• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯還原度對(duì)P25/石墨烯復(fù)合材料光催化活性的影響

    2015-06-05 14:36:36熊吉如陸春華
    新型炭材料 2015年4期
    關(guān)鍵詞:春華催化活性光催化

    王 劍, 王 猛, 熊吉如, 陸春華

    石墨烯還原度對(duì)P25/石墨烯復(fù)合材料光催化活性的影響

    王 劍1,2, 王 猛2, 熊吉如2, 陸春華1

    (1.南京工業(yè)大學(xué)材料化學(xué)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,材料科學(xué)與工程學(xué)院,江蘇南京210009;
    2.南京倍立達(dá)新材料系統(tǒng)工程股份有限公司,江蘇南京211100)

    采用高溫?zé)釀冸x和溶劑熱過(guò)程分別還原氧化石墨和氧化石墨制備出石墨烯,進(jìn)一步使用所合成的石墨烯與P25通過(guò)一步水熱過(guò)程合成出石墨烯/P25復(fù)合材料。樣品的光催化活性通過(guò)可見(jiàn)光下降解羅丹明B進(jìn)行評(píng)測(cè),其中P25和熱剝離還原得到的石墨烯復(fù)合比P25和溶劑熱還原的石墨烯復(fù)合顯示出更優(yōu)異的光催化活性,這是由于熱剝離還原的石墨烯具有更高的還原度和更強(qiáng)的電子—空穴分離效率所致。進(jìn)一步在不同溫度下通過(guò)熱剝離法制備了還原石墨烯,探討的石墨烯/ P25復(fù)合材料的光催化活性。較高的剝離溫度有利于石墨烯還原程度的改善,導(dǎo)致光催化活性的提高。

    光催化;降解;P25;熱剝離;石墨烯還原度

    1 Introduction

    Visible-light-driven photocatalytic degradation of organic pollutants have attracted more attention in recent years to solve the environmental contamination problems[1,2].The TiO2-based materials,as a kind of stable,nontoxic and inexpensive semiconductor, are the most promising candidates for photocatalytic decontamination[3,4].At present,different TiO2compounds were prepared and modified by many methods,and showed good photocatalytic activities[5].In particular,a combination of TiO2and carbon materials is being considered as one of the most effective materials for the purification of air/water.Various carbon materials,such as activated carbons[6]and carbon nanotubes[7,8],have been widely investigated asthe supportof TiO2 owing to their stable light-absorption properties and good electronic conductivity.

    Graphene,one-atom-thick two-dimensional sheet with high surface area,high electrical conductivity and superior mechanical properties[9,10],has also been widely applied to form composites with TiO2[11,12]. The photogenerated electrons would be expected to transfer from the conduction band of TiO2into the graphene surface fast in the composites of graphene and TiO2,leading to an improvementof photocatalytic efficiency.The TiO2/graphene composites can be formed by an in-situ growth of the semiconductor material on graphene[13],or by reduction of graphene oxide(GO)previously deposited on the semiconductor[14,15].In the latter case,the graphene was usually prepared by reduction of graphene oxide under hydrothermal[11,15,16]or light-irradiation conditions[17].The photocatalytic activity of the composite photocatalysts strongly depends on the preparation method.However,there are few studies about the influence of the graphene which was prepared by different reduction methods on the photocatalytic activity of the TiO2/ graphene composites.

    At present,solvothermal and high-temperature thermal exfoliation are two of the most common methods for preparing reduced graphenes.Meanwhile,it has been reported that the graphene prepared by a thermal exfoliation method showed a much better conductivity and higher reduction degree than the direct solvothermal reduction[18].In the present work,the graphene oxide was reduced by the thermalexfoliation and solvothermal methods for synthesis of the graphene,and the commercial TiO2(P25)was further supported on the graphene as photocatalyst via a onestep hydrothermal method.The P25/graphene photocatalysts from hydrothermal method exhibited different photocatalytic activity for photodegradation of Rhodamine B,which may be caused by the difference of the graphene reduction degree.The graphene was further synthesized by thermal exfoliation method at different temperatures,and the corresponding photocatalytic activity of the P25/graphene composites was also investigated.

    2 Experimental

    2.1Synthesis of the P25/graphene composites

    Graphite oxide was purchased from Nanjing XFNANO Materials Tech Co.,Ltd.All the chemicals were of analyticalgrade and were used withoutfurther purification.The thermal exfoliated graphite was prepared according to the following method[19].200 mg of graphite oxide powder was transferred into a crucible and subjected to thermal exfoliation at 600, 800,and 1 000℃for 30 s in a tube furnace,and subsequently pulled out fast and cooled to room temperature,which were named as TG600,TG800 and TG1000 respectively.The solvothermal reduced graphene(SG)was as follows.A total of 35 mL of 0.5 mg/mL graphene oxides aqueous solution was transferred to a Teflon-lined autoclave and heated at 180℃for 6 h.

    The P25/graphene composites were prepared via a hydrothermal method.Briefly,2 mg of graphene and 0.2 g of P25 was dissolved in a solution of distilled H2O(20 mL)and ethanol(10 mL)by ultrasonic treatment for 2 h to get a homogeneous suspension.The suspension was then placed in a 40 mL Teflon-sealed autoclave and maintained at 120℃for 3 h. Finally,the resulting composite was washed by deionized water,and dried at 40℃.The composites prepared from graphenes via the thermal exfoliation and solvothermal reduction were named as P25/TG and P25/SG,respectively.

    2.2Characterizations

    X-ray diffraction(XRD)was performed on a ARL X’TRA X-ray diffractometer at room temperature,using Cu Kαradiation(λ=0.154 06 nm). The morphology of the products was characterized by transmission electron microscopy(TEM,JEM-2010, 200 kV)and field emission scanning electron microscopy(FESEM,S-4800,15 kV).The FT-IR spectra were recorded on a Vector-22 FT-IR spectrometer in the range of 4 000-400 cm-1.UV-vis diffuse reflectance spectra were recorded with a 3101 spectrometer. Photoluminescence(PL)emission spectrum was recorded on a FL3-221 fluorescence spectrophotometer equipped with a 450 W xenon lamp as the excitation source at room temperature(excitation wavelength λex=290 nm).The Brunauer-Emmett-Teller(BET) surface area were measured by a nitrogen adsorption technique at 77 K using an ASAP2020 M automated gas-sorption system(America).The electrical conductivity of the SG and TG which was prepared to be a film in advance was measured by a four point probe method(SB100 A/2,Qianfeng).The SG and TG films were prepared by the vacuum filtration method, using a cellulose ester membrane(50 mm in diameter,220 nm pore size,Shenghemo)as a filter.After being dried at60℃in a vacuum desiccator for 3 d, paper-like SG and TG films were obtained.

    2.3Photocatalytic degradation of Rhodamine B

    The photocatalytic activities of the composites were evaluated by photodegradation of Rhodamine B. Before irradiation,0.1 g photocatalysts were added into 50 mL Rhodamine B aqueous solution with aconcentration of 10 mg/L and stirred in the dark for 30 min.During the photoreaction,the suspension was irradiated by a 300 W mercury lamp with a 420 nm filter under magnetic stirring.Approximately 4 mL of aqueous solution was collected at regular intervals and centrifuged.The concentration of Rhodamine B in the centrifuged aqueous solution was determined by measuring the absorption of Rhodamine B at550 nm on a UV-Vis spectrophotometer,from which the photocatalytic activity was evaluated.

    3 Results and discussion

    3.1Structure and morphology of the thermal exfoliated graphene and the P25/graphene composites

    Fig.1(a)shows the XRD patterns of the graphite oxide and the thermal exfoliated graphene prepared under different temperatures.The XRD pattern of graphite oxide shows a typical(002)peak located at 12.3°,corresponding to an interlayer spacing of 0.776 nm.After the high-temperature treatment,the sharp peak around 12°disappears,indicating that the graphite oxide transfer into the graphene by the thermal reduction.The XRD patterns of the P25-SG,P25-TG600,P25-TG800 and P25-TG1000 are shown in Fig.1(b).Allof the P25/graphene composites have a similar XRD pattern to the pure P25,and no diffraction peaks for carbon species are observed,which might be due to the low amount of graphene in the composites.

    Fig.1 XRD patterns of(a)the graphite oxide and thermal exfoliated graphene and(b)the P25/graphene composites.

    The morphologies of the obtained TG and the P25/TG samples were observed by the SEM and TEM(Fig.2).Fig.2(a)exhibits the SEM image of the graphene synthesized by the thermal exfoliation at 1 000℃,which shows a presence of agglomerates of graphene nanosheets.Fig.2(b)is the SEM magnification image of P25/TG1000.Lots of TiO2nanoparticles and some graphenes can be observed.In order to investigate the morphology ata high magnification, the TEM images of the TG1000 and P25/TG1000 are shown in Fig.2(c)and 2(d),respectively.A twodimensional sheet structure with micrometers-long wrinkles can be found in Fig.2(c),which is an obvious feature of the graphene.Some P25 nanoparticles were well dispersed on the graphene in Fig.2(d). However,due to the little content of graphene,there is also a lot of TiO2nanoparticles that are not loaded on the surface of graphene.

    Fig.2 (a),(b)SEM and(c),(d)TEM images of the TG1000 and P25/TG1000 samples.

    3.2Photocatalytic activity of the P25/graphene composites

    To investigate the optical properties of the P25/ graphene composites,the UV-vis absorption spectra of the samples were further performed.As shown in Fig.3,there is not any absorption above 400 nm for the pure P25,however,the band edges of the P25/ SG and P25/TG1000 have an obvious red shift,which means thata more efficientutilization of the solar spectrum could be achieved.The possible reason may be due to the formation of Ti-O-C bond between P25 and graphene,similar to the case of carbon-doped TiO2composites[20,21].In order to prove this,the FT-IR spectra of the pure P25 and the P25/ TG1000 composite were characterized.Fig.4 shows the FT-IR spectra of the pure P25 and the P25/ TG1000 composite in the range of 3 000~450 cm-1with different magnifications.After the introduction of graphene,the absorption peak corresponding to Ti -O-Ti of P25 is blue-shifted to a high wavenumber. The blue shift was attributed to a combination of the vibration of Ti-O-Ti and Ti-O-C bonds[20].The FTIR results confirmed the formation of Ti-O-C bonds between P25 and graphene.

    Fig.3 UV-vis absorption spectra of the P25,P25/SG and P25/TG1000.

    Fig.4 FTIR spectra of P25 and P25/TG 1000 composite with different magnifications in the range of 3 000-450 cm-1.

    The photocatalytic activities of the P25/graphene composites were further measured by the photodegradation of Rhodamine B as model reaction under visible light irradiation.As shown in Fig.5,there is little decrease in concentration of Rhodamine B for blank test without photocatalysts.The P25/SG composite shows a better activity than the pure P25.More than 60%of the initial dye was decomposed by the P25/ SG composites,butnearly 90%of the initial dye still remained in the solution after the same time period for the bare P25 due to its limited photoresponding range. Moreover,it also can be found that all of the P25/TG composite show a larger improvement in the photodegradation rate of the dye than the P25/SG composite.The photocatlytic degradation rate of P25/TG composites increase with the thermal exfoliation temperature.

    Fig.5 Photocatalytic degradation of RhodamineB under visible-light irradiation for different photocatalysts.

    3.3Influence of reduction degree of graphene on the photocatalytic activity

    It has been reported that three factors,including the adsorption of contaminantmolecules,the lightabsorption,and the charge transportation and separation,are crucial in photodegradation reactions.The absorption ability of two different P25/graphene composites was first studied.Fig.6(a)shows the nitrogen absorption-desorption isotherms of the P25/graphene composites.The BET surface areas of the P25/ TG1000 and the P25/SG composites are 42.7 and 39.7 m2/g,respectively.The little difference in BET surface area suggests that the adsorption of the dye molecule for these two composites is almost the same during the photocatalytic degradation.From the light absorption spectra in Fig.3,it can be found that the distinction of light-absorption ability is also small for the two P25/graphene composites.

    For the P25/graphene composites,the graphene was mainly used as a good electron acceptor to promote the migration of photogenerated electron from the semiconductor to graphene.For that,the PL excitation of the P25/TG1000 and P25/SG composites was further researched.As shown in Fig.6(b),all of the P25,P25/TG1000 and P25/SG composites at 370 nm show a strong fluorescence emission peak. However,the fluorescence intensities of the P 25/TG1000 and P25/SG significantly decreased compared with the pure P25 nanoparticles,and the P25/TG1000 composite shows a lower emission intensity than the P25/SG composite,which suggessa much better photogenrated electron transfer ability from the conduction band of P25 into the graphene for the P25/TG1000 composite than P25/SG composite.

    Fig.6 (a)Nitrogen adsorption-desorption isotherms of P25/SG and P25/TG1000,(b)PL emission of P25,P25-SG and P25-TG1000.

    Based on the fact that the graphene was prepared by different reductive methods,it is easy to understand that the reduction degree of graphehe is responsible for the different separation ability of photogenerated electron and hole pairs.The XPS was employed to analyze the reduction degree of the graphene.The C 1s XPS spectra of the different kinds of graphene are shown in Fig.7.

    Fig.7 C 1s XPS spectra of the graphene reduced by the thermalexfoliation:(a)TG600,(b)TG800,(c)TG1000 and(d)SG via solvothermal method.

    The binding energies of 284.6,286.5 and 288.5 eV are attributed to the C—C bonds,the C—O and C= O functional groups,respectively. The changes of the C/O ratio of graphene indicate the different reduction degrees and are summarized in Table 1.It can be seen that the TG1000 has a larger C/O ratio than the SG,indicating that the high-temperature is helpful for improving the reduction degree of graphene.For the graphene prepared by the thermal exfoliation method under different temperatures, the morphology was further characterized by SEM (Fig.8).It can be seen that the TG600 and TG800 exhibite a similar graphene layer structure to the TG1000(Fig.2(a)),which suggests that the morphology of thermalexfoliated graphene under different conditions has no obvious changes.However,therelative ratios of C/O increased with the thermalexfoliation temperature,so the reductive degrees of thermal exfoliated graphene also increase.

    Table 1 Relative ratios of C/O and electrical conductivities of the SG and TG.

    Fig.8 SEM images of TG600 and TG800.

    Moreover,it is easy to understand that the graphene which has a high reduction degree would have little defects and a high electrical conductivity.So the electrical conductivity of the graphene was further measured for graphene films and the average values of the electrical conductivity are shown in Table 1.The electrical conductivities of the SG,TG600,TG800 and TG1000 were about5.3,169.8,182.4 and 198. 6 S·m-1,respectively.Therefore,the photogenrated electron on the TG surface transfers faster than that on the SG,leading to the improvement in photocatalytic activity.It can also be speculated from the electrical conductivity of TG that high thermal exfoliation temperature is beneficialfor improving the electrical conductivity and reduction degree,and therefore the photocatalytic activity.Based on the above analysis,it can be concluded that when the graphene as a supporter of the P25 nanoparticle,itcan suppress the recombination of photogenerated electron-hole pairs to improve its photocatalytic quantum efficiency.Further, the graphene prepared by the high-temperature treatment has a high reduction degree and electrical conductivity,which is helpfulfor the photogenrated electron transfer on its surface,leading to the enhancement of photoinduced carriers’separation and photocatalytic activity.

    4 Conclusions

    Graphene sample has been prepared by the thermal exfoliation and solvothermal method.The P25/TG and P25/SG composites exhibit similar absorption for dye and visible-light responding ability. The P25/TG composites exhibit the better photocatalytic activity than that of the P25/SG composite,which may be caused by a high reduction degree of the as-prepared graphene by the thermal exfoliation method.This work is anticipated to open a new possibility for enhancing the photocatalytic activity of graphene-based materials by improving the reduction degree of the graphene.

    [1] Di Paola A,García-Lópeza E,Marcìa G,et al.A survey of photocatalytic materials for environmental remediation[J].J Hazard Mater,2012,211:3-29.

    [2] Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.

    [3] Linsebigler A L,Lu G,Yates Jr J T.Photocatalysis on TiO2surfaces:principles,mechanisms,and selected results[J]. Chem Rev,1995,95(3):735-758.

    [4] Mor G K,Varghese O K,Paulose M,etal.A review on highly ordered,vertically oriented TiO2nanotube arrays:Fabrication, material properties,and solar energy applications[J].Sol Energ Mater&Sol C,2006,90(14):2011-2075.

    [5] Bavykin D V,Friedrich J M,Walsh F C.Protonated titanates and TiO2nanostructured materials:synthesis,properties,and applications[J].Adv Mater,2006,18(21):2807-2824.

    [6] Huang B,Saka S.Photocatalytic activity of TiO2crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde[J].J Wood Sci,2003,49 (1):79-85.

    [7] Yu Y,Yu J C,Yu J G,et al.Enhancement of photocatalytic activity of mesoporous TiO2by using carbon nanotubes[J].Appl Catal A:Gen,2005,289(2):186-196.

    [8] Woan K,Pyrgiotakis G,Sigmund W.Photocatalytic carbonnano-tube-TiO2composites[J].Adv Mater,2009,21(21):2233-2239.

    [9] Neto A C,Guinea F,Peres N,etal.The electronic properties of graphene[J].Rev Mod Phys,2009,81(1):109.

    [10] Geim A K,Novoselov K S.The rise of graphene[J].Nature Mater,2007,6(3):183-191.

    [11] Liang Y,Wang H,Casalongue H S,et al.TiO2nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J].Nano Res,2010,3(10):701-705.

    [12] Kim H I,Moon G H,Monllor-Satoca D,et al.Solar photoconversion using graphene/TiO2composites:Nanographene shell on TiO2core versus TiO2nanoparticles on graphene sheet [J].J Phys Chem C,2012,116(1):1535-1543.

    [13] Zhang H,Xu P,Du G,et al.A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange[J].Nano Research,2011,4(3):274-283.

    [14] Dreyer D R,Park S,Bielawski C W,et al.The chemistry of graphene oxide[J].Chem Soc Rev,2010,39(1):228-240.

    [15] Shen J,Yan B,Shi M,et al.One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J].J Mater Chem, 2011,21(10):3415-3421.

    [16] Perera S D,Mariano R G,Vu K,et al.Hydrothermalsynthesis of graphene-TiO2nanotube composites with enhanced photocatalytic activity[J].ACS Catal,2012,2(6):949-956.

    [17] Williams G,Seger B,Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide [J].ACS Nano,2008,2(7):1487-1491.

    [18] Luo D,Zhang G,Liu J,et al.Evaluation criteria for reduced graphene oxide[J].J Phys Chem C,2011,115(23):11327-11335.

    [19] Mcallister M J,Li J L,Adamson D H,etal.Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite[J].Chem Mater,2007,19(18):4396-4404.

    [20] Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titanium dioxide[J].Angewandte Chemie International E-dition,2003,42(40):4908-4911.

    [21] Ren W,Ai Z,Jia F,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J].Appl Catal B-Environ,2007,69(3): 138-144.

    Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene

    WANG Jian1,2, WANG Meng2, XIONG Ji-ru2, LU Chun-hua1
    (1.StateKeyLaboratoryofMaterials-OrientedChemicalEngineering, CollegeofMaterialsScienceandEngineering,NanjingTechUniversity,Nanjing210009,China;2.NanjingBeilidaNewMaterialsSystemEngineeringCO.Ltd.,Nanjing211100,China)

    Two kinds of graphene prepared by a high-temperature exfoliation and a solvothermal method were used as supports of a TiO2catalyst(P25)from Degussa,Inc to prepare TiO2/graphene composites.The photocatalytic activities of the composites were evaluated by their degradation of Rhodamine B in aqueous solutions under visible light.Results indicate that the composites prepared by high-temperature exfoliation have much higher photocatalytic activities than those produced by the solvothermal method or the unsupported P25.Both the adsorption capacity of Rhodamine B on the composites and their light absorption characteristics are independent of the kind of graphene used.The activity increases with exfoliation temperature and reduction degree of the graphene regardless of the methods and conditions used,indicating that a high degree of reduction of graphene can inhibit the recombination of electron-hole pairs generated by light irradiation by increasing electron transfer from TiO2to the graphene layer.

    Photocatalytic;Degradation;P25;Thermal exfoliation;Graphene reductive degree

    LU Chun-hua,E-mail:chhlu@njtech.edu.cn

    TB332

    A

    中國(guó)博士后基金(2014M551577).

    陸春華.E-mail:chhlu@njtech.edu.cn

    王 劍,博士.E-mail:wangjian@sxicc.ac.cn

    1007-8827(2015)04-0357-07

    Received date:2015-03-16;Revised date:2015-08-10

    Foundation item:China Postdoctoral Science Foundation(2014M551577).

    Author introduction:WANG Jian,Ph.D.E-mail:wangjian@sxicc.ac.cn

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60195-0

    猜你喜歡
    春華催化活性光催化
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們?cè)撊绾伪磉_(dá)苦難?——讀黃春華《扁腦殼》
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    可見(jiàn)光光催化降解在有機(jī)污染防治中的應(yīng)用
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見(jiàn)光催化活性
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    Nd/ZnO制備及其光催化性能研究
    Fe3+摻雜三維分級(jí)納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
    两个人视频免费观看高清| 脱女人内裤的视频| 日韩中文字幕欧美一区二区| 他把我摸到了高潮在线观看| 亚洲精品久久国产高清桃花| 国产亚洲欧美98| aaaaa片日本免费| 国产成人一区二区三区免费视频网站| 国产精华一区二区三区| 69av精品久久久久久| 亚洲黑人精品在线| 免费观看人在逋| 天天添夜夜摸| 99在线人妻在线中文字幕| 欧美一区二区国产精品久久精品| 黄色视频,在线免费观看| 成年女人永久免费观看视频| 国产一区二区三区在线臀色熟女| 男女之事视频高清在线观看| 嫩草影院入口| av女优亚洲男人天堂 | 淫妇啪啪啪对白视频| 九色国产91popny在线| 久久久精品大字幕| 9191精品国产免费久久| 在线观看66精品国产| 亚洲成人免费电影在线观看| 亚洲色图av天堂| 9191精品国产免费久久| 网址你懂的国产日韩在线| 国产伦一二天堂av在线观看| 国产精品1区2区在线观看.| 国产午夜福利久久久久久| 欧美又色又爽又黄视频| 久久亚洲精品不卡| 亚洲国产欧洲综合997久久,| 欧美性猛交黑人性爽| 亚洲欧美一区二区三区黑人| www.www免费av| 黄色片一级片一级黄色片| 97超级碰碰碰精品色视频在线观看| 欧美黄色淫秽网站| 亚洲第一电影网av| av福利片在线观看| 88av欧美| 日韩有码中文字幕| 又黄又粗又硬又大视频| 精华霜和精华液先用哪个| 天天添夜夜摸| 日本黄色片子视频| 精品福利观看| 日韩精品青青久久久久久| 久久中文看片网| 少妇裸体淫交视频免费看高清| 老司机午夜十八禁免费视频| 窝窝影院91人妻| 国产极品精品免费视频能看的| 一进一出好大好爽视频| 禁无遮挡网站| 深夜精品福利| 好男人在线观看高清免费视频| 天堂影院成人在线观看| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 在线观看免费午夜福利视频| 黑人操中国人逼视频| 成年女人看的毛片在线观看| 一二三四社区在线视频社区8| 久久九九热精品免费| 观看免费一级毛片| 国内精品美女久久久久久| 国产真人三级小视频在线观看| 亚洲精品色激情综合| 黄色视频,在线免费观看| 亚洲精品久久国产高清桃花| 国产美女午夜福利| 国内精品久久久久久久电影| 精品久久蜜臀av无| 一本精品99久久精品77| 波多野结衣巨乳人妻| 韩国av一区二区三区四区| 老司机在亚洲福利影院| 精品一区二区三区视频在线观看免费| 久久久久亚洲av毛片大全| 97超视频在线观看视频| 欧美日韩乱码在线| 亚洲人与动物交配视频| 久久伊人香网站| 99久久99久久久精品蜜桃| 欧美三级亚洲精品| 在线观看一区二区三区| 亚洲中文av在线| 亚洲aⅴ乱码一区二区在线播放| 狂野欧美白嫩少妇大欣赏| 亚洲第一电影网av| 两性午夜刺激爽爽歪歪视频在线观看| 精品不卡国产一区二区三区| 男人舔奶头视频| 美女黄网站色视频| 美女 人体艺术 gogo| 亚洲av成人一区二区三| 久久精品夜夜夜夜夜久久蜜豆| 黄频高清免费视频| 久久国产精品人妻蜜桃| 亚洲一区二区三区色噜噜| 变态另类丝袜制服| av片东京热男人的天堂| 国语自产精品视频在线第100页| 国产蜜桃级精品一区二区三区| 亚洲五月婷婷丁香| 法律面前人人平等表现在哪些方面| xxx96com| 国产亚洲精品一区二区www| 天天一区二区日本电影三级| 一二三四在线观看免费中文在| 999精品在线视频| 久久亚洲精品不卡| 90打野战视频偷拍视频| a在线观看视频网站| 亚洲欧美激情综合另类| 99久国产av精品| 老司机福利观看| 亚洲国产精品久久男人天堂| 91九色精品人成在线观看| 久久精品91蜜桃| 啦啦啦免费观看视频1| 亚洲18禁久久av| 天天躁日日操中文字幕| 非洲黑人性xxxx精品又粗又长| av黄色大香蕉| 人人妻人人看人人澡| 麻豆久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 午夜激情欧美在线| 免费av不卡在线播放| 国产蜜桃级精品一区二区三区| 毛片女人毛片| 香蕉久久夜色| 1024香蕉在线观看| 欧美黄色淫秽网站| 午夜福利在线观看免费完整高清在 | 国产日本99.免费观看| 韩国av一区二区三区四区| 中文字幕人成人乱码亚洲影| 精品欧美国产一区二区三| 国产激情偷乱视频一区二区| 99re在线观看精品视频| 后天国语完整版免费观看| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 18美女黄网站色大片免费观看| 久久热在线av| 日本与韩国留学比较| 男女视频在线观看网站免费| 免费在线观看日本一区| 成人三级黄色视频| 香蕉国产在线看| 亚洲国产欧美网| 少妇丰满av| 国产成人影院久久av| 国产激情欧美一区二区| 国产不卡一卡二| 桃红色精品国产亚洲av| 欧美高清成人免费视频www| 国产精品影院久久| 免费高清视频大片| 国产精品久久久久久人妻精品电影| 色av中文字幕| 99久久久亚洲精品蜜臀av| 国产三级黄色录像| 日韩欧美在线二视频| 午夜福利在线观看免费完整高清在 | 亚洲av免费在线观看| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 成人三级做爰电影| 91在线观看av| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 51午夜福利影视在线观看| 18禁黄网站禁片午夜丰满| av天堂中文字幕网| av国产免费在线观看| 听说在线观看完整版免费高清| 午夜精品在线福利| 级片在线观看| 搡老熟女国产l中国老女人| 午夜视频精品福利| 天堂动漫精品| 一夜夜www| 免费在线观看成人毛片| 可以在线观看毛片的网站| 久久精品91蜜桃| 精品国产美女av久久久久小说| 日本a在线网址| 色视频www国产| 中文字幕av在线有码专区| 欧美一区二区精品小视频在线| 亚洲精品美女久久久久99蜜臀| 麻豆av在线久日| www.精华液| 欧美绝顶高潮抽搐喷水| 精品电影一区二区在线| 国产一区二区激情短视频| 精品一区二区三区视频在线 | 一级毛片女人18水好多| 人妻夜夜爽99麻豆av| 我要搜黄色片| 99热精品在线国产| 黄色女人牲交| 最新在线观看一区二区三区| 日本黄大片高清| 搡老妇女老女人老熟妇| 99久久精品一区二区三区| 国内揄拍国产精品人妻在线| 美女高潮的动态| 亚洲电影在线观看av| 国产伦人伦偷精品视频| 亚洲 欧美一区二区三区| 啦啦啦免费观看视频1| 精品一区二区三区视频在线 | 国内揄拍国产精品人妻在线| 精品无人区乱码1区二区| 麻豆成人av在线观看| 欧美性猛交╳xxx乱大交人| 黄色丝袜av网址大全| 嫩草影视91久久| 成人无遮挡网站| 国产亚洲精品综合一区在线观看| 久久精品国产亚洲av香蕉五月| 日韩有码中文字幕| 欧美三级亚洲精品| 麻豆av在线久日| 久久久久免费精品人妻一区二区| 哪里可以看免费的av片| 级片在线观看| 亚洲美女黄片视频| 亚洲五月婷婷丁香| av天堂中文字幕网| 日日干狠狠操夜夜爽| 99热精品在线国产| 欧美黄色片欧美黄色片| 丰满人妻熟妇乱又伦精品不卡| 97碰自拍视频| 别揉我奶头~嗯~啊~动态视频| 日韩精品中文字幕看吧| 精品国产乱码久久久久久男人| 久久热在线av| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 午夜福利视频1000在线观看| av天堂中文字幕网| 日韩av在线大香蕉| 伦理电影免费视频| 麻豆成人av在线观看| 欧美午夜高清在线| 成人无遮挡网站| 一级毛片精品| 村上凉子中文字幕在线| 亚洲狠狠婷婷综合久久图片| 欧美日韩福利视频一区二区| 窝窝影院91人妻| 男人舔奶头视频| 欧美一区二区国产精品久久精品| 国产精品美女特级片免费视频播放器 | 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区三| 男女视频在线观看网站免费| 欧美大码av| 午夜视频精品福利| 久久久精品欧美日韩精品| 狂野欧美激情性xxxx| 免费无遮挡裸体视频| 1024香蕉在线观看| 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av| 女人高潮潮喷娇喘18禁视频| 69av精品久久久久久| 九色国产91popny在线| 亚洲精品在线观看二区| 亚洲人与动物交配视频| 欧美一区二区精品小视频在线| 这个男人来自地球电影免费观看| 超碰成人久久| 久久久久久大精品| 高潮久久久久久久久久久不卡| 黄色女人牲交| 国产久久久一区二区三区| 久久国产乱子伦精品免费另类| 亚洲国产色片| 黄色 视频免费看| a级毛片在线看网站| 老司机深夜福利视频在线观看| 国产精品九九99| 精品久久久久久久久久久久久| 丁香欧美五月| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看| bbb黄色大片| 亚洲国产高清在线一区二区三| 久久久久久久精品吃奶| 色老头精品视频在线观看| 国产一区二区激情短视频| 两个人看的免费小视频| 亚洲激情在线av| 老司机福利观看| 亚洲乱码一区二区免费版| av女优亚洲男人天堂 | 国产三级黄色录像| 在线十欧美十亚洲十日本专区| 性色av乱码一区二区三区2| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 桃色一区二区三区在线观看| 中文字幕精品亚洲无线码一区| 精品国产三级普通话版| 国产高潮美女av| 在线十欧美十亚洲十日本专区| 国产精品久久久久久人妻精品电影| 亚洲熟妇中文字幕五十中出| 丰满的人妻完整版| 在线观看午夜福利视频| 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 国产成人av激情在线播放| 亚洲成人中文字幕在线播放| 欧美黄色淫秽网站| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 无限看片的www在线观看| 国产精品九九99| 真实男女啪啪啪动态图| 丰满的人妻完整版| 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 午夜精品在线福利| 亚洲电影在线观看av| 亚洲国产欧美一区二区综合| 一个人看的www免费观看视频| 偷拍熟女少妇极品色| 美女被艹到高潮喷水动态| 久久天堂一区二区三区四区| 国产久久久一区二区三区| 久久国产乱子伦精品免费另类| 女警被强在线播放| 午夜视频精品福利| 麻豆国产av国片精品| 熟女电影av网| 国产成人影院久久av| 成年版毛片免费区| 91久久精品国产一区二区成人 | 国产美女午夜福利| 老熟妇仑乱视频hdxx| 男人的好看免费观看在线视频| 手机成人av网站| 免费大片18禁| 国产午夜精品论理片| 亚洲av日韩精品久久久久久密| 99热这里只有是精品50| 日韩欧美三级三区| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 精品久久久久久成人av| 一a级毛片在线观看| 首页视频小说图片口味搜索| 男人舔奶头视频| 俺也久久电影网| av天堂中文字幕网| 免费人成视频x8x8入口观看| 婷婷亚洲欧美| 亚洲五月天丁香| 一个人看视频在线观看www免费 | 欧美成狂野欧美在线观看| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久人妻精品电影| 亚洲最大成人中文| 亚洲欧美一区二区三区黑人| 韩国av一区二区三区四区| 国产高清有码在线观看视频| 亚洲av成人一区二区三| 亚洲av日韩精品久久久久久密| 级片在线观看| 色吧在线观看| 久久国产精品人妻蜜桃| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 天天添夜夜摸| 亚洲中文日韩欧美视频| 欧美一区二区国产精品久久精品| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 欧美日本视频| 免费观看人在逋| 欧美日韩国产亚洲二区| 一夜夜www| 欧美最黄视频在线播放免费| 免费高清视频大片| 可以在线观看毛片的网站| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 久久香蕉国产精品| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 成人欧美大片| 丰满人妻一区二区三区视频av | 成人欧美大片| 长腿黑丝高跟| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 色综合婷婷激情| 久久久国产精品麻豆| 亚洲国产欧美网| 嫩草影院精品99| 亚洲午夜理论影院| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 欧美激情在线99| 激情在线观看视频在线高清| 观看美女的网站| 亚洲欧美日韩东京热| 亚洲精品中文字幕一二三四区| 啦啦啦韩国在线观看视频| 麻豆成人av在线观看| 国产视频一区二区在线看| 色综合欧美亚洲国产小说| 午夜福利成人在线免费观看| 欧美国产日韩亚洲一区| 日日夜夜操网爽| 不卡一级毛片| 丰满的人妻完整版| 免费看十八禁软件| 国产精品 欧美亚洲| 免费av不卡在线播放| 午夜福利欧美成人| 日本免费a在线| 午夜精品在线福利| 禁无遮挡网站| 国产成人av激情在线播放| 亚洲中文字幕一区二区三区有码在线看 | 亚洲无线观看免费| 97人妻精品一区二区三区麻豆| 久久久水蜜桃国产精品网| 久久中文字幕一级| 免费在线观看成人毛片| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 黄色丝袜av网址大全| 日本成人三级电影网站| 免费电影在线观看免费观看| 久久99热这里只有精品18| 观看免费一级毛片| 中文在线观看免费www的网站| 又粗又爽又猛毛片免费看| 欧美最黄视频在线播放免费| 99久久久亚洲精品蜜臀av| 久久久国产精品麻豆| 12—13女人毛片做爰片一| 久久亚洲精品不卡| 日韩有码中文字幕| 欧美日韩精品网址| 精品国产乱码久久久久久男人| 亚洲在线观看片| 国产高清激情床上av| 亚洲国产中文字幕在线视频| 岛国视频午夜一区免费看| 看片在线看免费视频| 久久中文字幕一级| 三级男女做爰猛烈吃奶摸视频| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 欧美丝袜亚洲另类 | 日本黄色片子视频| avwww免费| 精品一区二区三区av网在线观看| 一个人免费在线观看的高清视频| 婷婷亚洲欧美| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 亚洲欧美精品综合久久99| 日韩欧美一区二区三区在线观看| 免费在线观看日本一区| 久久中文字幕人妻熟女| 久久国产精品影院| 精品熟女少妇八av免费久了| 日韩成人在线观看一区二区三区| 中文在线观看免费www的网站| 久久久久久国产a免费观看| 亚洲自偷自拍图片 自拍| 最近最新免费中文字幕在线| 人妻夜夜爽99麻豆av| 国产日本99.免费观看| 中文字幕人成人乱码亚洲影| 欧美一级a爱片免费观看看| 久久久久久大精品| 国语自产精品视频在线第100页| 亚洲欧美日韩高清专用| 亚洲美女黄片视频| 久久午夜综合久久蜜桃| 久久精品综合一区二区三区| 成人高潮视频无遮挡免费网站| www.www免费av| 日韩精品青青久久久久久| 91麻豆av在线| 一二三四社区在线视频社区8| 亚洲午夜理论影院| 18美女黄网站色大片免费观看| 18禁观看日本| 老司机福利观看| 黄片小视频在线播放| 午夜激情福利司机影院| 18禁黄网站禁片免费观看直播| 久久午夜综合久久蜜桃| 精品久久久久久久毛片微露脸| 日韩精品中文字幕看吧| 麻豆国产av国片精品| 国产精品久久久av美女十八| 淫妇啪啪啪对白视频| 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| av女优亚洲男人天堂 | 黑人操中国人逼视频| 亚洲国产精品成人综合色| 国产高潮美女av| 成人三级做爰电影| 日韩三级视频一区二区三区| 不卡av一区二区三区| 青草久久国产| 99久久久亚洲精品蜜臀av| 在线免费观看不下载黄p国产 | 黄频高清免费视频| 岛国在线观看网站| 精品国产乱码久久久久久男人| 免费看光身美女| 久久性视频一级片| 亚洲国产精品999在线| 国产aⅴ精品一区二区三区波| 最近视频中文字幕2019在线8| 一个人看的www免费观看视频| 亚洲成人久久爱视频| 亚洲片人在线观看| 国产精品一区二区免费欧美| 久久中文字幕一级| 欧美日韩黄片免| 国产v大片淫在线免费观看| www.999成人在线观看| 无限看片的www在线观看| 亚洲成av人片免费观看| 亚洲国产精品999在线| 亚洲欧美日韩高清在线视频| 一个人免费在线观看电影 | 欧美黄色淫秽网站| 男女床上黄色一级片免费看| 国产免费男女视频| 久久久国产成人免费| 一a级毛片在线观看| 看片在线看免费视频| 色精品久久人妻99蜜桃| 精品人妻1区二区| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| 精品久久久久久久人妻蜜臀av| 精品久久久久久,| 久久精品综合一区二区三区| 成人亚洲精品av一区二区| 精华霜和精华液先用哪个| 免费看日本二区| av国产免费在线观看| 真实男女啪啪啪动态图| 亚洲七黄色美女视频| 久久久久久人人人人人| 国产精品永久免费网站| 国产精品爽爽va在线观看网站| 免费av不卡在线播放| 成年免费大片在线观看| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 亚洲人与动物交配视频| 国产免费av片在线观看野外av| 亚洲成av人片在线播放无| 国产成人影院久久av| 美女免费视频网站| 精品久久久久久久人妻蜜臀av| 日韩高清综合在线| 色在线成人网| 怎么达到女性高潮| 91久久精品国产一区二区成人 | 麻豆久久精品国产亚洲av| 欧美成人免费av一区二区三区| 国产三级黄色录像| 在线观看免费视频日本深夜| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 又紧又爽又黄一区二区| 免费看日本二区| 久久精品综合一区二区三区| 全区人妻精品视频| 老司机午夜福利在线观看视频| 欧美一区二区国产精品久久精品| 中文亚洲av片在线观看爽| 性欧美人与动物交配| 国产精品九九99| 一级黄色大片毛片| 国产v大片淫在线免费观看| 色综合站精品国产| 在线观看免费视频日本深夜| 99久久综合精品五月天人人| 久久久久久国产a免费观看| 日韩中文字幕欧美一区二区| 成人亚洲精品av一区二区| 亚洲性夜色夜夜综合| 色哟哟哟哟哟哟| 亚洲国产精品久久男人天堂| 91av网站免费观看|