• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT

    2015-03-21 05:09:11張海軍周儲(chǔ)偉
    關(guān)鍵詞:海軍

    (張海軍), (周儲(chǔ)偉)

    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 8 October 2014; revised 15 May 2015; accepted 19 October 2015)

    Three-Dimensional Reconstructed Finite Element Model for C/C Composites by Micro-CT

    ZhangHaijun(張海軍),ZhouChuwei(周儲(chǔ)偉)*

    State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 8 October 2014; revised 15 May 2015; accepted 19 October 2015)

    The precise microscopic feature of carbon-carbon(C/C) composites is essential for an accurate prediction of their mechanical behavior. After fabrication, actual microscopic feature differs from simple ideal spatial model. Micro-computed-tomography(CT) scan can well describe internal microstructures of composites. Therefore, a reconstructed model is developed based on mirco-CT, by a series of prodcedures including extracting components, generating new binary images and establishing a finite element (FE) model. Compared with the model designed by reconstructed commercial software MIMICS, the presented reconstructed FE model is superior in terms of high mesh quality and controllable mesh quantity. The precision of the model is verified by experiment.

    C/C composites; mirco-CT; binary image; reconstructed procedure; finite element model

    0 Introduction

    Carbon-carbon (C/C) composites are ideally suited for those situations where high specific strength and stiffness, low density, corrosion and fatigue resistance and especially high serving temperature are required[1-5]. C/C composite has been widely used in aerospace, aviation, nuclear and other civilized industries[6]. Its service performance is severely influenced by defects during manufacturing process, including voids and irregular yarns′ appearance, as shown in Fig.1.

    Fig.1 Defects of C/C composites observed by microscope

    Based on experimental results, Siron and Lamon[7]discovered the tensile and shear modules of 8-H satin weave C/C composites would be reduced by 25% and 80% due to micro-cracks and voids under loading. Aly-Hassan et al.[8]reported that at room temperature the fatigue limit of C/C laminates reduced from 230 to 213 MPa due to the occurrence of the fiber-matrix interface de-bonding. Not only the modules and strength but also the oxidation behavior are influenced by the microstructure. Han et al.[9]claimed that the zirconium carbide doped C/C composites and the oxidation always started from the voids and cracks at the fiber-matrix interfaces. Jacobson and Curry[10]investigated the oxidation processes of the fine weave C/C composites and revealed that the oxidation occurred firstly from the surfaces and voids. Microstructures are the essential factors to influence mechanical properties and oxidation behaviors of C/C composites.

    To describe microstructures of C/C composites, the distributions and shapes of voids, the real cross-sections, relative positions and longitudinal shapes of real yarns must be focused on. Mirco computed tomography(CT) is an effective technology for detecting microstructures without damage inside body[11-13]. X-ray micro-tomography has its roots in computerized axial tomography(CAT or CT) scans that have been used for medical imaging for over 40 years[14]. Presently, CT has been introduced for modeling in many fields, such as concrete reconstruction[15-17], mannequin reconstruction[18]and foamed aluminum reconstruction[19-21]. In C/C composite researches, CT is used to capture the subsurface features. A geometry model of C/C composite has been successfully reconstructed[22-23], however, the model is too complex to be used for mechanical analysis. Kan[24]did some work on voids statistics and interface extraction, but the investigation was mainly based on a simplified spatial model. Sharma et al.[25]introduced voids and cracks in the ideal model for analyzing their influence on mechanical properties. The model is more complex than the ideal model but still cannot represent real material. Therefore, a sophisticated model is needed.

    Based on micro-CT, a more realistic finite element(FE) model is established. The model takes the voids and real yarns into consideration and is verified by experiments. Some conclusions are drawn.

    1 Reconstruction Procedure

    1.1 Extraction of components

    Results of a CT scan is a gray level image which can be delivered and stored by matrix, thus MATLAB is a favorite tool in CT treatment[26-28].

    CT for fine weave pierced C/C composite is acquired from multi-scale voxel. The general view of the model scope is shown in Fig.2. The side lengths of the cube inX,YandZdirections are 5.42, 5.25 and 5 mm.

    Fig.2 General view of the scope

    Take images ofY-Zplane for example. Since both matrix and reinforcement fibers are carbon, their gray values are close. Due to low contrast, traditional methods, like homogenization of gray value or Gauss wavelet do not work. Therefore, to distinguish the boundaries of components, an appropriate threshold should be determined first.

    Step 1 From the gray level map of CT shown in Fig.3(a), the distribution scope of threshold can be obtained. In the present work,Yyarns are the major content in the image with high intensity and located at the right part of gray level map shown in Fig.4. A value near 150 is the dividing point between yarns and others.

    Fig.3 Original image and local enlarged image

    Fig.4 Gray level map of CT of C/C composite

    Step 2 A local part of original image (Fig.3(a)) which contains boundaries among different components is extracted, as shown in Fig.3(b). The bold white frame near left side of Fig.3(b) involves a boundary between yarn and matrix, the two of which are of close gray value. The corresponding gray value matrix is shown in Fig.5.

    With identity of local image and its matrix, one can get the boundary of yarns marked with bold and gray background in Fig.5. Therefore, the threshold is in range of 147 to 150, and in this work, the value is determined as 150. By many attempts, the results from threshold 147 and 150 are similar.

    Fig.5 The gray value matrix of the enlarged scope

    After resetting the gray value of every position in the images by the threshold, new binary images are obtained, shown in Fig.6(a).The new binary image is identical to the original one but polluted by noises, thus the boundaries are not so smooth. The mid-filter method is then used to eliminate the noises. Filtered results(Fig.6(b)) show that corrosion and inflation are implemented to smooth the boundaries with operator ″line 8×8″ after trial and error. The final binary image with clear and smooth boundaries is obtained, as shown in Figs.6(c, d).

    Fig.6 Binary images after noises removal and boundary smoothing

    By the method and procedures presented above, three groups of yarns, voids and matrix can be acquired conveniently.

    1.2 Reconstruction of FE model

    In engineering applications, composites always contain several components. If each component can be reconstructed, their relative positions in the final assembly will be a thorny problem. To circumvent this difficulty, a new set of unidirectional images containing all components is generated after each component extracted from its original tomography. A typical diagram is shown in Fig.7. The gray value of each component in Fig.7 is listed in Table 1. This new set of images is the source of the reconstructed model.

    Fig.7 Components in the images with different pixel values

    ComponentMatrixVoidZyarnYyarnXyarnGrayvalue040110180255

    The essence of reconstruction is to determine whether components exist in a certain spatial position or not. In this paper, the determination is achieved by matching the gray values between adjacent layers, which is displayed in Fig.8.

    Fig.8 Relationship between elements and gray values in layers

    Only when the gray levels are the same between adjacent layers, the element of corresponding set can be generated, as shown in Fig.8.

    Since the amount of judgment and calculation is large, a special reconstruction program is compiled for automatic operation.

    The output file of the reconstruction program is in INP format, which can be imported to ABAQUS for analysis. The FE model and its components are shown in Fig.9.

    Fig.9 Reconstructed model and components

    Fig.9 reveals the characters of microstructure. The cross-sections ofXyarns andYyarns are an approximate rectangle, and that ofZyarns is circle. In the reconstructed model, the fiber volume fractions in the three direction ofX,YandZare 11%, 16% and 7.4%, respectively. Voids influence the stiffness and strength of C/C composites greatly, so it is important to model them accurately. The voids distribute desultorily. The volume of voids calculated by the reconstructed model is about 4.78%, agreeing with the experimental measurements of 4% to 5%. In order to verify the accuracy of the reconstructed model, a comparison to model from MIMICS is made, shown in Fig.10.

    Fig.10 Comparison between models from MIMICS and the present work

    Fig.10 shows that, the shapes of the two models are similar, but the qualities of the mesh are different. The model from MIMICS contains various dimensional tetrahedral elements and the mesh might be malformed in region where curvature varies sharply. This will lead to big computing error and irreal local stress prediction. The present model contains only hexahedral element with same dimensions and the mesh fineness is adjustable.

    2 Elastic Property Prediction and Experiment Validity

    Due to the periodicity and symmetry of the structure and loading, quarter of the reconstructed model is adopted for calculation of the elastic constants. The elastic modulus and Poisson ratio of carbon matrix is 11 GPa and 0.1, respectively. The yarns consist of T300 fibers whose relevant elastic constants are listed in Table 2.

    Table 2 Elastic constants of T300

    From statistics, average of sectional area ofXyarn is 0.29 mm2,Yyarn 0.43 mm2, andZyarn 0.52 mm2. The yarn inXandYdirections are double strands of 3 000 fiber bundles. The yarns inZdirection are triple strands of 3 000 fiber bundles. Since the diameter of T300 fiber is 7 μm, the filling rate of yarns inX,Y,Zdirections are estimated as 79.6%, 53.7% and 65.8%, respectively. The elastic constants of yarns can be obtained by hybrid method of two phases in composites[29]and the results are presented in Table 3.

    Table 3 Elastic constants of yarns

    In meso-scale, both the architecture and deformation of the fine weave pierced C/C composite are repeated in three spatial directions, therefore, periodic boundary conditions (PBC) must be applied to the unit cell FE model. The principle of PBC was detailed demonstrated by Xia et al.[30], and in ABAQUS. It could be achieved with multi-point constrains (MPC) technology. Finally, three uniaxial tensile loads and three pure shear loads are applied on the FE unit cell to obtain the total nine independent elastic constants for the orthogonal fine weave pierced C/C composite and the result is presented in Table 4.Local maximum principal stress in unit cell under unidirectional uniaxial tensile load alongYdirection is shown in Fig.11. For explicit illustration, the matrix elements are hidden. As expected, theYyarns undertaking most of the load and stress are observed not uniform in meso-scale because of the variation of cross sections and local undulation of yarn. The local stress concentration is important for further strength prediction.

    Table 4 Elastic constants of C/C composites

    Fig.11 Mises-stress state distribution

    Three-point bending test is performed for C/C composite to verify the FE results. Two kinds of specimens with dimensions of length(l)×width(b)×thickness(t)=74 mm×14.8 (or 18) mm×5 mm are prepared. Electronic universal testing machine (WDW-100) is used for loading and indenter displacement measurement. The experimental setup is shown in Fig.12.

    For the test, the displacement loading speed is 0.5 mm/min and indenter force is recorded instantaneously. The elastic modulus is calculated as

    (1)

    where Δpand Δfare the force increment and the deflection increment, respectively. By averaging the measure data within linear elastic response scope, the experimental elastic modulus inYdirection is 27.82 GPa in average and 4.74% bigger than the FE prediction.

    3 Conclusions

    Based on results reported herein, several conclusions are drawn.

    (1) The proposed two-step method can help extracting components from the low contrast micro-CT of C/C composite;

    (2) The model reconstructed by the proposed procedures is accurate;

    (3) The generated meshes of the model are high quality and controllable.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos.11272147, 10772078), the Aviation Science Foundation (No.2013ZF52074), the State Key Laboratory of Mechanical Structural Mechanics and Control (No.0214G02), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

    [1] Windhorst T, Blount G. Carbon-carbon composites: A summary of recent developments and applications [J]. Materials & Design, 1997, 18(1): 11-15.

    [2] Fitzer E. The future of carbon-carbon composites [J]. Carbon, 1987, 25(2): 163-190.

    [3] Luo Ruiying. Present study situation and technology of preparation for carbon/carbon composites[J]. Ordnance Material Science and Engineering, 1998, 21(1): 62-66.

    [4] Buckley D, Edie D D. Carbon-carbon materials and composites [M]. New Jersey, USA: Noyes Publications, 1993:1-2.

    [5] Sheehan J E, Buesking K W, Sullivan B J. Carbon-carbon composites [J]. Annual Review of Materials Science, 1994, 24: 19-44.

    [6] Chareire J L, Dupupet G. Brake disc of carbon-carbon composite material:US 4457967[P]. 1984-7-3.

    [7] Siron O, Lamon J. Damage and failure mechanisms of A3-directional carbon/carbon composite under uniaxial tensile and shear loads [J]. Acta Materialia, 1998, 46(8): 6631-6643.

    [8] Aly-Hassan M S, Hatta H, Wakayama S, et al. Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance[J]. Carbon, 2003, 41(5): 1069-1078.

    [9] Han J C, He X D, Du S Y. Oxidation and ablation of 3D carbon-carbon composite at up to 3000 °C[J]. Carbon, 1995, 33(4): 473-478.

    [10]Jacobson N S, Curry D M. Oxidation microstructure studies of reinforced carbon/carbon [J]. Carbon, 2006, 44(7): 1142-1150.

    [11]Landis E N, Keane D T. X-ray micro-tomography [J]. Materials Characterization, 2010, 61(12): 1305-1316.

    [12]Feng Yanzhang, Feng Zude, Li Siwei, et al. Micro-CT characterization on microstructure of C/SiC composites [J]. Journal of Aeronautical Materials, 2011(2): 49-54.

    [13]Somashekar A A, Bickerton S, Bhattacharyya D. Compression deformation of a biaxial stitched glass fibre reinforcement: Visualisation and image analysis using X-ray micro-CT [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 140-150.

    [14]Feng Yanzhang, Feng Zude, Liu Yongsheng, et al. Micro-CT analysis of high temperature creep damage of 2D C/SiC composites [J]. Heat Treatment of Metals, 2011, 36(S1): 482-485.

    [15]Liang Limin, Yu Hongfa, Pan Zhefeng. Actual meso-structure based three-dimensional reconstruction of porous concrete [J]. Journal of Hohai University: Natural Science, 2010, 38(4):424-427.

    [16]Qin Wu, Du Chengbin. Meso-level model of three-dimensional concrete based on the CT slices [J]. Engineering Mechanics, 2012, 29(7):186-193.

    [17]Jiang Yuan, Bai Wei, Qi Yongle, et al. Reconstruction of 3D model of concrete mesa structure with CT original data [J]. Journal of China Three Gorges University: Natural Sciences, 2008, 30(1): 52-55.

    [18]Mu Weibin, Zhang Shuli. Investigation and achievement of three dimensions reconstruction for CT fault image by Matlab [J]. Journal of Qiqihar University, 2009, 25(1): 33-35.

    [19]Li Peng, Wang Min, Qi Xiaoli. Mechanical properties of aluminum foam based on synchrotron radiation computed-tomography[J]. Journal of Material Science & Engineering, 2011, 296:916-919.

    [20]Vesenjak M, Veyhl C, Fiedler T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541(16): 105-109.

    [21]Helfen L, Baumbach T, Stanzick H, et al. Viewing the early stage of metal foam formation by computed tomography using synchrotron radiation [J]. Advanced Engineering Materials, 2002, 4(10): 808-813.

    [22]Martín-Herrero J, Germain C. Microstructure reconstruction of fibrous C/C composites from X-ray micro tomography [J]. Carbon, 2007, 45(6): 1242-1253.

    [23]Martín-Herrero J. Hybrid object labelling in digital images [J]. Machine Vision and Applications, 2007, 18(11): 1-15.

    [24]Kan Jin. Micro and meso structures and their influence on effective properties of carbon/carbon composites [D]. Heilongjiang: Harbin Institute of Technology, 2010.(in Chinese)

    [25]Sharma R, Mahajan P, Mittal R K. Image-based finite element analysis of 3D-orthogonal carbon-carbon composite[C]∥Proceedings of the World Congress on Engineering. London, UK:WCE,2010:1597-1601.

    [26]Zeng Zheng, Dong Fanghua, Chen Xiao, et al. Three dimensions reconstruction of CT image by MATLAB [J]. CT Theory and Applications, 2004, 13(2): 24-29.

    [27]Zhang Aidong, Li Ju, Sun Lingxia. Three dimensional reconstruction of continuous ICT images by MATLAB [J]. Nuclear Electronics & Detection T echnology, 2006, 2604: 489-491.

    [28]Nixon M S, Aguado A S. Feature extraction and image processing second edition [M].Li Shiying, Yang Gaobo, translator. Beijing: Publishing House of Electronics Industry, 2011.

    [29]Chamis C C. Mechanics of composite materials: Past, present and future [R]. NASA TM- 100793, 1989.

    [30]Xia Z, Zhou C, Yong Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites [J]. International Journal of Solids and Structures, 2006, 43(2): 266-278.

    (Executive Editor: Zhang Bei)

    TB322 Document code: A Article ID: 1005-1120(2015)06-0639-07

    *Corresponding author: Zhou Chuwei, Professor, E-mail: zcw@nuaa.edu.cn.

    How to cite this article: Zhang Haijun,Zhou Chuwei. Three-dimensional reconstructed finite element model for C/C composites by micro-CT[J].Trans.Nanjing U.Aero.Astro., 2015, 32(6):639-645. http://dx.doi.org/10.16356/j.1005-1120.2015.06.639

    猜你喜歡
    海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
    我的海軍之夢(mèng)
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    海軍行動(dòng)
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration
    近代中國(guó)海軍的早期教育
    軍事歷史(1993年3期)1993-08-21 06:16:06
    清末海軍一次引人注目的軍艦出訪
    軍事歷史(1992年6期)1992-08-15 06:25:16
    国产成人精品久久久久久| 午夜91福利影院| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 久久亚洲精品不卡| 久久人妻熟女aⅴ| 日本vs欧美在线观看视频| 久久综合国产亚洲精品| 看十八女毛片水多多多| 日韩人妻精品一区2区三区| 亚洲免费av在线视频| 国产成人a∨麻豆精品| 性色av一级| 国产又色又爽无遮挡免| 只有这里有精品99| 午夜久久久在线观看| 老司机深夜福利视频在线观看 | 国产精品一二三区在线看| 国产又爽黄色视频| av网站免费在线观看视频| 各种免费的搞黄视频| 亚洲 欧美一区二区三区| 日韩中文字幕欧美一区二区 | www.熟女人妻精品国产| 秋霞在线观看毛片| 久久久精品区二区三区| 又紧又爽又黄一区二区| 国产熟女欧美一区二区| 国产成人精品在线电影| 欧美日韩综合久久久久久| 久久久亚洲精品成人影院| av福利片在线| a级毛片在线看网站| 久久九九热精品免费| 国产成人精品久久二区二区91| 久久免费观看电影| 电影成人av| 国产成人精品久久久久久| 老汉色av国产亚洲站长工具| 亚洲国产最新在线播放| 久久精品国产亚洲av高清一级| 亚洲视频免费观看视频| 巨乳人妻的诱惑在线观看| 精品一区二区三卡| 九草在线视频观看| 日韩一本色道免费dvd| 99香蕉大伊视频| 成人三级做爰电影| 亚洲,一卡二卡三卡| 女性被躁到高潮视频| 丝袜在线中文字幕| 国产xxxxx性猛交| 精品人妻熟女毛片av久久网站| 午夜福利一区二区在线看| 精品人妻一区二区三区麻豆| 在线观看免费视频网站a站| 国产av一区二区精品久久| 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| 精品国产一区二区三区四区第35| 国产午夜精品一二区理论片| www.999成人在线观看| videosex国产| 国产熟女欧美一区二区| 日韩av在线免费看完整版不卡| 免费观看a级毛片全部| 精品久久久久久电影网| 欧美中文综合在线视频| 91老司机精品| av在线播放精品| 美女福利国产在线| a级毛片黄视频| 天堂俺去俺来也www色官网| 99热全是精品| 久久精品国产a三级三级三级| 99久久人妻综合| 国产在线观看jvid| 国产午夜精品一二区理论片| 香蕉国产在线看| 黄色a级毛片大全视频| 亚洲av综合色区一区| 中文字幕人妻丝袜一区二区| 日本一区二区免费在线视频| 婷婷色综合www| 亚洲少妇的诱惑av| 男的添女的下面高潮视频| 国产精品三级大全| 欧美亚洲日本最大视频资源| 色网站视频免费| 国产精品亚洲av一区麻豆| 又黄又粗又硬又大视频| 青春草视频在线免费观看| 国产女主播在线喷水免费视频网站| 国产亚洲欧美精品永久| 久久国产精品影院| 黄色视频不卡| 少妇的丰满在线观看| 在线 av 中文字幕| 国产成人一区二区在线| 老司机午夜十八禁免费视频| 五月天丁香电影| 亚洲精品久久成人aⅴ小说| 日韩av不卡免费在线播放| 欧美大码av| 免费看av在线观看网站| 视频区欧美日本亚洲| 性少妇av在线| 一级a爱视频在线免费观看| 国产不卡av网站在线观看| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区久久| 亚洲人成网站在线观看播放| 黄色片一级片一级黄色片| av国产久精品久网站免费入址| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| 国产成人精品无人区| 国产精品免费大片| 欧美日韩亚洲高清精品| 国产成人精品无人区| 成人影院久久| 亚洲av成人不卡在线观看播放网 | 亚洲成人免费av在线播放| 成在线人永久免费视频| 国产高清国产精品国产三级| 日本五十路高清| 亚洲欧美一区二区三区黑人| 国产精品一区二区免费欧美 | 精品少妇黑人巨大在线播放| 一本—道久久a久久精品蜜桃钙片| 免费日韩欧美在线观看| 久久精品国产亚洲av涩爱| 午夜老司机福利片| 又紧又爽又黄一区二区| 色网站视频免费| 欧美日韩亚洲国产一区二区在线观看 | 国产片特级美女逼逼视频| 人妻 亚洲 视频| 久久精品亚洲av国产电影网| 午夜福利视频精品| 日韩 欧美 亚洲 中文字幕| 视频在线观看一区二区三区| xxxhd国产人妻xxx| 巨乳人妻的诱惑在线观看| 18在线观看网站| 一级毛片女人18水好多 | 夫妻午夜视频| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久男人| 日韩av免费高清视频| 国产精品一二三区在线看| 国产免费现黄频在线看| 男女国产视频网站| 晚上一个人看的免费电影| 黑丝袜美女国产一区| 高清av免费在线| 激情视频va一区二区三区| videosex国产| 久久午夜综合久久蜜桃| 91成人精品电影| 亚洲一区二区三区欧美精品| 亚洲av片天天在线观看| 午夜福利,免费看| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 国产精品二区激情视频| 国产亚洲欧美精品永久| 老熟女久久久| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美软件| 久久久欧美国产精品| 精品熟女少妇八av免费久了| av不卡在线播放| 熟女av电影| 亚洲欧洲国产日韩| 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 精品欧美一区二区三区在线| www.自偷自拍.com| 亚洲人成电影观看| 日本欧美国产在线视频| 看免费成人av毛片| svipshipincom国产片| 悠悠久久av| 99精国产麻豆久久婷婷| 男女国产视频网站| 免费黄频网站在线观看国产| 波多野结衣一区麻豆| 国产精品久久久久成人av| 国产伦理片在线播放av一区| 久久久久国产一级毛片高清牌| 国产亚洲一区二区精品| 国产av精品麻豆| 一级毛片电影观看| 亚洲精品一区蜜桃| 亚洲美女黄色视频免费看| 午夜91福利影院| 1024香蕉在线观看| 久久久久国产一级毛片高清牌| 免费看av在线观看网站| 久久久久久久久久久久大奶| 久久精品久久精品一区二区三区| 成人午夜精彩视频在线观看| 成人国语在线视频| 久久精品久久久久久久性| 中文字幕另类日韩欧美亚洲嫩草| 青春草亚洲视频在线观看| 国产野战对白在线观看| 观看av在线不卡| 男人爽女人下面视频在线观看| 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 另类精品久久| a级毛片在线看网站| 丝袜美足系列| 亚洲久久久国产精品| 首页视频小说图片口味搜索 | 女人精品久久久久毛片| 婷婷成人精品国产| 免费观看av网站的网址| 少妇猛男粗大的猛烈进出视频| 久久精品熟女亚洲av麻豆精品| 男人操女人黄网站| 日韩一区二区三区影片| 性色av乱码一区二区三区2| 精品少妇久久久久久888优播| 国产精品久久久av美女十八| 精品国产一区二区久久| 久久久久久免费高清国产稀缺| 国产免费福利视频在线观看| 亚洲av片天天在线观看| 亚洲国产日韩一区二区| 男女国产视频网站| 久久精品熟女亚洲av麻豆精品| 18禁黄网站禁片午夜丰满| 九色亚洲精品在线播放| 天堂中文最新版在线下载| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 欧美激情高清一区二区三区| 99国产精品99久久久久| 国产在线视频一区二区| 久久午夜综合久久蜜桃| 久久久精品免费免费高清| 少妇人妻久久综合中文| 三上悠亚av全集在线观看| 1024视频免费在线观看| 亚洲精品日本国产第一区| www.av在线官网国产| 男女边吃奶边做爰视频| 丁香六月天网| 国产精品一国产av| 国产亚洲一区二区精品| 18在线观看网站| 2021少妇久久久久久久久久久| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 久久国产亚洲av麻豆专区| 亚洲精品成人av观看孕妇| 亚洲av电影在线观看一区二区三区| 一级a爱视频在线免费观看| 久久久久久人人人人人| 欧美人与善性xxx| 两人在一起打扑克的视频| 91精品伊人久久大香线蕉| 老熟女久久久| 视频区欧美日本亚洲| 国产成人一区二区三区免费视频网站 | 日本vs欧美在线观看视频| 亚洲成国产人片在线观看| 制服诱惑二区| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 国产男人的电影天堂91| 丝袜喷水一区| 一区二区av电影网| 纯流量卡能插随身wifi吗| 亚洲精品自拍成人| 五月天丁香电影| 大陆偷拍与自拍| 国产99久久九九免费精品| 亚洲精品一区蜜桃| 亚洲国产av影院在线观看| 国产日韩欧美视频二区| 亚洲一区二区三区欧美精品| 国产精品久久久久成人av| 久久av网站| 视频区图区小说| 一区二区三区激情视频| 中国美女看黄片| 在现免费观看毛片| 亚洲国产精品一区二区三区在线| 欧美日韩国产mv在线观看视频| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| 别揉我奶头~嗯~啊~动态视频 | 日韩电影二区| 亚洲专区中文字幕在线| 精品国产乱码久久久久久男人| 国产精品 欧美亚洲| 女性被躁到高潮视频| 十八禁高潮呻吟视频| 一级毛片黄色毛片免费观看视频| 久久久久久亚洲精品国产蜜桃av| 水蜜桃什么品种好| 国产精品国产av在线观看| 丝袜人妻中文字幕| xxxhd国产人妻xxx| 午夜福利一区二区在线看| 亚洲欧美成人综合另类久久久| av国产精品久久久久影院| 999久久久国产精品视频| 看十八女毛片水多多多| 日韩大片免费观看网站| 国产精品99久久99久久久不卡| 日韩欧美一区视频在线观看| 欧美日韩视频精品一区| 9色porny在线观看| 国产精品一二三区在线看| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 久久精品亚洲熟妇少妇任你| 久久精品aⅴ一区二区三区四区| 汤姆久久久久久久影院中文字幕| 免费一级毛片在线播放高清视频 | 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| 尾随美女入室| 美女扒开内裤让男人捅视频| 亚洲精品国产区一区二| 国产免费福利视频在线观看| 亚洲欧美日韩高清在线视频 | 精品少妇内射三级| 搡老岳熟女国产| 国产伦人伦偷精品视频| 夫妻午夜视频| 免费看av在线观看网站| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| 男男h啪啪无遮挡| 亚洲精品一区蜜桃| 性色av乱码一区二区三区2| 大码成人一级视频| 亚洲欧美激情在线| 国产精品.久久久| 免费看十八禁软件| 日日摸夜夜添夜夜爱| 在线亚洲精品国产二区图片欧美| 亚洲国产日韩一区二区| 国产国语露脸激情在线看| 婷婷色综合www| 大香蕉久久网| 免费av中文字幕在线| 三上悠亚av全集在线观看| 最新的欧美精品一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲色图 男人天堂 中文字幕| 久久人人爽人人片av| 国产黄色免费在线视频| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 免费看av在线观看网站| 精品国产乱码久久久久久小说| 亚洲精品国产av蜜桃| bbb黄色大片| 18禁观看日本| 99久久精品国产亚洲精品| 亚洲少妇的诱惑av| 91麻豆av在线| 80岁老熟妇乱子伦牲交| 欧美久久黑人一区二区| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 国产精品av久久久久免费| 天天躁日日躁夜夜躁夜夜| 精品国产乱码久久久久久男人| 无限看片的www在线观看| 男女之事视频高清在线观看 | 亚洲av日韩精品久久久久久密 | 男女床上黄色一级片免费看| 日日摸夜夜添夜夜爱| 亚洲av日韩精品久久久久久密 | 亚洲久久久国产精品| 久久99热这里只频精品6学生| 在线天堂中文资源库| 亚洲,一卡二卡三卡| 国产精品.久久久| 大片免费播放器 马上看| 成在线人永久免费视频| 女性被躁到高潮视频| 美女大奶头黄色视频| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 一级黄片播放器| 成人手机av| 蜜桃国产av成人99| 免费少妇av软件| 七月丁香在线播放| 国产免费又黄又爽又色| av一本久久久久| 亚洲精品一二三| 人人澡人人妻人| 老汉色av国产亚洲站长工具| 欧美精品av麻豆av| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| www日本在线高清视频| 国产精品.久久久| 亚洲,一卡二卡三卡| 成年动漫av网址| 菩萨蛮人人尽说江南好唐韦庄| 97精品久久久久久久久久精品| 中文字幕人妻丝袜制服| 欧美久久黑人一区二区| 久久狼人影院| 精品国产一区二区久久| 性色av一级| 色94色欧美一区二区| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 又大又爽又粗| www日本在线高清视频| av有码第一页| 天堂8中文在线网| 精品视频人人做人人爽| 国产一区二区在线观看av| 天堂俺去俺来也www色官网| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 久久久欧美国产精品| 亚洲情色 制服丝袜| 成年人免费黄色播放视频| 国产免费一区二区三区四区乱码| 男女下面插进去视频免费观看| 亚洲精品成人av观看孕妇| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 一级毛片 在线播放| 日韩精品免费视频一区二区三区| 日韩 欧美 亚洲 中文字幕| 69精品国产乱码久久久| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 国产精品久久久久成人av| 国产男女超爽视频在线观看| 脱女人内裤的视频| 亚洲成人国产一区在线观看 | 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 精品亚洲成国产av| 国产成人av教育| 亚洲国产欧美日韩在线播放| 成人手机av| 亚洲中文字幕日韩| 中国美女看黄片| 水蜜桃什么品种好| 国产福利在线免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 五月开心婷婷网| 日日摸夜夜添夜夜爱| 欧美日本中文国产一区发布| 欧美日韩视频高清一区二区三区二| 在线精品无人区一区二区三| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 王馨瑶露胸无遮挡在线观看| 十八禁高潮呻吟视频| 国产一卡二卡三卡精品| 两人在一起打扑克的视频| 亚洲国产成人一精品久久久| 久久精品亚洲av国产电影网| 亚洲精品在线美女| 丝袜人妻中文字幕| 久久人人爽人人片av| 汤姆久久久久久久影院中文字幕| 国产亚洲av高清不卡| 视频在线观看一区二区三区| 丰满少妇做爰视频| 大陆偷拍与自拍| 国产精品久久久久成人av| 国产精品久久久久久人妻精品电影 | 天天影视国产精品| av片东京热男人的天堂| 侵犯人妻中文字幕一二三四区| 亚洲av国产av综合av卡| 一二三四在线观看免费中文在| 一级片免费观看大全| 久热爱精品视频在线9| 久久久久久久久久久久大奶| 欧美日韩av久久| 亚洲国产欧美一区二区综合| 亚洲欧美精品综合一区二区三区| 亚洲精品自拍成人| 亚洲欧美激情在线| 欧美精品一区二区免费开放| 欧美亚洲日本最大视频资源| av福利片在线| av线在线观看网站| 首页视频小说图片口味搜索 | 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 国产视频首页在线观看| 宅男免费午夜| 一级毛片女人18水好多 | 99久久99久久久精品蜜桃| 亚洲九九香蕉| 女性被躁到高潮视频| a级毛片在线看网站| 亚洲成人免费电影在线观看 | 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| tube8黄色片| 少妇的丰满在线观看| 亚洲av成人不卡在线观看播放网 | 国产一区二区在线观看av| 成人国产一区最新在线观看 | 999精品在线视频| 久久人妻熟女aⅴ| 成年人午夜在线观看视频| 伊人亚洲综合成人网| 少妇 在线观看| 一级片免费观看大全| 欧美日韩精品网址| 日韩人妻精品一区2区三区| 一级黄色大片毛片| 91国产中文字幕| 中文字幕制服av| 亚洲人成电影免费在线| 日韩制服丝袜自拍偷拍| 国产精品秋霞免费鲁丝片| 午夜免费成人在线视频| 一级毛片 在线播放| 日本欧美视频一区| 午夜激情久久久久久久| 一区福利在线观看| 国产视频首页在线观看| 中文字幕人妻丝袜一区二区| 啦啦啦视频在线资源免费观看| 国产免费现黄频在线看| 最近手机中文字幕大全| 免费观看av网站的网址| 一边摸一边做爽爽视频免费| 成人国产av品久久久| 91精品国产国语对白视频| 天天添夜夜摸| 男女免费视频国产| 午夜日韩欧美国产| 免费高清在线观看日韩| 无限看片的www在线观看| 99国产精品一区二区蜜桃av | 男男h啪啪无遮挡| 国产精品av久久久久免费| 热99国产精品久久久久久7| 国产福利在线免费观看视频| 欧美日韩av久久| 中国美女看黄片| 秋霞在线观看毛片| 一区在线观看完整版| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 多毛熟女@视频| 国产伦理片在线播放av一区| 久久热在线av| 国产欧美日韩精品亚洲av| 在线观看国产h片| 十八禁网站网址无遮挡| 丁香六月欧美| 99国产综合亚洲精品| 欧美性长视频在线观看| 电影成人av| 999精品在线视频| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| av天堂久久9| 国产一区二区激情短视频 | 亚洲一区中文字幕在线| 男女边摸边吃奶| 久久久精品区二区三区| 精品国产乱码久久久久久小说| 老熟女久久久| 各种免费的搞黄视频| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 成年人免费黄色播放视频| 91九色精品人成在线观看| 满18在线观看网站| 少妇 在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 十分钟在线观看高清视频www| 国产日韩欧美在线精品| 男女国产视频网站| 国产在线视频一区二区| 一本综合久久免费| 色精品久久人妻99蜜桃| 蜜桃国产av成人99| 桃花免费在线播放| 国产av一区二区精品久久| 亚洲 欧美一区二区三区| 99精国产麻豆久久婷婷| 国产黄色视频一区二区在线观看| 青草久久国产| 日本五十路高清| 国产片内射在线| 黄色视频不卡|