• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT

    2015-03-21 05:09:11張海軍周儲(chǔ)偉
    關(guān)鍵詞:海軍

    (張海軍), (周儲(chǔ)偉)

    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 8 October 2014; revised 15 May 2015; accepted 19 October 2015)

    Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT

    ZhangHaijun(張海軍),ZhouChuwei(周儲(chǔ)偉)*

    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 8 October 2014; revised 15 May 2015; accepted 19 October 2015)

    The precise microscopic feature of carbon-carbon(C/C) composites is essential for an accurate prediction of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro-computed-tomography(CT) scan can well describe internal microstructures of composites. Therefore, a reconstructed model is developed based on mirco-CT, by a series of prodcedures including extracting components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS, the presented reconstructed FE model is superior in terms of high mesh quality and controllable mesh quantity. The precision of the model is verified by experiment.

    C/C composites; mirco-CT; binary image; reconstructed procedure; finite element model

    0 Introduction

    Carbon-carbon (C/C) composites are ideally suited for those situations where high specific strength and stiffness, low density, corrosion and fatigue resistance and especially high serving temperature are required[1-5]. C/C composite has been widely used in aerospace, aviation, nuclear and other civilized industries[6]. Its service performance is severely influenced by defects during manufacturing process, including voids and irregular yarns′ appearance, as shown in Fig.1.

    Fig.1 Defects of C/C composites observed by microscope

    Based on experimental results, Siron and Lamon[7]discovered the tensile and shear modules of 8-H satin weave C/C composites would be reduced by 25% and 80% due to micro-cracks and voids under loading. Aly-Hassan et al.[8]reported that at room temperature the fatigue limit of C/C laminates reduced from 230 to 213 MPa due to the occurrence of the fiber-matrix interface de-bonding. Not only the modules and strength but also the oxidation behavior are influenced by the microstructure. Han et al.[9]claimed that the zirconium carbide doped C/C composites and the oxidation always started from the voids and cracks at the fiber-matrix interfaces. Jacobson and Curry[10]investigated the oxidation processes of the fine weave C/C composites and revealed that the oxidation occurred firstly from the surfaces and voids. Microstructures are the essential factors to influence mechanical properties and oxidation behaviors of C/C composites.

    To describe microstructures of C/C composites, the distributions and shapes of voids, the real cross-sections, relative positions and longitudinal shapes of real yarns must be focused on. Mirco computed tomography(CT) is an effective technology for detecting microstructures without damage inside body[11-13]. X-ray micro-tomography has its roots in computerized axial tomography(CAT or CT) scans that have been used for medical imaging for over 40 years[14]. Presently, CT has been introduced for modeling in many fields, such as concrete reconstruction[15-17], mannequin reconstruction[18]and foamed aluminum reconstruction[19-21]. In C/C composite researches, CT is used to capture the subsurface features. A geometry model of C/C composite has been successfully reconstructed[22-23], however, the model is too complex to be used for mechanical analysis. Kan[24]did some work on voids statistics and interface extraction, but the investigation was mainly based on a simplified spatial model. Sharma et al.[25]introduced voids and cracks in the ideal model for analyzing their influence on mechanical properties. The model is more complex than the ideal model but still cannot represent real material. Therefore, a sophisticated model is needed.

    Based on micro-CT, a more realistic finite element(FE) model is established. The model takes the voids and real yarns into consideration and is verified by experiments. Some conclusions are drawn.

    1 Reconstruction Procedure

    1.1 Extraction of components

    Results of a CT scan is a gray level image which can be delivered and stored by matrix, thus MATLAB is a favorite tool in CT treatment[26-28].

    CT for fine weave pierced C/C composite is acquired from multi-scale voxel. The general view of the model scope is shown in Fig.2. The side lengths of the cube inX,YandZdirections are 5.42, 5.25 and 5 mm.

    Fig.2 General view of the scope

    Take images ofY-Zplane for example. Since both matrix and reinforcement fibers are carbon, their gray values are close. Due to low contrast, traditional methods, like homogenization of gray value or Gauss wavelet do not work. Therefore, to distinguish the boundaries of components, an appropriate threshold should be determined first.

    Step 1 From the gray level map of CT shown in Fig.3(a), the distribution scope of threshold can be obtained. In the present work,Yyarns are the major content in the image with high intensity and located at the right part of gray level map shown in Fig.4. A value near 150 is the dividing point between yarns and others.

    Fig.3 Original image and local enlarged image

    Fig.4 Gray level map of CT of C/C composite

    Step 2 A local part of original image (Fig.3(a)) which contains boundaries among different components is extracted, as shown in Fig.3(b). The bold white frame near left side of Fig.3(b) involves a boundary between yarn and matrix, the two of which are of close gray value. The corresponding gray value matrix is shown in Fig.5.

    With identity of local image and its matrix, one can get the boundary of yarns marked with bold and gray background in Fig.5. Therefore, the threshold is in range of 147 to 150, and in this work, the value is determined as 150. By many attempts, the results from threshold 147 and 150 are similar.

    Fig.5 The gray value matrix of the enlarged scope

    After resetting the gray value of every position in the images by the threshold, new binary images are obtained, shown in Fig.6(a).The new binary image is identical to the original one but polluted by noises, thus the boundaries are not so smooth. The mid-filter method is then used to eliminate the noises. Filtered results(Fig.6(b)) show that corrosion and inflation are implemented to smooth the boundaries with operator ″line 8×8″ after trial and error. The final binary image with clear and smooth boundaries is obtained, as shown in Figs.6(c, d).

    Fig.6 Binary images after noises removal and boundary smoothing

    By the method and procedures presented above, three groups of yarns, voids and matrix can be acquired conveniently.

    1.2 Reconstruction of FE model

    In engineering applications, composites always contain several components. If each component can be reconstructed, their relative positions in the final assembly will be a thorny problem. To circumvent this difficulty, a new set of unidirectional images containing all components is generated after each component extracted from its original tomography. A typical diagram is shown in Fig.7. The gray value of each component in Fig.7 is listed in Table 1. This new set of images is the source of the reconstructed model.

    Fig.7 Components in the images with different pixel values

    ComponentMatrixVoidZyarnYyarnXyarnGrayvalue040110180255

    The essence of reconstruction is to determine whether components exist in a certain spatial position or not. In this paper, the determination is achieved by matching the gray values between adjacent layers, which is displayed in Fig.8.

    Fig.8 Relationship between elements and gray values in layers

    Only when the gray levels are the same between adjacent layers, the element of corresponding set can be generated, as shown in Fig.8.

    Since the amount of judgment and calculation is large, a special reconstruction program is compiled for automatic operation.

    The output file of the reconstruction program is in INP format, which can be imported to ABAQUS for analysis. The FE model and its components are shown in Fig.9.

    Fig.9 Reconstructed model and components

    Fig.9 reveals the characters of microstructure. The cross-sections ofXyarns andYyarns are an approximate rectangle, and that ofZyarns is circle. In the reconstructed model, the fiber volume fractions in the three direction ofX,YandZare 11%, 16% and 7.4%, respectively. Voids influence the stiffness and strength of C/C composites greatly, so it is important to model them accurately. The voids distribute desultorily. The volume of voids calculated by the reconstructed model is about 4.78%, agreeing with the experimental measurements of 4% to 5%. In order to verify the accuracy of the reconstructed model, a comparison to model from MIMICS is made, shown in Fig.10.

    Fig.10 Comparison between models from MIMICS and the present work

    Fig.10 shows that, the shapes of the two models are similar, but the qualities of the mesh are different. The model from MIMICS contains various dimensional tetrahedral elements and the mesh might be malformed in region where curvature varies sharply. This will lead to big computing error and irreal local stress prediction. The present model contains only hexahedral element with same dimensions and the mesh fineness is adjustable.

    2 Elastic Property Prediction and Experiment Validity

    Due to the periodicity and symmetry of the structure and loading, quarter of the reconstructed model is adopted for calculation of the elastic constants. The elastic modulus and Poisson ratio of carbon matrix is 11 GPa and 0.1, respectively. The yarns consist of T300 fibers whose relevant elastic constants are listed in Table 2.

    Table 2 Elastic constants of T300

    From statistics, average of sectional area ofXyarn is 0.29 mm2,Yyarn 0.43 mm2, andZyarn 0.52 mm2. The yarn inXandYdirections are double strands of 3 000 fiber bundles. The yarns inZdirection are triple strands of 3 000 fiber bundles. Since the diameter of T300 fiber is 7 μm, the filling rate of yarns inX,Y,Zdirections are estimated as 79.6%, 53.7% and 65.8%, respectively. The elastic constants of yarns can be obtained by hybrid method of two phases in composites[29]and the results are presented in Table 3.

    Table 3 Elastic constants of yarns

    In meso-scale, both the architecture and deformation of the fine weave pierced C/C composite are repeated in three spatial directions, therefore, periodic boundary conditions (PBC) must be applied to the unit cell FE model. The principle of PBC was detailed demonstrated by Xia et al.[30], and in ABAQUS. It could be achieved with multi-point constrains (MPC) technology. Finally, three uniaxial tensile loads and three pure shear loads are applied on the FE unit cell to obtain the total nine independent elastic constants for the orthogonal fine weave pierced C/C composite and the result is presented in Table 4.Local maximum principal stress in unit cell under unidirectional uniaxial tensile load alongYdirection is shown in Fig.11. For explicit illustration, the matrix elements are hidden. As expected, theYyarns undertaking most of the load and stress are observed not uniform in meso-scale because of the variation of cross sections and local undulation of yarn. The local stress concentration is important for further strength prediction.

    Table 4 Elastic constants of C/C composites

    Fig.11 Mises-stress state distribution

    Three-point bending test is performed for C/C composite to verify the FE results. Two kinds of specimens with dimensions of length(l)×width(b)×thickness(t)=74 mm×14.8 (or 18) mm×5 mm are prepared. Electronic universal testing machine (WDW-100) is used for loading and indenter displacement measurement. The experimental setup is shown in Fig.12.

    For the test, the displacement loading speed is 0.5 mm/min and indenter force is recorded instantaneously. The elastic modulus is calculated as

    (1)

    where Δpand Δfare the force increment and the deflection increment, respectively. By averaging the measure data within linear elastic response scope, the experimental elastic modulus inYdirection is 27.82 GPa in average and 4.74% bigger than the FE prediction.

    3 Conclusions

    Based on results reported herein, several conclusions are drawn.

    (1) The proposed two-step method can help extracting components from the low contrast micro-CT of C/C composite;

    (2) The model reconstructed by the proposed procedures is accurate;

    (3) The generated meshes of the model are high quality and controllable.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11272147, 10772078), the Aviation Science Foundation (No.2013ZF52074), the State Key Laboratory of Mechanical Structural Mechanics and Control (No.0214G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    [1] Windhorst T, Blount G. Carbon-carbon composites: A summary of recent developments and applications [J]. Materials & Design, 1997, 18(1): 11-15.

    [2] Fitzer E. The future of carbon-carbon composites [J]. Carbon, 1987, 25(2): 163-190.

    [3] Luo Ruiying. Present study situation and technology of preparation for carbon/carbon composites[J]. Ordnance Material Science and Engineering, 1998, 21(1): 62-66.

    [4] Buckley D, Edie D D. Carbon-carbon materials and composites [M]. New Jersey, USA: Noyes Publications, 1993:1-2.

    [5] Sheehan J E, Buesking K W, Sullivan B J. Carbon-carbon composites [J]. Annual Review of Materials Science, 1994, 24: 19-44.

    [6] Chareire J L, Dupupet G. Brake disc of carbon-carbon composite material:US 4457967[P]. 1984-7-3.

    [7] Siron O, Lamon J. Damage and failure mechanisms of A3-directional carbon/carbon composite under uniaxial tensile and shear loads [J]. Acta Materialia, 1998, 46(8): 6631-6643.

    [8] Aly-Hassan M S, Hatta H, Wakayama S, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J]. Carbon, 2003, 41(5): 1069-1078.

    [9] Han J C, He X D, Du S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3000 °C[J]. Carbon, 1995, 33(4): 473-478.

    [10]Jacobson N S, Curry D M. Oxidation microstructure studies of reinforced carbon/carbon [J]. Carbon, 2006, 44(7): 1142-1150.

    [11]Landis E N, Keane D T. X-ray micro-tomography [J]. Materials Characterization, 2010, 61(12): 1305-1316.

    [12]Feng Yanzhang, Feng Zude, Li Siwei, et al. Micro-CT characterization on microstructure of C/SiC composites [J]. Journal of Aeronautical Materials, 2011(2): 49-54.

    [13]Somashekar A A, Bickerton S, Bhattacharyya D. Compression deformation of a biaxial stitched glass fibre reinforcement: Visualisation and image analysis using X-ray micro-CT [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 140-150.

    [14]Feng Yanzhang, Feng Zude, Liu Yongsheng, et al. Micro-CT analysis of high temperature creep damage of 2D C/SiC composites [J]. Heat Treatment of Metals, 2011, 36(S1): 482-485.

    [15]Liang Limin, Yu Hongfa, Pan Zhefeng. Actual meso-structure based three-dimensional reconstruction of porous concrete [J]. Journal of Hohai University: Natural Science, 2010, 38(4):424-427.

    [16]Qin Wu, Du Chengbin. Meso-level model of three-dimensional concrete based on the CT slices [J]. Engineering Mechanics, 2012, 29(7):186-193.

    [17]Jiang Yuan, Bai Wei, Qi Yongle, et al. Reconstruction of 3D model of concrete mesa structure with CT original data [J]. Journal of China Three Gorges University: Natural Sciences, 2008, 30(1): 52-55.

    [18]Mu Weibin, Zhang Shuli. Investigation and achievement of three dimensions reconstruction for CT fault image by Matlab [J]. Journal of Qiqihar University, 2009, 25(1): 33-35.

    [19]Li Peng, Wang Min, Qi Xiaoli. Mechanical properties of aluminum foam based on synchrotron radiation computed-tomography[J]. Journal of Material Science & Engineering, 2011, 296:916-919.

    [20]Vesenjak M, Veyhl C, Fiedler T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541(16): 105-109.

    [21]Helfen L, Baumbach T, Stanzick H, et al. Viewing the early stage of metal foam formation by computed tomography using synchrotron radiation [J]. Advanced Engineering Materials, 2002, 4(10): 808-813.

    [22]Martín-Herrero J, Germain C. Microstructure reconstruction of fibrous C/C composites from X-ray micro tomography [J]. Carbon, 2007, 45(6): 1242-1253.

    [23]Martín-Herrero J. Hybrid object labelling in digital images [J]. Machine Vision and Applications, 2007, 18(11): 1-15.

    [24]Kan Jin. Micro and meso structures and their influence on effective properties of carbon/carbon composites [D]. Heilongjiang: Harbin Institute of Technology, 2010.(in Chinese)

    [25]Sharma R, Mahajan P, Mittal R K. Image-based finite element analysis of 3D-orthogonal carbon-carbon composite[C]∥Proceedings of the World Congress on Engineering. London, UK:WCE,2010:1597-1601.

    [26]Zeng Zheng, Dong Fanghua, Chen Xiao, et al. Three dimensions reconstruction of CT image by MATLAB [J]. CT Theory and Applications, 2004, 13(2): 24-29.

    [27]Zhang Aidong, Li Ju, Sun Lingxia. Three dimensional reconstruction of continuous ICT images by MATLAB [J]. Nuclear Electronics & Detection T echnology, 2006, 2604: 489-491.

    [28]Nixon M S, Aguado A S. Feature extraction and image processing second edition [M].Li Shiying, Yang Gaobo, translator. Beijing: Publishing House of Electronics Industry, 2011.

    [29]Chamis C C. Mechanics of composite materials: Past, present and future [R]. NASA TM- 100793, 1989.

    [30]Xia Z, Zhou C, Yong Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites [J]. International Journal of Solids and Structures, 2006, 43(2): 266-278.

    (Executive Editor: Zhang Bei)

    TB322 Document code: A Article ID: 1005-1120(2015)06-0639-07

    *Corresponding author: Zhou Chuwei, Professor, E-mail: zcw@nuaa.edu.cn.

    How to cite this article: Zhang Haijun,Zhou Chuwei. Three-dimensional reconstructed finite element model for C/C composites by micro-CT[J].Trans.Nanjing U.Aero.Astro., 2015, 32(6):639-645. http://dx.doi.org/10.16356/j.1005-1120.2015.06.639

    猜你喜歡
    海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
    我的海軍之夢(mèng)
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    海軍行動(dòng)
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration
    近代中國(guó)海軍的早期教育
    軍事歷史(1993年3期)1993-08-21 06:16:06
    清末海軍一次引人注目的軍艦出訪
    軍事歷史(1992年6期)1992-08-15 06:25:16
    欧美日韩乱码在线| 搡老岳熟女国产| 国产亚洲av高清不卡| tocl精华| a级毛片a级免费在线| 亚洲成人中文字幕在线播放| 久久香蕉精品热| 亚洲av片天天在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩一级在线毛片| 久久久久久久午夜电影| 在线观看一区二区三区| 在线免费观看不下载黄p国产 | 视频区欧美日本亚洲| 夜夜看夜夜爽夜夜摸| 日本在线视频免费播放| 日韩av在线大香蕉| 一级a爱片免费观看的视频| 欧美乱色亚洲激情| 国产日本99.免费观看| 一区福利在线观看| 国产成+人综合+亚洲专区| 久久性视频一级片| 国产一区二区在线观看日韩 | 精品国产超薄肉色丝袜足j| 欧美xxxx黑人xx丫x性爽| 精华霜和精华液先用哪个| 亚洲自偷自拍图片 自拍| 后天国语完整版免费观看| 国产精品香港三级国产av潘金莲| 三级男女做爰猛烈吃奶摸视频| 日本黄色片子视频| 欧美zozozo另类| 男人舔女人的私密视频| 国产成人av激情在线播放| 国产淫片久久久久久久久 | 久久精品91蜜桃| 制服人妻中文乱码| 麻豆成人午夜福利视频| 欧美性猛交黑人性爽| 男女午夜视频在线观看| 91九色精品人成在线观看| 精品熟女少妇八av免费久了| 久久久水蜜桃国产精品网| 欧美一区二区精品小视频在线| 精品久久蜜臀av无| 久久中文字幕人妻熟女| 日韩中文字幕欧美一区二区| 真实男女啪啪啪动态图| 久9热在线精品视频| 国产精品精品国产色婷婷| 99国产极品粉嫩在线观看| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久中文| 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合| 日本免费一区二区三区高清不卡| 午夜精品一区二区三区免费看| 天堂动漫精品| 久久香蕉精品热| 午夜精品一区二区三区免费看| 高清毛片免费观看视频网站| 91麻豆精品激情在线观看国产| 在线十欧美十亚洲十日本专区| 国产精华一区二区三区| 中文字幕人妻丝袜一区二区| 夜夜看夜夜爽夜夜摸| 伦理电影免费视频| 久久久久国内视频| 欧美黑人欧美精品刺激| 欧美三级亚洲精品| 久久草成人影院| 18禁美女被吸乳视频| 国产高清激情床上av| 成年版毛片免费区| 啦啦啦观看免费观看视频高清| 成人鲁丝片一二三区免费| 亚洲精华国产精华精| 99在线人妻在线中文字幕| 麻豆久久精品国产亚洲av| 久久国产精品人妻蜜桃| 男人和女人高潮做爰伦理| 女生性感内裤真人,穿戴方法视频| 日韩成人在线观看一区二区三区| 岛国在线观看网站| xxx96com| 成熟少妇高潮喷水视频| 十八禁人妻一区二区| 国产精品香港三级国产av潘金莲| av福利片在线观看| 真实男女啪啪啪动态图| 后天国语完整版免费观看| 国产欧美日韩精品亚洲av| 午夜视频精品福利| 搞女人的毛片| svipshipincom国产片| 99国产精品一区二区蜜桃av| 午夜免费观看网址| 两个人的视频大全免费| 好看av亚洲va欧美ⅴa在| 狂野欧美白嫩少妇大欣赏| 淫秽高清视频在线观看| 国产高清视频在线播放一区| 亚洲午夜理论影院| 久久伊人香网站| 成人性生交大片免费视频hd| 极品教师在线免费播放| 免费av毛片视频| 国内少妇人妻偷人精品xxx网站 | 老汉色av国产亚洲站长工具| 色哟哟哟哟哟哟| 久久久久久久久中文| 级片在线观看| 国产成人一区二区三区免费视频网站| 欧美成人性av电影在线观看| 黄片小视频在线播放| 日韩欧美国产一区二区入口| 婷婷精品国产亚洲av| 两个人看的免费小视频| 两人在一起打扑克的视频| 老鸭窝网址在线观看| 精品国产美女av久久久久小说| 色哟哟哟哟哟哟| 亚洲欧美日韩东京热| 在线观看舔阴道视频| www.精华液| 黄片大片在线免费观看| 亚洲九九香蕉| 国内揄拍国产精品人妻在线| 黑人巨大精品欧美一区二区mp4| 欧美高清成人免费视频www| 亚洲第一电影网av| 黄色片一级片一级黄色片| 最近在线观看免费完整版| 欧美黑人欧美精品刺激| 国产野战对白在线观看| av中文乱码字幕在线| 国产乱人视频| ponron亚洲| 国产午夜福利久久久久久| 三级男女做爰猛烈吃奶摸视频| 在线观看66精品国产| 欧美激情久久久久久爽电影| 亚洲午夜精品一区,二区,三区| netflix在线观看网站| 久久伊人香网站| 黄色片一级片一级黄色片| 日本 欧美在线| 床上黄色一级片| 色噜噜av男人的天堂激情| 男人舔女人的私密视频| 亚洲 欧美 日韩 在线 免费| 一区二区三区国产精品乱码| 免费在线观看视频国产中文字幕亚洲| 最新美女视频免费是黄的| 亚洲va日本ⅴa欧美va伊人久久| 丝袜人妻中文字幕| 久久香蕉精品热| 脱女人内裤的视频| 精品一区二区三区av网在线观看| 丰满人妻熟妇乱又伦精品不卡| 首页视频小说图片口味搜索| 熟女人妻精品中文字幕| 18美女黄网站色大片免费观看| 我要搜黄色片| 岛国视频午夜一区免费看| 久久婷婷人人爽人人干人人爱| 神马国产精品三级电影在线观看| 亚洲 欧美 日韩 在线 免费| 久久久久国产精品人妻aⅴ院| 欧美乱码精品一区二区三区| 一级毛片高清免费大全| 国产伦人伦偷精品视频| 小说图片视频综合网站| 又黄又粗又硬又大视频| 日韩欧美在线乱码| 日日摸夜夜添夜夜添小说| 日韩有码中文字幕| 嫩草影院精品99| 97碰自拍视频| 好男人电影高清在线观看| 欧美激情久久久久久爽电影| 真人做人爱边吃奶动态| 国产高清三级在线| 高清在线国产一区| 特大巨黑吊av在线直播| 成人三级做爰电影| 成人av在线播放网站| 国产精品 国内视频| 一个人免费在线观看的高清视频| 男人舔女人下体高潮全视频| 国产精品久久久久久久电影 | 人人妻人人看人人澡| 啦啦啦观看免费观看视频高清| 最新美女视频免费是黄的| 国产久久久一区二区三区| 一进一出抽搐动态| 亚洲精华国产精华精| 久久亚洲真实| 嫩草影院精品99| 噜噜噜噜噜久久久久久91| 亚洲精品色激情综合| 亚洲18禁久久av| 美女高潮喷水抽搐中文字幕| 亚洲av美国av| 日韩欧美一区二区三区在线观看| 18禁国产床啪视频网站| 久久久久久久久久黄片| 床上黄色一级片| 亚洲狠狠婷婷综合久久图片| 国产av在哪里看| 热99在线观看视频| 亚洲18禁久久av| 给我免费播放毛片高清在线观看| 在线观看免费午夜福利视频| 99热6这里只有精品| 精品99又大又爽又粗少妇毛片 | 欧美色视频一区免费| av女优亚洲男人天堂 | 不卡一级毛片| 色在线成人网| 黄色女人牲交| 视频区欧美日本亚洲| 男女之事视频高清在线观看| 日韩高清综合在线| 18禁黄网站禁片午夜丰满| 久久久久性生活片| 蜜桃久久精品国产亚洲av| 高潮久久久久久久久久久不卡| 国产午夜精品论理片| 在线a可以看的网站| 久久久久久人人人人人| 日韩成人在线观看一区二区三区| 久久99热这里只有精品18| 国产精品一区二区三区四区久久| 亚洲狠狠婷婷综合久久图片| 中国美女看黄片| 一进一出抽搐动态| 99久久综合精品五月天人人| 一本精品99久久精品77| 亚洲中文日韩欧美视频| 国产免费男女视频| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久性| 欧美+亚洲+日韩+国产| 国产高清激情床上av| 久久久久久国产a免费观看| 亚洲七黄色美女视频| 国产亚洲精品久久久com| 国产单亲对白刺激| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| 黑人巨大精品欧美一区二区mp4| 久久久久久人人人人人| 最新中文字幕久久久久 | 午夜福利免费观看在线| 男女视频在线观看网站免费| 99精品久久久久人妻精品| 成年女人毛片免费观看观看9| 成人18禁在线播放| 国产欧美日韩精品一区二区| netflix在线观看网站| www日本在线高清视频| 三级国产精品欧美在线观看 | 一本久久中文字幕| 国产成人一区二区三区免费视频网站| 老司机午夜福利在线观看视频| 欧美大码av| 免费一级毛片在线播放高清视频| 成人一区二区视频在线观看| 757午夜福利合集在线观看| 国产黄片美女视频| 亚洲中文字幕一区二区三区有码在线看 | 午夜两性在线视频| 日韩欧美 国产精品| 美女午夜性视频免费| 国产高清视频在线观看网站| 日本免费a在线| 久久性视频一级片| 女人被狂操c到高潮| 精品久久久久久久久久久久久| 看黄色毛片网站| 亚洲午夜精品一区,二区,三区| 1000部很黄的大片| 九九久久精品国产亚洲av麻豆 | www.www免费av| 色综合欧美亚洲国产小说| 亚洲人成电影免费在线| 国产精品久久视频播放| 99久久国产精品久久久| 亚洲在线自拍视频| 精品福利观看| 亚洲精品一区av在线观看| 亚洲精品国产精品久久久不卡| 国内毛片毛片毛片毛片毛片| 在线观看日韩欧美| 国产 一区 欧美 日韩| 国产精品国产高清国产av| 国产三级中文精品| 亚洲av成人av| 亚洲黑人精品在线| 亚洲一区高清亚洲精品| 午夜日韩欧美国产| 国产一级毛片七仙女欲春2| 午夜a级毛片| 午夜亚洲福利在线播放| 老司机午夜十八禁免费视频| 久久热在线av| 婷婷精品国产亚洲av| 99re在线观看精品视频| 我要搜黄色片| 可以在线观看的亚洲视频| 国产高清三级在线| 国产精品亚洲一级av第二区| 久久国产乱子伦精品免费另类| 久久久水蜜桃国产精品网| x7x7x7水蜜桃| 国产伦精品一区二区三区四那| 变态另类成人亚洲欧美熟女| 国产男靠女视频免费网站| 男女床上黄色一级片免费看| 精品国产乱码久久久久久男人| 亚洲精品久久国产高清桃花| www.精华液| 日本熟妇午夜| 国产av在哪里看| 国产成人福利小说| 这个男人来自地球电影免费观看| 一卡2卡三卡四卡精品乱码亚洲| 特级一级黄色大片| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 国产精品美女特级片免费视频播放器 | 看片在线看免费视频| 亚洲电影在线观看av| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| 日本黄色片子视频| 国产成人精品久久二区二区免费| 国产一区二区三区视频了| 色吧在线观看| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 欧美乱码精品一区二区三区| 午夜视频精品福利| 深夜精品福利| 嫁个100分男人电影在线观看| svipshipincom国产片| 亚洲国产高清在线一区二区三| 久久天堂一区二区三区四区| 成人无遮挡网站| 午夜成年电影在线免费观看| 老熟妇乱子伦视频在线观看| av国产免费在线观看| 91在线精品国自产拍蜜月 | 黄色片一级片一级黄色片| 99热精品在线国产| 午夜视频精品福利| 九色成人免费人妻av| 日韩有码中文字幕| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 国产一区二区在线av高清观看| 亚洲人成电影免费在线| 美女被艹到高潮喷水动态| 国内精品美女久久久久久| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 国内精品久久久久精免费| 我的老师免费观看完整版| 99精品欧美一区二区三区四区| 青草久久国产| 日日夜夜操网爽| 97碰自拍视频| 国内毛片毛片毛片毛片毛片| 久久久国产成人精品二区| 亚洲午夜理论影院| 久久久国产欧美日韩av| 少妇裸体淫交视频免费看高清| 夜夜夜夜夜久久久久| 国产免费男女视频| 精品久久久久久,| av视频在线观看入口| 法律面前人人平等表现在哪些方面| 人人妻人人看人人澡| 中文亚洲av片在线观看爽| 亚洲中文字幕日韩| 国产黄片美女视频| 色老头精品视频在线观看| 国产精品一区二区免费欧美| 亚洲欧美精品综合久久99| 成熟少妇高潮喷水视频| 韩国av一区二区三区四区| 人人妻人人澡欧美一区二区| 我要搜黄色片| 国产成人啪精品午夜网站| 中文亚洲av片在线观看爽| 亚洲熟妇熟女久久| 国内精品久久久久久久电影| 老司机深夜福利视频在线观看| 婷婷六月久久综合丁香| 国产亚洲av嫩草精品影院| 欧美高清成人免费视频www| 巨乳人妻的诱惑在线观看| 久久久久国内视频| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 舔av片在线| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 日韩高清综合在线| 国产激情欧美一区二区| 一区二区三区激情视频| 琪琪午夜伦伦电影理论片6080| 狂野欧美激情性xxxx| 日本成人三级电影网站| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 亚洲欧美精品综合一区二区三区| 久久精品影院6| 国产97色在线日韩免费| 欧美日韩精品网址| 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 国产毛片a区久久久久| 精品国产美女av久久久久小说| 高清毛片免费观看视频网站| 麻豆一二三区av精品| 啦啦啦免费观看视频1| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片| 国产精品野战在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁日日操中文字幕| 99热这里只有是精品50| 人人妻,人人澡人人爽秒播| 亚洲欧美一区二区三区黑人| 亚洲国产中文字幕在线视频| 欧美绝顶高潮抽搐喷水| 久久这里只有精品中国| 免费搜索国产男女视频| 国产又黄又爽又无遮挡在线| 12—13女人毛片做爰片一| 一个人免费在线观看的高清视频| 99久久综合精品五月天人人| 国产午夜福利久久久久久| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av| 久9热在线精品视频| 免费在线观看日本一区| 美女免费视频网站| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区| 亚洲激情在线av| 亚洲国产色片| 美女扒开内裤让男人捅视频| 成年女人看的毛片在线观看| 久久中文字幕人妻熟女| 亚洲国产精品久久男人天堂| 日本黄色视频三级网站网址| 90打野战视频偷拍视频| 国产久久久一区二区三区| 18禁观看日本| 午夜福利在线观看吧| 一本综合久久免费| 88av欧美| 精品99又大又爽又粗少妇毛片 | 午夜两性在线视频| 国内毛片毛片毛片毛片毛片| 亚洲在线观看片| 99re在线观看精品视频| 精品欧美国产一区二区三| 少妇熟女aⅴ在线视频| 床上黄色一级片| 亚洲欧洲精品一区二区精品久久久| 人妻夜夜爽99麻豆av| 欧美在线一区亚洲| 午夜日韩欧美国产| 美女黄网站色视频| 久久久久国产一级毛片高清牌| 亚洲中文字幕一区二区三区有码在线看 | 麻豆国产av国片精品| 白带黄色成豆腐渣| 成在线人永久免费视频| 最新美女视频免费是黄的| 91av网一区二区| 亚洲成人久久爱视频| 国产亚洲av高清不卡| 亚洲七黄色美女视频| 中文字幕高清在线视频| 99热只有精品国产| 欧美日韩亚洲国产一区二区在线观看| 伊人久久大香线蕉亚洲五| 国产亚洲av嫩草精品影院| 久久久久国产精品人妻aⅴ院| 女生性感内裤真人,穿戴方法视频| 99热这里只有精品一区 | 人妻夜夜爽99麻豆av| 亚洲av第一区精品v没综合| 丁香六月欧美| 久久这里只有精品中国| 欧美黄色淫秽网站| 男人舔女人的私密视频| 日韩高清综合在线| 色综合婷婷激情| 国产精品久久久人人做人人爽| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 极品教师在线免费播放| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 黄频高清免费视频| 亚洲欧洲精品一区二区精品久久久| 三级国产精品欧美在线观看 | 国产激情偷乱视频一区二区| 国产精品一及| 99久久综合精品五月天人人| 亚洲 国产 在线| 香蕉国产在线看| 九九在线视频观看精品| 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 亚洲国产欧美人成| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 日本 欧美在线| 国产熟女xx| 十八禁网站免费在线| 精品久久久久久久久久久久久| 国产一区在线观看成人免费| 99久久国产精品久久久| 色哟哟哟哟哟哟| 欧美黑人巨大hd| 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 99热这里只有精品一区 | 欧美精品啪啪一区二区三区| 日本免费a在线| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 免费无遮挡裸体视频| 亚洲精华国产精华精| 午夜两性在线视频| 亚洲色图 男人天堂 中文字幕| 日韩欧美 国产精品| 非洲黑人性xxxx精品又粗又长| 午夜免费成人在线视频| 最新在线观看一区二区三区| 国产成人系列免费观看| 美女扒开内裤让男人捅视频| 在线永久观看黄色视频| 亚洲av成人精品一区久久| 老汉色av国产亚洲站长工具| 看片在线看免费视频| 成在线人永久免费视频| 免费看光身美女| 中亚洲国语对白在线视频| 99视频精品全部免费 在线 | 国产精品综合久久久久久久免费| 三级毛片av免费| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 国产91精品成人一区二区三区| 精品国产乱子伦一区二区三区| 亚洲av免费在线观看| 91在线观看av| 毛片女人毛片| 少妇丰满av| 看黄色毛片网站| 午夜免费激情av| 18禁黄网站禁片免费观看直播| 可以在线观看毛片的网站| 日本 欧美在线| 最好的美女福利视频网| 午夜成年电影在线免费观看| 听说在线观看完整版免费高清| 久久精品91蜜桃| 精品日产1卡2卡| 欧美性猛交黑人性爽| 全区人妻精品视频| 久久草成人影院| 19禁男女啪啪无遮挡网站| 一二三四在线观看免费中文在| 亚洲成a人片在线一区二区| 亚洲18禁久久av| 免费无遮挡裸体视频| xxxwww97欧美| 亚洲av成人av| 黄色日韩在线| 久久久国产成人精品二区| 变态另类丝袜制服| 在线a可以看的网站| 桃色一区二区三区在线观看| 在线观看一区二区三区| 国产精品野战在线观看| 国产成人影院久久av| 男人舔奶头视频| 亚洲av成人精品一区久久| 99久久无色码亚洲精品果冻| 免费看a级黄色片| 亚洲在线观看片| 亚洲国产高清在线一区二区三| 国产69精品久久久久777片 | 国产熟女xx| 亚洲国产色片| 香蕉av资源在线| 好看av亚洲va欧美ⅴa在| 一级作爱视频免费观看| 一进一出好大好爽视频| 在线十欧美十亚洲十日本专区| 欧美日韩福利视频一区二区| 宅男免费午夜| 国产精品一区二区三区四区免费观看 |