• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration

    2014-08-12 02:31:02NYANWinaungWEIHaijun魏海軍LIUTing
    關(guān)鍵詞:海軍

    NYAN Win-aung, WEI Hai-jun(魏海軍),2*, LIU Ting(柳 霆)

    1 Marine Engineering College, Dalian Maritime University, Dalian 116026, China 2 Marcent Marine College, Shanghai Maritime University, Shanghai 200315, China

    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration

    NYAN Win-aung1, WEI Hai-jun(魏海軍)1,2*, LIU Ting(柳 霆)1

    1MarineEngineeringCollege,DalianMaritimeUniversity,Dalian116026,China2MarcentMarineCollege,ShanghaiMaritimeUniversity,Shanghai200315,China

    Cold spare is the most common configuration amongst the three types of configuration for systems used on board and for power generation systems. A new approach to calculate the unavailability of systems composed of identical spares in cold spare configuration was proposed in this study. Instead of using the spare gate of dynamic fault tree(DFT) and the Markov analysis, AND gate of static fault tree used for calculating the unavailability of cold spare systems was proposed in this paper. By using this approach, unavailability of identical cold spare systems composed of non-repairable spare components can be calculated exactly and systems composed of both repairable and nonreparable identical spare components can be estimated without building large Markov state diagram.

    coldspare;sparegate;ANDgate;failurepercentage(FP);faulttreeanalysis;Markovanalysis

    Introduction

    Based on the dormancy factor of spares, spares can be classified as hot, cold, and warm spares. Calculation of the reliability properties of hot spares is the simplest and its calculation is the same as AND gate of static fault tree calculation. The dynamic fault tree (DFT) method of analysis such as an analytical method (Markov analysis) is required to deal with the cold and warm spares. Researchers provided different methods to solve cold and warm spares. Besides the applying of Markov analysis[1-2]to solve DFT, Monte Carlo simulation[3], analytical approach[4], Bayesian network approach[5], conditional probability approach[6], numerical simulation approach[7], and other approaches which applied logic gates[8-9]are proposed by researchers to solve dynamic gates of fault tree including spare gate. Among the three types of spare configuration, identical cold spares are commonly met in systems applied on board such as the ship propulsion system and the electric power generation system. Spares in these systems are well maintained and fully monitored and powered up only on demand. In this study, exact and approximate methods to calculate the unavailability of identical cold spares with exponential failure distribution (constant failure rate) are discussed in detail with their limitation.

    1 Relation between AND Gate and Spare Gate

    Unavailability of using two identical components in an AND gate can be generally calculated by using Eq. (1)[10].

    Q=(1-exp(-λtPF))2,

    (1)

    whereQis unavailability;λis the failure rate;tis time; andPFis failure percentage, which is egual to 100%.

    Failure percentage (PF) in AND gate is 100% and the result of AND gate is the same as the result of hot spares in spare gate calculation of DFT. If the spare types are cold spare, their unavailability cannot be calculated by using Eq. (1). Generally analytical method (Markov analysis) is used to solve cold spare gates. The unavailability of cold spares is less than hot spare and the trend of changing unavailability of two identical cold and hot spares with failure rate 0.001 per hour can be seen in Fig.1.

    Fig.1 Unavailability of two identical components in cold and hot spare configuration

    Markov diagrams for solving two identical components in cold and hot spares are shown in Fig.2. Markov analysis method is used to calculate the unavailability of cold and hot spares and their unavailability can be computed by using Eqs. (2) and (3). Both diagrams have three states. Hot spare transfers from one state to another by two transitions and cold spare by only one transition. All transitions have the same failure rate. The idea present in this calculation is to calculate the cold spare by using hot spare model and then change to simple AND gate calculation. Unavailability of hot spares can be calculated by using Eq. (1) which can avoid the high cost of calculation especially for the higher number of spares.

    Q(t)=(1-e-λt)2,

    (2)

    Q(t)=1-(e-λt(λt+1)).

    (3)

    Fig.2 Markov diagram of two identical components in hot spare and cold spare

    One transition in cold spare is attempted to replace by two transitions of hot spare by changing the failure rate by multiplying a factor calledPFas shown in Fig.3. Equation for calculating thePFfactor of two identical spares can be derived by using Eqs. (3) and (4)[10-11]. Unavailability of two identical components in cold spare configuration can be calculated by Eq. (4) and thePFrequired to use in Eq. (4) can be calculated by Eq. (6).

    Fig.3 Markov diagrams of two identical components in cold spare

    Equation for unavailability of cold spare configuration

    Q(t)=(1-e-λPFt)2,

    (4)

    Q(t)=(1-(e-λPFt))2=1-(e-λt(λt+1)),

    (5)

    (6)

    As an example, a system is composed with two identical components with failure rate of 0.001 and operation time of 1 000 h in cold spare configuration. Unavailability of the system can be calculated by using Markov analysis and the idea proposed in the above paragraph. Equation (3) is used to calculate the unavailability of the system for Markov analysis method and Eq. (4) is used for the proposed method. The factor of failure percentagePFused in Eq. (4) can be calculated by using Eq.(6) and the summery of the result can be seen as follows: unavailability of the system calculated by using Markov analysis is 0.264 241, failure percentage of the components used in the system is 72.163 7%, and unavailability of the system calculated by proposed method is 0.264 241.

    The exact answer of unavailability can be obtained only at the time of 1 000 h because thePFis changed with time and failure rate. But it was found that error percentage of the unavailability between these two methods for other operation times are very small. Comparison of the results of the proposed method and Markov method is shown in Fig.4.

    Fig.4 Comparison of the results of the proposed method and Markov analysis method

    2 Calculation for the PF of More than Two Identical Components in Cold Spares

    Calculation of thePFof more than two identical components in cold spares is undertaken as follows. Firstly the general formula for calculating the unavailability of “1+n” number of identical components in cold spares is derived from the Markov state diagram as shown in Fig.5 and equalized with the general form of Eq. (4) to calculate thePFof identical components in cold spare configuration. Derivation for the general formula for calculatingPFcan be seen as follows.

    Fig.5 Markov diagram of “1+n” identical cold spares with failure rate λ

    The general formula for unavailability of a component with different number of cold spare components can be driven out as follows

    that is

    (7)

    whereiis the number of spare components.

    The general formula for calculating the unavailability of “j” identical components using AND gate instead of using Markov analysis method can be shown by Eq. (8).

    Qj(t)=(1-e-λPFt)j.

    (8)

    By applying Eqs. (7) and (8)PFof “j” identical components can be derived as follows:

    (9)

    whereiis the number of spare components,jis the number of identical components, andj=i+1.

    PFfor different number of identical non-repairable components in cold spare configuration can be found by using Eq. (9). Unavailability of cold spare system can be computed by applying the outcomePFin Eq. (8). By using these two equations Markov state diagrams and differential equations are not necessary in the calculation of identical non-repairable components in cold spare configuration.

    2.1 Limitation of general formula forPFcalculation

    For extreme cases such ascomponents with very low failure rate and back up with more than one spares (for exampleλ=0.000 001 h-1, number of spares is 2), thePFfor calculating the unavailability of the system for a short operating time (for example,t=10 h), cannot be calculated by using the general formula. In a real world situation that kind of extreme case is rarely encountered and can be said to be nearly a zero percent possibility. Another extreme case is the opposite of the previous example. The use of the general formula is also inappropriate in the instance of a high failure rate and long operation time (for exampleλ=0.01 h-1,t=10 000 h). Both kinds of extreme cases are hardly ever encountered in the reliability analysis of systems.

    2.2 Nature ofPFand its approximation

    Two identical components in cold spare configuration with constant failure rate range from 0.01 to 0.000 001 per hour and operation time range of 10 to 10 000 000 h are used. Failure percentages for two identical components in cold spare configuration for different failure rate and operation time are calculated by using Eq. (9). Failure percentages used to calculate the unavailability of two identical components in cold spare configuration are shown in Fig.6. From the figure the higher the failure rate the failure percentage for calculating the unavailability of the system is nearly constant for long operation time. This fact can be more clearly understood by checking Table 1. From the table, the approximate values of the upper bound of the failure percentages of respective failure rate which are highlighted can be obtained.

    Table 1 Failure percentage of two identical components in cold spare configuration

    By using the exact failure percentage obtained from Eq. (9) or the approximated value (upper bound value), unavailability of cold spare system with non-repairable identical components can be calculated or estimated by using conventional AND gate. But in real world situation spare is not only limited to a single component like a motor or a controller, it can be a sub system or the whole system, for example reduction gear system of ship propulsion system as shown in Fig.7. Systems are composed with more than one basic component, and these components can be both repairable and non-repairable. To calculate the unavailability of such a system, nature of cold spare configuration of repairable components needs to be considered. While failure rates of non-repairable components in a system can be combined and it can be calculated as a single non repairable component, failure rate of repairable components cannot be combined and need to be calculated individually for spare system calculation. The following section described the basic idea of approximating the unavailability of repairable component in cold spare configuration.

    Fig.6 Failure percentage for different failure rate of two identical components in cold spare configuration

    Fig.7 Fault tree diagram to compute the unavailability of two sets of reduction gear and propeller system in cold spare configuration by using proposed method

    3 Criteria for Approximating of the Unavailability of Repairable Components in Cold Spare Configuration

    Repairable components are high availability components in process especially with low failure rate and high repair rates. Basically there are four conditions of repairable components which depend on their failure rate and repair rates, and example of the respective failure rates and repair rates of the four different types of two identical repairable components are shown in Table 2. Markov analysis can be used to calculate the unavailability of two identical repairable components in cold spare configuration. For the two identical components in hot spare configuration both Markov analysis and AND gate function of reliability software can be used. The unavailability of two identical repairable spares in cold and hot spare configurations can be assumed to be the same in their steady state if the ratio of repair rate to failure rate is more than 100. In the real world situation this ratio is normally above 100 except for some extreme cases. Before reaching steady state there is a difference between two results and after reaching the steady state the difference is in negligible amount, as shown in Fig.8. In

    the case of repair rate to failure rate ratio is above 100, after reaching the steady state the difference between the unavailability result of cold spare and hot spare configuration is about 1 percent of the unavailability value of the result of cold spare configuration. The higher the ratio of repair rate to failure rate is lesser error percentage between results. This error can be negligible in comparison with unavailability of other non-repairable components in systems.

    RepairrateRRFailurerateλLowHighLowHighλ=0.0001λ=0.01RR=0.001RR=0.001Unavailabilityofthesystemincoldspareconfigurationis0.009Unavailabilityofthesystemincoldspareconfigurationis0.8264Unavailabilityofthesysteminhotspareconfigurationis0.00826Unavailabilityofthesysteminhotspareconfigurationis0.9λ=0.0001λ=0.01RR=0.01RR=0.01Unavailabilityofthesystemincoldspareconfigurationis9.9e-5Unavailabilityofthesystemincoldspareconfigurationis0.33Unavailabilityofthesysteminhotspareconfigurationis9.8e-5Unavailabilityofthesysteminhotspareconfigurationis0.25

    By using this proposed method, unavailability of cold spare configuration of systems which are composed of non-repairable components can be calculated exactly and systems which are composed with both non-repairable and repairable components can be estimated except in a few extreme cases. The main idea of application of the proposed modified fault tree method can be observed in Fig.9, whereRNis non-repairable,Ris repairable,λis failure rate,PFis failure percentage, andRRis repair rate.

    As a case study, the unavailability of the two sets of reduction gear and propeller system of USNS supply is computed by using proposed method and conventional Markov analysis method and compared results to validate the approach for use in real world system[12-13].

    Fig.9 Proposed idea of transforming from spare gate to AND gate

    4 Case Study of the Computing the Unavailability of Two Sets of Reduction Gear and Propeller System in Cold Spare Configuration

    The reduction gear and propeller systems are one of the important parts of the marine propulsion system. There are two sets of reduction gear and propeller systems in the propulsion system of USNS supply. The main task of the reduction gear system is to reduce the high revolution of gas turbine and transmits it to fix propeller through shaft. The fault tree diagram of a reduction gear and propeller set drawn by using Relex software can be seen in Fig.10 and failure and repair data are shown in Table 3.

    Fig.10 Fault tree diagram of reduction gear and propeller system

    EventNo.Descriptionλ/(10-6·h-1)Repairtime/h1Reductiongearlubeoilservicepumpattached129.575.92Reductiongearmotordrivestandbylubeoilpump(repeated)270.2733Reductiongearmotordrivenemergencylubeoilpump(repeated)270.2734Mainreductiongear(reversing)48.0713.35Mainreductiongear(reversing)(non-repairable)5Non-repairable6Bearing/seal(non-repairable)4.348Non-repairable7Shafting(non-repairable)4.348Non-repairable8Fixedpitchpropeller(non-repairable)5Non-repairable9FRANCO-TOSImotordrivenemergencylubeoilpump270.27310FRANCO-TOSImotordrivestandbylubeoilpump270.27311RCClubeoilcooler11.111312Maincontrolconsole(repeated)34.4831713LocalshaftcontrolUnit11001

    First conventional Markov analysis is used to calculate the unavailability of cold spare configuration of two sets of reduction gear and propeller systems for the operation time of 3 000 h. Markov diagram for the cold spare configuration of the reduction gear systems is shown in Fig.11. Detail descriptions of the states are described in Table 4. It has 71 states and needs to use 71 differential equations to solve the problem. Matlab program is used to calculate the unavailability of the cold spare configuration[14]. Deriving 71 equations from the Markov diagram is time consuming work and error prone during the construction of the equations. Matlab ODE 45 function is used to solve these differential equations and the unavailability of the cold spare configuration of the system is calculated by using Eq. (10) and the results calculated by using Markov analysis methods are shown in Table 5.

    Fig.11 Markov diagram of the two sets of reduction gear and propeller system in cold spare configuration

    StateDiscription1Bothreductiongearandpropellersystemingoodstate2Failureofreductiongearlubeoilservicepumpoil13FailureofRCClubeoilpump14FailureofRCClubeoilpump25FailureofRCClubeoilpump1&26Failureofmotordrivenstandbylubeoilpump17FailureofmotorEmergencylubeoilpump18Failureofmainreductiongearreversing(repairable)19FailureofRCClubeoilcooler110Failureofmainreductiongearreversing(nonrepairable)111Failureofmaincontrolconsole12Failureofloclshaftcontrolunit113Failureofmaincontrolconsoleandlocalshaftcontrolunit114,26,38,50,62Failureofreductiongearlubeoilservicepumpoil215,27,39,51,63FailureofRCClubeoilpump316,28,40,52,64FailureofRCClubeoilpump417,29,41,53,65FailureofRCClubeoilpump3&418,30,42,54,66Failureofmotordrivenstandbylubeoilpump219,31,43,55,67FailureofmotorEmergencylubeoilpump220,32,44,56,68Failureofmainreductiongearreversing(repairable)221,33,45,57,69FailureofRCClubeoilcooler222,34,46,58,70Failureofmainreductiongearreversing(nonrepairable)2,bearing/seal2,shafting2,fixpitchpropeller223,35,47,59Failureofmaincontrolconsole24,36,48,60,71Failureofloclshaftcontrolunit225,37,49,61Failureofmaincontrolconsoleandlocalshaftcontrolunit2

    Q(t)= 1-[p1(t)+p2(t)+…+p18(t)+p23(t)+p24(t)+p26(t)+…+p30(t)+p35(t)+

    p36(t)+p38(t)+…+p42(t)+p47(t)+p48(t)+p50(t)+…+p54(t)+

    p59(t)+p60(t)+p62(t)+…+p66(t)].

    (10)

    Table 5 Unavailability of the cold spare configuration of two sets of reduction gear and propeller system calculated by Markov analysis method and proposed method of modified fault tree

    Secondly, the unavailability of two sets of reduction gear and propeller system in the cold spare configuration is calculated by the proposed method. Generally fault tree software such as Relex, Isograph, and Item[15-17]is used to compute large fault tree to avoid time consumption and mistakes. Software has limitations in using dynamic gates. Relex fault tree is used in this case study. Because of the limitations of spare gate of Relex fault tree, the cold spare configuration of reduction gear and propeller system cannot be computed directly.

    In this case study, the proposed approach is used together with Relex fault tree to calculate the unavailability of the reduction gear systems in cold spare configuration. By applying the proposed method, unavailability of identical components or systems in cold spare configuration can be calculated by using AND gate of Relex fault tree software. Building large states of Markov diagram and solving high number of differential equations can be avoided by using the proposed method. The total failure rate of non-repairable components, main reduction gear reversing, bearing/seal, shafting, fix pitch propeller, can be computed by combining with the failure rate of these components and the total failure rate is 1.869 565E-5 per 106hour. The failure percentage of the combined failure rate of non-repairable components is calculated by using Eq. (9). In this case study failure percentage of 70.97% is used for the operation time of 3 000 h and that failure percentage is also used as an upper bond value for approximating for the unavailability for the operation time of 0 to 3 000 h. Fault tree diagram for this calculation is shown in Fig.7. As shown in Fig.7, AND top gate is used for calculating the unavailability of two sets of reduction gear and propeller system in cold spare configuration. The results are described in Table 5 and comparison between the results of Markov analysis and proposed modified fault tree method can be observed in Fig.12. To better understand about the effect of hot spare and cold spare configurations and clarify the result of the proposed method, the unavailability of the two sets of reduction gear and propeller system in hot spare configuration was computed by using Relex is also described in Fig.12.

    Fig.12 Comparison of the unavailability of two sets of reduction gear and propeller system in cold spare configuration, calculated by Markov analysis method and proposed method

    From the results of Table 5, the error between the proposed method and Markov analysis method at the operation time of 3 000 h is less than 0.5% of the result obtained from Markov analysis. Therefore the proposed method is confirmed and validated in estimating of the unavailability of identical cold spares of real world systems.

    5 Conclusions

    In this paper a new approach is proposed to compute the unavailability of non-repairable identical cold spares without using the Markov analysis. An important criterion of repair rate to failure rate ratio is also proposed to estimate the unavailability of repairable components in cold spares by using AND gate. By applying the factor of failure percentage and criterion of repair rate to failure rate ratio of the proposed method, unavailability of systems composed of nonrepairable components and repairable components in cold spare configuration can be estimated by using fault tree AND gate. The main advantage of the proposed modified fault tree method is to reduce the cost of calculation and it’s capability to combine fault tree software to overcome the limitations of software in computing of unavailability of identical systems in cold spare configuration of real world system.

    [1] Xing L, Amari S. Handbook of Performability Engineering [M]. New York: Springer-Verlag, 2008: 595-617.

    [2] Gulati R, Dugan J B. A Modular Approach for Analyzing Static and Dynamic Fault Trees[C]. Proceedings of Annual Reliability and Maintainability Symposium, USA, 1997: 57-63.

    [3] Chiacchio F.An Open-Source Application to Model and Solve Dynamic Fault Tree of Real Industrial Systems [C]. Proceedings of 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA), Italy, 2011: 1-8.

    [4] Merle G, Roussel J M, Lesage J J. Analytical Calculation of Failure Probabilities in Dynamic Fault Trees Including Spare Gates [C]. Proceedings of European Safety and Reliability Conference, Rhodes, Greece, 2010: 794-801

    [5] Dugan B.A New Bayesian Network Approach to Solve Dynamic Fault Trees [C]. Proceedings of Reliability and Maintainability symposium, Hilton Mark Plaza Alexandria, VA, USA, 2005: 451-456.

    [6] Amari S, Dill G, Howald E. A New Approach to Solve Dynamic Fault Trees [C]. Proceedings of the Annual Reliability and Maintainability Symposium, Tampa, FL, USA, 2003: 374-379.

    [7] Liang XF, Yi H, Zhang YF,etal. A Numerical Simulation Approach for Reliability Analysis of Fault-Tolerant Repairable System [C]. Proceedings of 8th International Conference on Reliability, Maintainability and Safety, Chengdu, China, 2009: 191-196.

    [8] Aliee H, Zarandi H R. A Fast and Accurate Fault Tree Analysis Based on Stochastic Logic Implemented on Field-Programmable Gate Arrays [J].IEEETransactionsonReliability, 2013, 62(1): 13-22.

    [9] Cheshmikhani E, Zarandi H R, Aliee H. Accelerating Accurate Fault Tree Analysis Using HW/SW Co-design[J].ReliabilityandMaintainabilitySymposium(RAMS), 2014, 1(6): 27-30.

    [10] Ebeling C E.An Introduction to Reliability and Maintainability Engineering [M]. New York: McGraw-Hill Education, 1997.

    [11] Willium J S. Probability, Markov Chain, Queues and Simulation [M]. New Jersy : Princeton University Press, 2009.

    [12] Young R B. Reliability Transform Method, MSc. Dissertation [D]. Virginia:Virginia Polytechnic Institute and State University, 2003: 171-179.

    [13] USNS Supply[EB/OL]. [2014-05-10]. http://en.wikipedia.org/wiki/USNS_Supply_%28T-AOE-6%29.

    [14] Atkinson K, Han W, Stewart D. Numerical Solution of Ordinary Differential Equations [M]. New Jersey: John Wiley & Sons, Inc., 2009.

    [15] Relex[EB/OL]. [2014-05-10]. http://www.ptc.com/products/windchill/quality.

    [16] Isograph[EB/OL]. (2013)[2014-05-08]. http://www.isograph-software.com/.

    [17] Item[EB/OL]. (2013)[2014-05-08].http://www.itemsoft.com/.

    Foundation item: National High-Technology Research and Development Program of China (863 Program)(No. 2013AA040203)

    1672-5220(2014)06-0863-07

    Received date: 2014-08-08

    *Correspondence should be addressed to WEI Hai-jun, E-mail: hxl@dlmu.edu.cn

    CLC number: TH122 Document code: A

    猜你喜歡
    海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
    我的海軍之夢
    軍事文摘(2020年22期)2021-01-04 02:17:24
    相信愛
    海軍行動
    海軍航空兵之歌
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    近代中國海軍的早期教育
    軍事歷史(1993年3期)1993-08-21 06:16:06
    清末海軍一次引人注目的軍艦出訪
    軍事歷史(1992年6期)1992-08-15 06:25:16
    男女午夜视频在线观看| 国产国语露脸激情在线看| 99国产极品粉嫩在线观看| 亚洲国产精品成人久久小说| av又黄又爽大尺度在线免费看| 久久天躁狠狠躁夜夜2o2o| 国产有黄有色有爽视频| 美女高潮喷水抽搐中文字幕| 国产日韩欧美在线精品| 午夜福利一区二区在线看| 国产精品99久久99久久久不卡| 日韩一区二区三区影片| 久久久精品区二区三区| 亚洲全国av大片| 国产精品久久久av美女十八| 国产精品二区激情视频| 成在线人永久免费视频| 精品久久久久久久毛片微露脸 | 不卡av一区二区三区| 一级毛片电影观看| 可以免费在线观看a视频的电影网站| e午夜精品久久久久久久| 久久久国产一区二区| 成人影院久久| netflix在线观看网站| 丝袜脚勾引网站| 亚洲精品在线美女| 亚洲精品国产av蜜桃| 精品久久久精品久久久| 黄色a级毛片大全视频| 国产激情久久老熟女| 一级片'在线观看视频| 久久久久久亚洲精品国产蜜桃av| 2018国产大陆天天弄谢| 久久人人爽av亚洲精品天堂| 黑人操中国人逼视频| 国产精品熟女久久久久浪| 热re99久久精品国产66热6| 999久久久国产精品视频| 亚洲欧美日韩另类电影网站| 美女福利国产在线| 一级毛片电影观看| 亚洲国产精品一区三区| 久久国产精品人妻蜜桃| 看免费av毛片| 女性被躁到高潮视频| 飞空精品影院首页| 精品亚洲成国产av| 国产一卡二卡三卡精品| 午夜福利在线免费观看网站| 大型av网站在线播放| 满18在线观看网站| 一二三四社区在线视频社区8| 波多野结衣av一区二区av| 国产一级毛片在线| 亚洲三区欧美一区| 精品人妻一区二区三区麻豆| 国产日韩欧美在线精品| 亚洲欧美色中文字幕在线| 欧美日韩亚洲高清精品| 国产亚洲av高清不卡| 97精品久久久久久久久久精品| 黄网站色视频无遮挡免费观看| 美女视频免费永久观看网站| 新久久久久国产一级毛片| 欧美激情 高清一区二区三区| 丝袜美腿诱惑在线| 久久久久国内视频| 日韩制服骚丝袜av| 久久这里只有精品19| 99精国产麻豆久久婷婷| 1024香蕉在线观看| 宅男免费午夜| 男女床上黄色一级片免费看| 美女高潮到喷水免费观看| 大型av网站在线播放| 美女主播在线视频| 国产成人啪精品午夜网站| 在线观看免费高清a一片| 手机成人av网站| 少妇粗大呻吟视频| 亚洲精品中文字幕在线视频| a级毛片黄视频| 免费一级毛片在线播放高清视频 | 欧美激情 高清一区二区三区| 亚洲视频免费观看视频| 亚洲成人免费av在线播放| 国产视频一区二区在线看| 国产无遮挡羞羞视频在线观看| 亚洲精品国产区一区二| 嫩草影视91久久| 日韩欧美一区二区三区在线观看 | 亚洲精品国产一区二区精华液| 精品少妇内射三级| 亚洲国产精品成人久久小说| 久久人人爽人人片av| 丰满少妇做爰视频| 亚洲 欧美一区二区三区| 久久国产精品人妻蜜桃| 精品国产乱子伦一区二区三区 | avwww免费| 欧美黄色片欧美黄色片| 久久国产精品大桥未久av| 一个人免费在线观看的高清视频 | 在线av久久热| 免费看十八禁软件| 69av精品久久久久久 | 午夜福利影视在线免费观看| 国产片内射在线| 精品久久久精品久久久| 欧美亚洲日本最大视频资源| 人妻 亚洲 视频| 狠狠狠狠99中文字幕| 国产麻豆69| 看免费av毛片| 国产无遮挡羞羞视频在线观看| 在线精品无人区一区二区三| 国产av精品麻豆| 国产av一区二区精品久久| 一个人免费在线观看的高清视频 | 精品国产乱码久久久久久小说| 免费不卡黄色视频| 精品国产乱码久久久久久男人| videosex国产| 亚洲精品中文字幕一二三四区 | h视频一区二区三区| 日韩视频在线欧美| 大香蕉久久网| 狠狠婷婷综合久久久久久88av| 中亚洲国语对白在线视频| 国产色视频综合| 91麻豆av在线| 自拍欧美九色日韩亚洲蝌蚪91| 日韩大片免费观看网站| 免费不卡黄色视频| 精品欧美一区二区三区在线| 欧美国产精品一级二级三级| 中文字幕高清在线视频| 久久久久国产精品人妻一区二区| 丁香六月天网| 在线永久观看黄色视频| 精品一区二区三卡| 男女午夜视频在线观看| 亚洲成人免费av在线播放| 亚洲第一青青草原| 免费观看人在逋| 国产成人av教育| 国产成人av激情在线播放| 在线 av 中文字幕| 人人妻,人人澡人人爽秒播| 久久久水蜜桃国产精品网| 国产黄色免费在线视频| 欧美日韩视频精品一区| 桃红色精品国产亚洲av| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| bbb黄色大片| 亚洲欧美成人综合另类久久久| 一级片'在线观看视频| 丁香六月欧美| 国产视频一区二区在线看| av在线老鸭窝| videosex国产| 亚洲一卡2卡3卡4卡5卡精品中文| 99久久精品国产亚洲精品| 黄色片一级片一级黄色片| 桃花免费在线播放| svipshipincom国产片| 久久国产精品人妻蜜桃| 国产精品99久久99久久久不卡| 久久国产精品男人的天堂亚洲| 精品国产乱码久久久久久男人| 日韩大片免费观看网站| 精品少妇内射三级| av不卡在线播放| 亚洲av片天天在线观看| 精品国产国语对白av| 动漫黄色视频在线观看| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 国产精品久久久久久精品古装| 1024香蕉在线观看| 国产有黄有色有爽视频| 99香蕉大伊视频| 淫妇啪啪啪对白视频 | 一本大道久久a久久精品| 老司机影院成人| 手机成人av网站| 欧美av亚洲av综合av国产av| 亚洲国产日韩一区二区| 黄色视频不卡| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 美女扒开内裤让男人捅视频| 91精品国产国语对白视频| 久久热在线av| 天天躁日日躁夜夜躁夜夜| 欧美日韩精品网址| 亚洲伊人色综图| 日本欧美视频一区| 91精品三级在线观看| 黄色视频,在线免费观看| 成人手机av| 免费av中文字幕在线| 午夜激情av网站| h视频一区二区三区| 久久久久久久久久久久大奶| 日本猛色少妇xxxxx猛交久久| 国产av国产精品国产| 一本综合久久免费| 精品国产超薄肉色丝袜足j| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 中国美女看黄片| 国产精品 欧美亚洲| 中文字幕精品免费在线观看视频| 欧美午夜高清在线| 亚洲五月婷婷丁香| 欧美中文综合在线视频| 亚洲av电影在线观看一区二区三区| 热re99久久国产66热| 欧美日韩精品网址| 啦啦啦免费观看视频1| 久久精品人人爽人人爽视色| 亚洲天堂av无毛| 欧美乱码精品一区二区三区| 另类亚洲欧美激情| 国产亚洲欧美精品永久| 99国产极品粉嫩在线观看| 亚洲人成电影观看| 黄片播放在线免费| 99热全是精品| 一个人免费看片子| 在线精品无人区一区二区三| 欧美xxⅹ黑人| 操出白浆在线播放| 青青草视频在线视频观看| 日韩中文字幕欧美一区二区| 久久狼人影院| 国产精品一区二区在线观看99| 丝袜人妻中文字幕| 可以免费在线观看a视频的电影网站| 亚洲av电影在线观看一区二区三区| 国产亚洲精品一区二区www | 青青草视频在线视频观看| 国产在线观看jvid| 性少妇av在线| 成年av动漫网址| 少妇裸体淫交视频免费看高清 | 欧美激情久久久久久爽电影 | 水蜜桃什么品种好| 精品国产乱码久久久久久男人| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 乱人伦中国视频| 午夜福利乱码中文字幕| 精品久久久久久久毛片微露脸 | 精品国产乱码久久久久久小说| av一本久久久久| 九色亚洲精品在线播放| 满18在线观看网站| 老司机深夜福利视频在线观看 | 欧美精品啪啪一区二区三区 | 午夜激情久久久久久久| 老司机在亚洲福利影院| 国产一级毛片在线| 欧美黑人精品巨大| 亚洲黑人精品在线| 国产成人欧美在线观看 | 国产一区二区激情短视频 | 欧美日韩中文字幕国产精品一区二区三区 | 国产欧美亚洲国产| 美女脱内裤让男人舔精品视频| 国产熟女午夜一区二区三区| 久久青草综合色| av在线app专区| 中文欧美无线码| 国产精品99久久99久久久不卡| 叶爱在线成人免费视频播放| 黑人操中国人逼视频| 99精品欧美一区二区三区四区| 爱豆传媒免费全集在线观看| 亚洲三区欧美一区| 成在线人永久免费视频| 亚洲成国产人片在线观看| 日本av手机在线免费观看| 午夜激情av网站| 精品亚洲乱码少妇综合久久| 99re6热这里在线精品视频| 一级片免费观看大全| 正在播放国产对白刺激| 12—13女人毛片做爰片一| 成年人免费黄色播放视频| 久久九九热精品免费| 黄色a级毛片大全视频| 久热爱精品视频在线9| 一区福利在线观看| 国产成人精品久久二区二区91| 国产麻豆69| 国产精品久久久久成人av| 啦啦啦免费观看视频1| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩高清在线视频 | 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久成人aⅴ小说| 午夜福利视频在线观看免费| 久久久国产精品麻豆| 操出白浆在线播放| av国产精品久久久久影院| 老汉色∧v一级毛片| 国产男女超爽视频在线观看| 亚洲avbb在线观看| 乱人伦中国视频| 操出白浆在线播放| 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 欧美另类一区| 欧美成人午夜精品| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久久久久大奶| 黑人猛操日本美女一级片| 国产精品免费视频内射| 精品乱码久久久久久99久播| 在线观看免费午夜福利视频| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| www.精华液| www.自偷自拍.com| 欧美xxⅹ黑人| 亚洲精品乱久久久久久| 免费在线观看视频国产中文字幕亚洲 | av线在线观看网站| 啪啪无遮挡十八禁网站| 久久久久精品国产欧美久久久 | www.999成人在线观看| www.熟女人妻精品国产| 日韩欧美一区二区三区在线观看 | 亚洲国产精品成人久久小说| 日本欧美视频一区| 69av精品久久久久久 | 日韩中文字幕视频在线看片| 国产精品久久久久成人av| 国产一区有黄有色的免费视频| 麻豆av在线久日| 欧美日韩精品网址| 久久精品成人免费网站| 又紧又爽又黄一区二区| 亚洲五月婷婷丁香| 老汉色∧v一级毛片| 亚洲精品日韩在线中文字幕| 丝袜美足系列| 午夜福利乱码中文字幕| 国产成人影院久久av| 久久热在线av| 亚洲精品国产区一区二| 亚洲国产日韩一区二区| 国产精品偷伦视频观看了| 两个人看的免费小视频| 国产欧美日韩一区二区三区在线| 亚洲天堂av无毛| 久热爱精品视频在线9| 国产男女超爽视频在线观看| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 久久久精品免费免费高清| 一区二区三区精品91| 青春草亚洲视频在线观看| 国产一级毛片在线| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 黑人操中国人逼视频| 亚洲,欧美精品.| 久久人妻熟女aⅴ| 黄频高清免费视频| 成人三级做爰电影| 99热全是精品| 大香蕉久久网| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人人人人人| 91国产中文字幕| 老司机深夜福利视频在线观看 | 蜜桃在线观看..| 老司机福利观看| 亚洲精品国产av蜜桃| 中亚洲国语对白在线视频| 丝袜脚勾引网站| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 国产色视频综合| 丝袜在线中文字幕| 99久久国产精品久久久| 在线观看人妻少妇| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲午夜精品一区二区久久| 国产91精品成人一区二区三区 | 免费在线观看影片大全网站| 久久这里只有精品19| 精品亚洲成a人片在线观看| 一本色道久久久久久精品综合| tube8黄色片| 大片电影免费在线观看免费| 国产一卡二卡三卡精品| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 99久久99久久久精品蜜桃| 久久中文字幕一级| 丝袜脚勾引网站| 这个男人来自地球电影免费观看| 老司机靠b影院| 99久久国产精品久久久| 欧美精品高潮呻吟av久久| 大片电影免费在线观看免费| 18禁国产床啪视频网站| 国精品久久久久久国模美| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 高清黄色对白视频在线免费看| 国产精品一区二区精品视频观看| 久久精品亚洲av国产电影网| 伊人久久大香线蕉亚洲五| 国产区一区二久久| 久久狼人影院| 久久综合国产亚洲精品| 美女高潮到喷水免费观看| 亚洲欧美一区二区三区久久| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 午夜老司机福利片| 亚洲欧美色中文字幕在线| 亚洲欧洲日产国产| 一二三四社区在线视频社区8| 午夜福利视频精品| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 精品视频人人做人人爽| 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 国产男人的电影天堂91| 宅男免费午夜| 午夜福利视频精品| 最近最新中文字幕大全免费视频| 亚洲中文字幕日韩| 国产精品秋霞免费鲁丝片| 国产日韩欧美在线精品| 制服人妻中文乱码| 在线十欧美十亚洲十日本专区| 人成视频在线观看免费观看| 999久久久精品免费观看国产| 欧美 日韩 精品 国产| 久久久国产成人免费| www.自偷自拍.com| 性少妇av在线| 久久久精品免费免费高清| 天堂8中文在线网| 性高湖久久久久久久久免费观看| 国产精品熟女久久久久浪| 这个男人来自地球电影免费观看| 天天躁夜夜躁狠狠躁躁| 自拍欧美九色日韩亚洲蝌蚪91| 蜜桃在线观看..| 窝窝影院91人妻| 免费观看人在逋| 侵犯人妻中文字幕一二三四区| 久久久国产成人免费| 精品亚洲成a人片在线观看| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 又黄又粗又硬又大视频| 亚洲人成电影观看| 亚洲伊人色综图| 美女扒开内裤让男人捅视频| 美女中出高潮动态图| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 欧美av亚洲av综合av国产av| 69精品国产乱码久久久| 亚洲国产精品成人久久小说| 日本a在线网址| 免费一级毛片在线播放高清视频 | 亚洲国产中文字幕在线视频| videos熟女内射| 久久精品亚洲av国产电影网| 黄色视频在线播放观看不卡| 国产成人精品无人区| 国产精品熟女久久久久浪| 久久国产精品大桥未久av| 日日夜夜操网爽| 一本一本久久a久久精品综合妖精| av天堂久久9| 欧美午夜高清在线| 我的亚洲天堂| 国产有黄有色有爽视频| 老司机在亚洲福利影院| 亚洲国产欧美一区二区综合| 色老头精品视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品免费大片| 91字幕亚洲| 香蕉国产在线看| 久热爱精品视频在线9| 免费观看人在逋| 99九九在线精品视频| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 中文精品一卡2卡3卡4更新| 久久av网站| 9色porny在线观看| 国产不卡av网站在线观看| 亚洲成国产人片在线观看| 嫩草影视91久久| 一区二区三区精品91| 97精品久久久久久久久久精品| 黄频高清免费视频| 午夜日韩欧美国产| 国产在线视频一区二区| 国产高清国产精品国产三级| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产三级黄色录像| 日本av手机在线免费观看| 宅男免费午夜| 多毛熟女@视频| 午夜影院在线不卡| 精品一区二区三区四区五区乱码| 美女视频免费永久观看网站| 一级片免费观看大全| www日本在线高清视频| 亚洲九九香蕉| 国产免费一区二区三区四区乱码| 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频 | 在线观看一区二区三区激情| av福利片在线| 精品国产超薄肉色丝袜足j| 国产黄色免费在线视频| a 毛片基地| cao死你这个sao货| 岛国在线观看网站| 人成视频在线观看免费观看| 99九九在线精品视频| 亚洲性夜色夜夜综合| 老司机在亚洲福利影院| 超色免费av| 性色av一级| 老鸭窝网址在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 两人在一起打扑克的视频| 国产真人三级小视频在线观看| 久久青草综合色| 永久免费av网站大全| 欧美成人午夜精品| 免费观看a级毛片全部| 伦理电影免费视频| 亚洲精品国产区一区二| 久久香蕉激情| 18禁观看日本| 99精品久久久久人妻精品| 悠悠久久av| 亚洲国产av新网站| 精品一品国产午夜福利视频| 黑人欧美特级aaaaaa片| 在线天堂中文资源库| 中文字幕高清在线视频| 免费观看av网站的网址| 下体分泌物呈黄色| 成人手机av| 国产成人欧美| 国产一区二区在线观看av| 亚洲欧美色中文字幕在线| 一级毛片电影观看| 久久中文字幕一级| 999精品在线视频| 2018国产大陆天天弄谢| 一个人免费在线观看的高清视频 | 亚洲精品久久成人aⅴ小说| 欧美大码av| 大香蕉久久网| 国产成+人综合+亚洲专区| 欧美日韩成人在线一区二区| 天天影视国产精品| 午夜福利视频精品| 免费人妻精品一区二区三区视频| 巨乳人妻的诱惑在线观看| 日日爽夜夜爽网站| 18在线观看网站| 国产精品麻豆人妻色哟哟久久| 日日爽夜夜爽网站| 亚洲精品久久久久久婷婷小说| 国产成人系列免费观看| 国产1区2区3区精品| 日韩大码丰满熟妇| 国产又爽黄色视频| 热re99久久国产66热| 国产精品偷伦视频观看了| 久久狼人影院| 欧美日韩国产mv在线观看视频| 日本av免费视频播放| 一区二区日韩欧美中文字幕| netflix在线观看网站| 后天国语完整版免费观看| 久久精品aⅴ一区二区三区四区| 国产亚洲精品一区二区www | 深夜精品福利| 热re99久久国产66热| 国产精品成人在线| 国产主播在线观看一区二区| 一区二区三区乱码不卡18| av福利片在线| 精品乱码久久久久久99久播|