improving the reduction degree of graphene.For the graphene prepared by the thermal exfoliation method under different temperatures, the morphology was further characterized by SEM (Fig.8).It can be seen that the TG600 and TG800 exhibite a similar graphene layer structure to the TG1000(Fig.2(a)),which suggests that the morphology of thermalexfoliated graphene under different conditions has no obvious changes.However,therelative ratios of C/O increased with the thermalexfoliation temperature,so the reductive degrees of thermal exfoliated graphene also increase.

    Table 1 Relative ratios of C/O and electrical conductivities of the SG and TG.

    Fig.8 SEM images of TG600 and TG800.

    Moreover,it is easy to understand that the graphene which has a high reduction degree would have little defects and a high electrical conductivity.So the electrical conductivity of the graphene was further measured for graphene films and the average values of the electrical conductivity are shown in Table 1.The electrical conductivities of the SG,TG600,TG800 and TG1000 were about5.3,169.8,182.4 and 198. 6 S·m-1,respectively.Therefore,the photogenrated electron on the TG surface transfers faster than that on the SG,leading to the improvement in photocatalytic activity.It can also be speculated from the electrical conductivity of TG that high thermal exfoliation temperature is beneficialfor improving the electrical conductivity and reduction degree,and therefore the photocatalytic activity.Based on the above analysis,it can be concluded that when the graphene as a supporter of the P25 nanoparticle,itcan suppress the recombination of photogenerated electron-hole pairs to improve its photocatalytic quantum efficiency.Further, the graphene prepared by the high-temperature treatment has a high reduction degree and electrical conductivity,which is helpfulfor the photogenrated electron transfer on its surface,leading to the enhancement of photoinduced carriers’separation and photocatalytic activity.

    4 Conclusions

    Graphene sample has been prepared by the thermal exfoliation and solvothermal method.The P25/TG and P25/SG composites exhibit similar absorption for dye and visible-light responding ability. The P25/TG composites exhibit the better photocatalytic activity than that of the P25/SG composite,which may be caused by a high reduction degree of the as-prepared graphene by the thermal exfoliation method.This work is anticipated to open a new possibility for enhancing the photocatalytic activity of graphene-based materials by improving the reduction degree of the graphene.

    [1] Di Paola A,García-Lópeza E,Marcìa G,et al.A survey of photocatalytic materials for environmental remediation[J].J Hazard Mater,2012,211:3-29.

    [2] Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.

    [3] Linsebigler A L,Lu G,Yates Jr J T.Photocatalysis on TiO2surfaces:principles,mechanisms,and selected results[J]. Chem Rev,1995,95(3):735-758.

    [4] Mor G K,Varghese O K,Paulose M,etal.A review on highly ordered,vertically oriented TiO2nanotube arrays:Fabrication, material properties,and solar energy applications[J].Sol Energ Mater&Sol C,2006,90(14):2011-2075.

    [5] Bavykin D V,Friedrich J M,Walsh F C.Protonated titanates and TiO2nanostructured materials:synthesis,properties,and applications[J].Adv Mater,2006,18(21):2807-2824.

    [6] Huang B,Saka S.Photocatalytic activity of TiO2crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde[J].J Wood Sci,2003,49 (1):79-85.

    [7] Yu Y,Yu J C,Yu J G,et al.Enhancement of photocatalytic activity of mesoporous TiO2by using carbon nanotubes[J].Appl Catal A:Gen,2005,289(2):186-196.

    [8] Woan K,Pyrgiotakis G,Sigmund W.Photocatalytic carbonnano-tube-TiO2composites[J].Adv Mater,2009,21(21):2233-2239.

    [9] Neto A C,Guinea F,Peres N,etal.The electronic properties of graphene[J].Rev Mod Phys,2009,81(1):109.

    [10] Geim A K,Novoselov K S.The rise of graphene[J].Nature Mater,2007,6(3):183-191.

    [11] Liang Y,Wang H,Casalongue H S,et al.TiO2nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J].Nano Res,2010,3(10):701-705.

    [12] Kim H I,Moon G H,Monllor-Satoca D,et al.Solar photoconversion using graphene/TiO2composites:Nanographene shell on TiO2core versus TiO2nanoparticles on graphene sheet [J].J Phys Chem C,2012,116(1):1535-1543.

    [13] Zhang H,Xu P,Du G,et al.A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange[J].Nano Research,2011,4(3):274-283.

    [14] Dreyer D R,Park S,Bielawski C W,et al.The chemistry of graphene oxide[J].Chem Soc Rev,2010,39(1):228-240.

    [15] Shen J,Yan B,Shi M,et al.One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J].J Mater Chem, 2011,21(10):3415-3421.

    [16] Perera S D,Mariano R G,Vu K,et al.Hydrothermalsynthesis of graphene-TiO2nanotube composites with enhanced photocatalytic activity[J].ACS Catal,2012,2(6):949-956.

    [17] Williams G,Seger B,Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide [J].ACS Nano,2008,2(7):1487-1491.

    [18] Luo D,Zhang G,Liu J,et al.Evaluation criteria for reduced graphene oxide[J].J Phys Chem C,2011,115(23):11327-11335.

    [19] Mcallister M J,Li J L,Adamson D H,etal.Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite[J].Chem Mater,2007,19(18):4396-4404.

    [20] Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titanium dioxide[J].Angewandte Chemie International E-dition,2003,42(40):4908-4911.

    [21] Ren W,Ai Z,Jia F,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J].Appl Catal B-Environ,2007,69(3): 138-144.

    Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene

    WANG Jian1,2, WANG Meng2, XIONG Ji-ru2, LU Chun-hua1
    (1.StateKeyLaboratoryofMaterials-OrientedChemicalEngineering, CollegeofMaterialsScienceandEngineering,NanjingTechUniversity,Nanjing210009,China;2.NanjingBeilidaNewMaterialsSystemEngineeringCO.Ltd.,Nanjing211100,China)

    Two kinds of graphene prepared by a high-temperature exfoliation and a solvothermal method were used as supports of a TiO2catalyst(P25)from Degussa,Inc to prepare TiO2/graphene composites.The photocatalytic activities of the composites were evaluated by their degradation of Rhodamine B in aqueous solutions under visible light.Results indicate that the composites prepared by high-temperature exfoliation have much higher photocatalytic activities than those produced by the solvothermal method or the unsupported P25.Both the adsorption capacity of Rhodamine B on the composites and their light absorption characteristics are independent of the kind of graphene used.The activity increases with exfoliation temperature and reduction degree of the graphene regardless of the methods and conditions used,indicating that a high degree of reduction of graphene can inhibit the recombination of electron-hole pairs generated by light irradiation by increasing electron transfer from TiO2to the graphene layer.

    Photocatalytic;Degradation;P25;Thermal exfoliation;Graphene reductive degree

    LU Chun-hua,E-mail:chhlu@njtech.edu.cn

    TB332

    A

    中國(guó)博士后基金(2014M551577).

    陸春華.E-mail:chhlu@njtech.edu.cn

    王 劍,博士.E-mail:wangjian@sxicc.ac.cn

    1007-8827(2015)04-0357-07

    Received date:2015-03-16;Revised date:2015-08-10

    Foundation item:China Postdoctoral Science Foundation(2014M551577).

    Author introduction:WANG Jian,Ph.D.E-mail:wangjian@sxicc.ac.cn

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60195-0

    猜你喜歡
    春華催化活性光催化
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們?cè)撊绾伪磉_(dá)苦難?——讀黃春華《扁腦殼》
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    可見(jiàn)光光催化降解在有機(jī)污染防治中的應(yīng)用
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見(jiàn)光催化活性
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    Nd/ZnO制備及其光催化性能研究
    Fe3+摻雜三維分級(jí)納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
    国产高清激情床上av| 99国产精品一区二区蜜桃av | 热99re8久久精品国产| 精品乱码久久久久久99久播| 侵犯人妻中文字幕一二三四区| 91老司机精品| 成人国产av品久久久| 色精品久久人妻99蜜桃| 久久精品国产亚洲av高清一级| 狠狠狠狠99中文字幕| 黄色视频,在线免费观看| 国产免费现黄频在线看| 女人久久www免费人成看片| 精品久久久久久久毛片微露脸| 俄罗斯特黄特色一大片| 亚洲一码二码三码区别大吗| 国产黄色免费在线视频| 国产极品粉嫩免费观看在线| 婷婷丁香在线五月| 精品第一国产精品| 色综合婷婷激情| 热re99久久精品国产66热6| 久久久精品免费免费高清| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成伊人成综合网2020| av电影中文网址| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 波多野结衣一区麻豆| 国产高清国产精品国产三级| 亚洲欧美日韩另类电影网站| 久久中文看片网| 电影成人av| 一本—道久久a久久精品蜜桃钙片| 午夜免费成人在线视频| 丝袜美腿诱惑在线| 久久久久国产一级毛片高清牌| 精品国产国语对白av| 日韩中文字幕欧美一区二区| 久久天堂一区二区三区四区| 大香蕉久久成人网| 免费av中文字幕在线| 在线 av 中文字幕| 另类亚洲欧美激情| 青草久久国产| 国产精品一区二区在线不卡| 999久久久精品免费观看国产| 宅男免费午夜| 国产黄频视频在线观看| 99精品在免费线老司机午夜| 美女视频免费永久观看网站| 国产亚洲欧美在线一区二区| 两人在一起打扑克的视频| 亚洲av片天天在线观看| 一个人免费看片子| 一夜夜www| 久久久久视频综合| 九色亚洲精品在线播放| 亚洲男人天堂网一区| 超色免费av| 91大片在线观看| 午夜两性在线视频| 成年人免费黄色播放视频| 十八禁人妻一区二区| 欧美大码av| 国产精品亚洲一级av第二区| 宅男免费午夜| 免费在线观看黄色视频的| 日日夜夜操网爽| 飞空精品影院首页| 啦啦啦 在线观看视频| 男人操女人黄网站| av国产精品久久久久影院| 老司机靠b影院| 99国产精品免费福利视频| 大香蕉久久成人网| 丝袜美足系列| 亚洲欧美色中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 法律面前人人平等表现在哪些方面| 手机成人av网站| 国产又色又爽无遮挡免费看| 欧美日韩成人在线一区二区| 亚洲欧洲精品一区二区精品久久久| 精品少妇久久久久久888优播| 亚洲专区字幕在线| 亚洲av成人一区二区三| 久久精品亚洲精品国产色婷小说| 国产精品99久久99久久久不卡| 国产日韩欧美视频二区| 91字幕亚洲| 男女无遮挡免费网站观看| 亚洲熟妇熟女久久| 狠狠狠狠99中文字幕| 美女主播在线视频| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 丰满少妇做爰视频| 日本黄色视频三级网站网址 | 97在线人人人人妻| www.999成人在线观看| 久久久久久久精品吃奶| 极品人妻少妇av视频| 久久影院123| 亚洲熟女毛片儿| 午夜福利,免费看| 亚洲天堂av无毛| 亚洲色图综合在线观看| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区大全| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线观看二区| 亚洲av欧美aⅴ国产| 精品欧美一区二区三区在线| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 三级毛片av免费| 欧美日韩国产mv在线观看视频| 色在线成人网| 国产成人精品无人区| 午夜成年电影在线免费观看| 亚洲精品国产区一区二| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 水蜜桃什么品种好| 日本黄色日本黄色录像| 国产精品亚洲av一区麻豆| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 中文字幕人妻熟女乱码| 超碰成人久久| 久久精品aⅴ一区二区三区四区| av超薄肉色丝袜交足视频| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久成人av| 午夜福利欧美成人| 国产av又大| 日日夜夜操网爽| 精品亚洲成a人片在线观看| 欧美日韩亚洲综合一区二区三区_| 成人国产av品久久久| 日本a在线网址| 夫妻午夜视频| 中文字幕制服av| 极品教师在线免费播放| 国产高清videossex| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| 夜夜夜夜夜久久久久| 夜夜骑夜夜射夜夜干| avwww免费| 国产色视频综合| 国产成人免费无遮挡视频| 丝袜喷水一区| 成年人黄色毛片网站| 精品高清国产在线一区| 久久久精品免费免费高清| 亚洲熟女精品中文字幕| netflix在线观看网站| 女同久久另类99精品国产91| 日本黄色日本黄色录像| 国产成人免费观看mmmm| 日韩中文字幕欧美一区二区| 高清视频免费观看一区二区| 黄片大片在线免费观看| 两个人看的免费小视频| 99久久人妻综合| 高清黄色对白视频在线免费看| 国产日韩一区二区三区精品不卡| 99国产极品粉嫩在线观看| 在线看a的网站| 久久人妻av系列| www.自偷自拍.com| 国产福利在线免费观看视频| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 亚洲欧美一区二区三区黑人| 久久青草综合色| 国产亚洲精品第一综合不卡| 在线观看免费日韩欧美大片| 一本大道久久a久久精品| 久久国产精品男人的天堂亚洲| 久久久久久久久久久久大奶| 亚洲国产欧美网| 成年动漫av网址| 后天国语完整版免费观看| 亚洲成人手机| 亚洲精品一二三| 国产精品美女特级片免费视频播放器 | 在线观看免费视频日本深夜| 日韩视频一区二区在线观看| 91大片在线观看| 老熟女久久久| 久久九九热精品免费| 9191精品国产免费久久| 欧美黄色片欧美黄色片| 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 久久中文字幕人妻熟女| 50天的宝宝边吃奶边哭怎么回事| 丁香六月天网| 男人操女人黄网站| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| 成人18禁在线播放| 丁香六月天网| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 精品视频人人做人人爽| 日本vs欧美在线观看视频| 9热在线视频观看99| 国产在线视频一区二区| 狂野欧美激情性xxxx| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av | 午夜精品国产一区二区电影| 香蕉丝袜av| 国产成人欧美在线观看 | 亚洲av成人一区二区三| 女人高潮潮喷娇喘18禁视频| 亚洲av日韩在线播放| 国产男女内射视频| 麻豆乱淫一区二区| 亚洲男人天堂网一区| 日本av免费视频播放| 777米奇影视久久| 黄片播放在线免费| 超碰成人久久| 久久人人97超碰香蕉20202| 久久久久精品人妻al黑| 中文欧美无线码| 制服人妻中文乱码| 黄色成人免费大全| 欧美午夜高清在线| 久久精品91无色码中文字幕| 国产精品免费大片| 曰老女人黄片| 精品一品国产午夜福利视频| 最近最新中文字幕大全免费视频| 少妇的丰满在线观看| 午夜日韩欧美国产| 免费看a级黄色片| 久久精品国产亚洲av高清一级| 国产精品免费大片| 久热爱精品视频在线9| 精品乱码久久久久久99久播| 亚洲国产av新网站| 国产精品久久久久久精品电影小说| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| 欧美中文综合在线视频| 十八禁高潮呻吟视频| 久久亚洲真实| 色播在线永久视频| 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人看| av免费在线观看网站| 黑丝袜美女国产一区| 国产日韩一区二区三区精品不卡| 一区福利在线观看| 亚洲第一欧美日韩一区二区三区 | 狠狠狠狠99中文字幕| 国产精品电影一区二区三区 | 1024视频免费在线观看| 国产老妇伦熟女老妇高清| 在线天堂中文资源库| 亚洲精品国产一区二区精华液| 嫩草影视91久久| 黄片大片在线免费观看| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 国精品久久久久久国模美| 国产免费av片在线观看野外av| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 亚洲国产精品一区二区三区在线| 黑人操中国人逼视频| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| 亚洲美女黄片视频| 一区二区av电影网| 12—13女人毛片做爰片一| 欧美精品人与动牲交sv欧美| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| av一本久久久久| tube8黄色片| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 午夜福利在线观看吧| 亚洲专区字幕在线| 国产精品av久久久久免费| 啦啦啦中文免费视频观看日本| 日韩欧美一区二区三区在线观看 | 久久影院123| 日韩 欧美 亚洲 中文字幕| 亚洲国产av新网站| 成人国产一区最新在线观看| 最黄视频免费看| 中文亚洲av片在线观看爽 | 欧美成人免费av一区二区三区 | 美女午夜性视频免费| 午夜老司机福利片| 中文字幕制服av| 黄片大片在线免费观看| 午夜两性在线视频| 18在线观看网站| 国产精品亚洲av一区麻豆| 久久久久久久国产电影| 男人操女人黄网站| 欧美亚洲日本最大视频资源| 日本av免费视频播放| 亚洲专区国产一区二区| 色精品久久人妻99蜜桃| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 窝窝影院91人妻| 人妻一区二区av| 成人三级做爰电影| 成人av一区二区三区在线看| 亚洲av国产av综合av卡| av电影中文网址| 国产免费现黄频在线看| 精品少妇内射三级| 女性生殖器流出的白浆| 精品高清国产在线一区| 日韩三级视频一区二区三区| 两个人看的免费小视频| 日韩欧美三级三区| 丰满迷人的少妇在线观看| 80岁老熟妇乱子伦牲交| 性少妇av在线| 99久久人妻综合| 免费在线观看黄色视频的| 欧美日韩黄片免| 又大又爽又粗| 国产精品亚洲一级av第二区| 汤姆久久久久久久影院中文字幕| 国产视频一区二区在线看| 天天操日日干夜夜撸| 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 一区二区三区乱码不卡18| 十八禁网站网址无遮挡| 精品国产乱子伦一区二区三区| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区 | 成人黄色视频免费在线看| 又紧又爽又黄一区二区| 亚洲国产精品一区二区三区在线| 亚洲专区字幕在线| 亚洲精品中文字幕一二三四区 | 最新的欧美精品一区二区| 国产精品99久久99久久久不卡| 国产福利在线免费观看视频| 国产精品久久久久久精品电影小说| 亚洲欧美一区二区三区黑人| av不卡在线播放| 国产亚洲精品久久久久5区| 丰满少妇做爰视频| 中文字幕另类日韩欧美亚洲嫩草| av不卡在线播放| 俄罗斯特黄特色一大片| 丰满迷人的少妇在线观看| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 免费在线观看日本一区| 女人久久www免费人成看片| 日日夜夜操网爽| 国产一区二区三区综合在线观看| 日日夜夜操网爽| 成年人免费黄色播放视频| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 欧美日韩福利视频一区二区| 欧美日韩av久久| 黑丝袜美女国产一区| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 一边摸一边抽搐一进一小说 | 一本久久精品| 一区二区日韩欧美中文字幕| 国产成人一区二区三区免费视频网站| 亚洲午夜精品一区,二区,三区| 精品人妻熟女毛片av久久网站| 亚洲avbb在线观看| 97在线人人人人妻| 在线观看免费午夜福利视频| 9热在线视频观看99| 在线天堂中文资源库| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区三区影片| 热99久久久久精品小说推荐| 免费在线观看黄色视频的| 国产成+人综合+亚洲专区| 人妻一区二区av| 777米奇影视久久| 亚洲专区中文字幕在线| 日韩人妻精品一区2区三区| netflix在线观看网站| 国产精品二区激情视频| av又黄又爽大尺度在线免费看| 18禁观看日本| 麻豆av在线久日| 欧美人与性动交α欧美软件| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品久久久久5区| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲 | 国产成人系列免费观看| 法律面前人人平等表现在哪些方面| 欧美变态另类bdsm刘玥| 黄片播放在线免费| 欧美日韩中文字幕国产精品一区二区三区 | 午夜精品国产一区二区电影| e午夜精品久久久久久久| 欧美av亚洲av综合av国产av| 法律面前人人平等表现在哪些方面| 国产精品国产av在线观看| 9色porny在线观看| 19禁男女啪啪无遮挡网站| 丝袜美足系列| 亚洲av日韩在线播放| 亚洲精品一卡2卡三卡4卡5卡| 国产成人影院久久av| 999久久久精品免费观看国产| 99香蕉大伊视频| 亚洲精品在线观看二区| 一级片'在线观看视频| 久久精品国产亚洲av香蕉五月 | 久久久久久免费高清国产稀缺| 美女主播在线视频| 精品亚洲成国产av| svipshipincom国产片| 免费在线观看完整版高清| xxxhd国产人妻xxx| 成人免费观看视频高清| 我要看黄色一级片免费的| 高清黄色对白视频在线免费看| 亚洲欧美精品综合一区二区三区| 成人黄色视频免费在线看| 热re99久久国产66热| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久| av超薄肉色丝袜交足视频| 亚洲五月色婷婷综合| 欧美精品一区二区免费开放| 久久人人97超碰香蕉20202| 在线av久久热| 久热这里只有精品99| 国产成人av激情在线播放| 国产亚洲欧美在线一区二区| 亚洲av成人一区二区三| 天堂中文最新版在线下载| 色婷婷久久久亚洲欧美| 91av网站免费观看| 美国免费a级毛片| 国产免费现黄频在线看| 午夜福利视频精品| 大香蕉久久网| 精品国内亚洲2022精品成人 | 侵犯人妻中文字幕一二三四区| 亚洲精品中文字幕一二三四区 | 久久人妻福利社区极品人妻图片| 真人做人爱边吃奶动态| 日本黄色日本黄色录像| av网站在线播放免费| videos熟女内射| 极品人妻少妇av视频| 亚洲 国产 在线| 中国美女看黄片| 激情在线观看视频在线高清 | 69av精品久久久久久 | 性色av乱码一区二区三区2| 免费一级毛片在线播放高清视频 | 亚洲人成电影观看| 亚洲五月色婷婷综合| 母亲3免费完整高清在线观看| 亚洲自偷自拍图片 自拍| 露出奶头的视频| 免费在线观看日本一区| 久久久久精品人妻al黑| 精品国产乱子伦一区二区三区| 国产91精品成人一区二区三区 | 久热这里只有精品99| 亚洲综合色网址| 国产一区有黄有色的免费视频| 国产片内射在线| 19禁男女啪啪无遮挡网站| 日韩免费高清中文字幕av| 69av精品久久久久久 | 国产区一区二久久| 久久亚洲精品不卡| 色视频在线一区二区三区| 国产一区二区三区综合在线观看| 中文字幕精品免费在线观看视频| 亚洲精华国产精华精| 成人av一区二区三区在线看| 国产单亲对白刺激| 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区久久| av网站免费在线观看视频| 999精品在线视频| 成人国产av品久久久| 老司机福利观看| 欧美老熟妇乱子伦牲交| 国产精品电影一区二区三区 | 老司机午夜福利在线观看视频 | 亚洲综合色网址| 国产精品免费一区二区三区在线 | 五月天丁香电影| 久久性视频一级片| 免费看a级黄色片| 亚洲精品国产色婷婷电影| 欧美激情极品国产一区二区三区| 五月天丁香电影| 香蕉国产在线看| 波多野结衣av一区二区av| 国产高清videossex| 性高湖久久久久久久久免费观看| 老司机亚洲免费影院| 制服诱惑二区| 新久久久久国产一级毛片| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区| 色婷婷久久久亚洲欧美| 国产熟女午夜一区二区三区| 国产精品麻豆人妻色哟哟久久| 成人影院久久| videosex国产| 九色亚洲精品在线播放| 国产精品美女特级片免费视频播放器 | 99riav亚洲国产免费| 自线自在国产av| 日本wwww免费看| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 天天影视国产精品| 中文字幕色久视频| 午夜福利欧美成人| 在线播放国产精品三级| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 人人妻人人澡人人爽人人夜夜| 50天的宝宝边吃奶边哭怎么回事| 99在线人妻在线中文字幕 | 国产日韩一区二区三区精品不卡| 亚洲精品在线观看二区| 两人在一起打扑克的视频| av天堂在线播放| 18禁黄网站禁片午夜丰满| 亚洲国产成人一精品久久久| 中文字幕人妻熟女乱码| 91字幕亚洲| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 久久精品国产99精品国产亚洲性色 | 啦啦啦在线免费观看视频4| 欧美日韩中文字幕国产精品一区二区三区 | 桃红色精品国产亚洲av| 亚洲精品国产区一区二| 欧美人与性动交α欧美精品济南到| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 欧美成人免费av一区二区三区 | 久久免费观看电影| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 另类精品久久| 欧美精品一区二区免费开放| 国产成人欧美| 女警被强在线播放| 欧美亚洲日本最大视频资源| 操出白浆在线播放| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 国产又色又爽无遮挡免费看| 国产成人啪精品午夜网站| 欧美午夜高清在线| 午夜免费鲁丝| 啦啦啦 在线观看视频| 亚洲成人手机| 性色av乱码一区二区三区2| 成年版毛片免费区| 91国产中文字幕| 国产欧美日韩一区二区三区在线| 精品久久久久久电影网| 免费黄频网站在线观看国产| 欧美日韩亚洲国产一区二区在线观看 | 欧美成人免费av一区二区三区 | 80岁老熟妇乱子伦牲交| 大片免费播放器 马上看| 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 国产99久久九九免费精品| 日韩欧美免费精品| 岛国在线观看网站| 国产成人影院久久av| 怎么达到女性高潮| 建设人人有责人人尽责人人享有的| 精品免费久久久久久久清纯 | 一边摸一边抽搐一进一小说 | 黄色丝袜av网址大全| 少妇精品久久久久久久| 黄色片一级片一级黄色片|