• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Tip-Blade Cutting on the Performance of Large Scale Axial Fan

    2015-03-21 05:09:06尹超胡駿嚴(yán)偉張晨凱

    (尹超), (胡駿), (嚴(yán)偉), (張晨凱)

    Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 4 November 2014; revised 24 March 2015; accepted 25 May 2015)

    Effect of Tip-Blade Cutting on the Performance of Large Scale Axial Fan

    YinChao(尹超),HuJun(胡駿)*,YanWei(嚴(yán)偉),ZhangChenkai(張晨凱)

    Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China (Received 4 November 2014; revised 24 March 2015; accepted 25 May 2015)

    The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics (CFD) methods. Experiments verified the numerical simulations. The original fan was compared with the one with tip-cutting in terms of dimensionless characteristic and aerodynamic performance in tip region under the conditions of the maximum efficiency point and near-stall point. The results showed that double leakage flow occurred in tip clearance at maximum efficiency point and spillage of leakage flow from leading edge occurred in tip-blade region at near-stall point for the both two fans; and that tip-cutting with 6% of blade height could reduce the intensity of tip-leakage vortex and increase flow capacity in tip blade region, and hold the stall margin almost the same as the original fan. The maximum efficiency of the fan with tip-cutting was improved by 1%, and the ability of total pressure rising was obviously greater than the original fan.

    large axial fan; tip-blade cutting; numerical simulation; tip-leakage vortex; flow capacity

    0 Introduction

    Large axial ventilated fan is critical for cooling tower in electric power plant. In practice, a fixed fan series cannot perfectly fit all working environments. When a certain fan is a bit larger than the requirement, it is wise to cut the blade tip to avoid costly redesigning. Tip-cutting can change the flow range and even the pressure range when combined together with blade number change. Therefore, a certain fan mold can be transformed into a series of fans, which greatly decreases production cost and improves the manageability of quality. However, tip-cutting brings about problems of dynamic performance and stability, which need further investigation.

    Tip-cutting is a way of tip-treating, and many researchers have focused on tip-treating for compressor. Zhong Jingjun et al.[1]used a blade tip winglet to control the secondary flow and found that the winglet was the most effective one to weaken the intensity of the leakage flow. Shao Weiwei et al.[2]condacted some parameter studies on different attenuation thicknesses and relative height of pressure surface at tip region and indicated that blade tip attenuation within a certain range could advance choke mass flow, total pressure ratio and adiabatic efficiency. Yuan Wei et al.[3]analyzed the effect between tip clearance and casing treatment in turbomachinery, while many researchers emphasized the effect of changing tip clearance on the performance of axial compressor. Lakshminarayana et al.[4]measured the relative stagnation pressure losses in the tip region of a single-stage axial-flow compressor and suggested that the tip clearance losses increased with an increase of pressure-rise coefficient. Inoue et al.[5]measured the rotor exit flow near the rotor tip and clarified the behavior of tip leakage vortex for various tip clearances. Qiu Ming et al.[6]used a numerical optimization method for aerodynamic design of compressor blade. In his research, arbitrary rotary surface blade profiles and 3-D blade were developed for a small axial compressor with high pressure ratio. When the designed rotor reached a given pressure ratio and a mass flow rate, it had a relatively high efficiency and a large stabilization working range.

    The flow in axial ventilation fan is exactly the same with that of low speed axial compressor. However, as its total pressure ratio is smaller, its rotational speed is lower and its fan blade number is fewer. Ventilation fan and compressor have some similarities and some differences. Wang Jun et al.[7]investigated the influence of tip clearance on external performance and tip leakage vortex of low-pressure axial fan, and found that with the increase of tip clearance, the leakage flow disappeared, and was replaced by leakage vortex. Zhu Xiaocheng et al.[8]launched an experimental study on the tip leakage flow of an axial fan and found that for the ventilation fan with low speed and low pressure, the tip leakage flow also had a chance to roll up into a discrete vortex at three different tip clearances.

    Obviously, tip-cutting is different from tip clearance changing, but few researchers have paid attention to tip-cutting for axial fan. Lv Feng et al.[9]preliminarily studied the blade cutting effects on the performance of large axial-flow fan, and found that for the cases of hub-tip ratio changing from 0.56 to 0.65, the dimensionless characteristics of original fan could still be used for performance prediction of the blade-cut fans. However, they did not provide the influence and mechanism of blade-cutting on the performance of large axial fan at all.

    Therefore, the characteristics of large axial ventilation fans both with and without tip-cutting are investigated in detail. Moreover, tip flow fields of the two fans are numerically investigated to elucidate the loss generation mechanism.

    1 Numerical Study

    1.1 Description of the fan and tip-cutting

    A large low-speed axial-flow original fan is shown in Fig.1(a), and its design specifications are listed in Table 1. The fan has no stator, and its rotor tip diameter is 8 450 mm with a tip clearance of 25 mm. The hub-tip ratio is 0.142 and the number of rotor blades is 8. The design stagger angle of the fan is 26°.

    Due to size limit of cooling tower, the original fan blade (marked as A in Fig.1(b)) is cut by 250 mm, which is 6% of the blade length. The new tip-cutting fan (marked as B in Fig.1(b)) holds the same tip clearance as fan A, and its hub-tip ratio is up to 0.151. Fig.1(b) shows the geometry comparison of the two fan blades.

    Fig.1 Original geometry of the fan and blade comparison

    Tipdiameter/mm8450Hub/tipratio0.142Tipclearance/mm25Numberofblades8Rotationspeed/(rad·min-1)155Designstaggerangle/(°)26

    1.2 Numerical algorithm

    Fig.2 shows the computational domain and model for this study. The inlet boundary is placed one blade height upstream from the rotor center, and the outlet boundary is placed one and a half blade heights downstream from the rotor center.

    The computational grid is generated using the NUMECA AutoGrid5TM(Automated Grid Generator). The grid in tip clearance consists of 17 nodes in the span-wise direction. The grid in one blade passage contained 2 019 125 nodes. The minimum grid space asy+<3 is on the walls.

    Fig.2 Fan meridian computational domain and blade surface mesh

    Three-dimensional compressible steady RANS simulations are carried out using the commercial code NUMECA FINETM. A Spalart-Allmaras turbulence model is applied. The total pressure is 101 325 Pa. Total temperature is 288.15 K. And axial inlet flow angle is specified at the inlet boundary. The radial equilibrium static pressure is specified at the outlet boundary. The air mass flow rate change with the outlet static pressure.

    The fan shaft power can be obtained as[10]

    (1)

    Total pressure rise of the fan is defined as the difference between the total pressure of the outlet and that of the inlet

    (2)

    where the subscripts ″in″ and ″out″ denote the plane close to the leading and the trailing edges of the fan blade, respectively.

    Total pressure efficiency of the fan is defined as

    (3)

    The flow coefficient is defined as

    (4)

    The total pressure coefficient is defined as

    (5)

    whereQis the volume flow rate,UandAare the tip blade tangential speed and the through flow area, respectively.

    2 Validation of Numerical Simulation

    Due to its large scale, it is too costly to test the original fan, but there is an alternative. Similarity theory[10]illustrates that if two fans are similar in geometry, their dimensionless characteristics are equal with a same flow coefficient, no matter what their scales or rotational speeds are. Therefore, we develop a geometry-similar fan with fan B by reducing the diameter from 8 to 1.6 m, then test the new fan′s performance.

    The tip chord to blade height ratio of fan B is 0.131, same with its geometry-similar fan. The new fan′s stagger angle is 18°, same with the numerical simulation for fan B. The rotational speed of the test fan is 730 rad/min; while that of fan B is 155 rad/min.

    Fig.3 shows the comparisons between test and CFD results in terms of flow coefficient-efficiency recation and flow coefficient-total pressure coefficient relation. Fig.3(a) shows that although the test curve shifts to the left of the CFD curve, there are still at least 4 test points match well with the CFD results, and the max efficiency error is less than 3%. Fig.3(b) shows the same tendancy. This validates the reliability of the numerical simulations.

    Fig.3 Dimensionless characteristic comparison between test and CFD results

    3 Discussions and Analyses

    3.1 Characteristic comparison

    Since there is no geometry similarity between the two fans, dimensionless parameters are needed to compare the two fans′ performances[10]. Comparisons between the two fans in terms of efficiency and total pressure coefficient characteristics are shown in Fig.4. All computed results are steady-state simulations. A near-stall point is set as ″solution limit″ to prevent the simulation converging to steady state.

    Fig.4(a) shows that flow coefficient and efficiency curves of the two fans exibit almost the same tendency at the near-stall point, i.e. the solution limit, indicating that cutting off 6% of blade cannot change the steady margin. The efficiency of fan B increases to a higher level than fan A when the flow coefficient is gradually increased, and the difference between the two fans′ maximum efficiencies is 1.5%, which implies that the tip-cutting fan operates better than the original fan at high flow coefficients.

    In Fig.4(b), flow coefficient-total pressure coefficient relations of the two fans are compared. The total pressure coefficient increases when the flow coefficient decreases, and at the same flow coefficient point, total pressure of fan B is higher than that of fan A.

    Fig.4 Fan dimensionless characteristics comparison

    Fig.5 Radial distribution of isentropic efficiency at maximum efficiency point

    3.2 Tip flow field comparison

    Fig.5 shows the spanwise distributions of maximum isentropic efficiency of the two fans. The isentropic efficiency is defined as

    (6)

    Fig.5 shows that both isentropic efficiency curves show ″bow″ type distributions in the spanwise direction, wherer/Ris the relative blade height. In the region less than 15% blade height, the isentropic efficiency is below 0. As the flow speed is low here, the main consideration for this part of blade is the structural strength. The isentropic efficiency of the two fans has little difference between 35%—90% blade heights, while fan B shows a higher isentropic efficiency than fan A in more than 90% of the blade height including tip clearance. This indicates that tip-cutting can greatly influence tip flow field. As the tip rim speed is high, the flow in this region leaves a large proportion of entire-channel flow. The efficiency in this area has a great influence on the entire efficiency of the fan. Therefore, the whole area needs a thorough analysis.

    Fig.6 shows the relative velocity streamlines in three tip clearance sections at maximum efficiency points of the two fans. The red, green, and blue lines represent the surface flow lines in the blade tip, 50% tip clearance and 90% tip clearance sections, respectively. The surface flow line is the projection of the relative velocity streamline on the surface. All the surface flow lines which start from the leading edge converge to one line after a short development. Each converged line reflects the leading edge of the tip leakage vortex in its surface.

    Fig.6 Tip-leakage vortex and casing wall pressure distribution at maximum efficiency point

    The tip leakage flow line starting at the leading edge of the blade reaches to adjacent blade tip clearance after a blade passage development, and a secondary leakage flow occurs in the tip clearance. This secondary leakage flow together with the local leakage flow forms a double-leakage flow. And the surface flow line in tip section reaches the exit of the adjacent blade. In contrast, the secondary leakage flow of fan B is closer to the local blade trailing edge than fan A (blue and green lines), and the surface flow line in blade tip section of fan B reaches the exit further away from the pressure side of the adjacent blade (red lines) without secondary leakage flow, indicating that the circumferential development of the tip leakage vortex in fan B is weakened to some extent compared to fan A; and that the flow capacity in tip region is improved after tip-cutting.

    Fig.7 presents tip leakage vortex and entropy distribution at maximum efficiency point, whereSis the entropy. The tip leakage vortex is identified by the vortex core and the tip leakage streamlines from the leading edge. The vortex core is colored by the normalized helicityHn[11], which is defined as

    (7)

    whereζ,Wdenote vectors of the absolute vorticity and relative flow velocity, respectively.

    The normalized helicityHncharacterizes the directional correlation of the absolute vorticity and relative flow velocity. The magnitude ofHntakes the value of unity anywhere the streamwise vortex is presented. It can assess the nature of vortex quantitatively, even when the vorticity decays. The sign ofHnrepresents the direction of swirl relative to the streamwise velocity component at the vortex axis. The point where the sign of it on the vortex core changes from negative to positive is the place where the tip-leakage vortex core is formed or broken. The pointAin Fig.7 is the starting position at which the tip leakage vortex is formed.Hnon the vortex core is almost +1 after the vortex is formed. Due to the presence of streamwise vortex, the vortex core is believed to represent the tip leakage vortex rolling up clockwise from the leading edge of the rotor tip. The difference between the two fans is that pointAin fan A is closer to the leading edge, which could induce a larger low-energy fluid region. One could see it from the entropy distribution in all planes.

    Fig.7 Tip-leakage vortex and entropy distribution at maximum efficiency point

    From the entropy distribution map we can clearly see the leakage vortex occurs in the suction side of blade tip. The entropy production in the tip region of fan A is obviously greater than that of fan B. The greater entropy production is, the more energy losts. The tip leakage vortex spreads after pointA, which could greatly reduce the tip flow capacity.

    In Fig.8, the distribution of static pressure coefficient at near-stall point is shown in casing and tip-leakage vortex paths from the leading edge.

    The static pressure coefficient is defined

    (8)

    wherepsdenotes the static pressure and the subscript 1 the fan inlet ,ρthe air density andWthe relative velocity.

    The minimum pressure is located near the leading edge on the suction surface, and the pressure trough in the two fans extends from the minimum pressure point to the adjacent blade import. Moreover, the tip leakage vortex extends to the adjacent blade import along the pressure trough. Both tip leakage vortices extend to the leading edge of the next blade and the spillage of tip leakage flow from the leading edge occurs. The tip leakage vortex in fan A reaches the rotor exit after 5 blade passages tangential development. In contrast, the development of tip leakage vortex in fan B just needs four blade passages. Moreover, the interaction between the tip leakage vortex and the wake in fan A generates a larger pressure loss at the rotor exit than that of fan B.

    Fig.8 Tip-leakage vortex and casing wall pressure distribution at near-stall point

    Fig.9 elaborates tip leakage vortex and entropy distributions at near-stall point of the two fans. The vortex core is also colored byHn. The influence range of tip leakage vortex is much larger than that at the maximum efficiency point both in the spanwise and pitchwise directions, comparing the entropy production areas in the tip region. The spillage of tip leakage flow from the leading edge is more clearly in three-dimensional quality. Nishioka et al.[12]indicated that the spillage of tip leakage flow from the leading edge could induce a larger total pressure loss than double leakage flow, and the pressure rise could be much lower in the tip region. The leakage vortex intensity of fan A is stronger than that of fan B, especially at the middle planes, which induces a larger low-energy fluid region and low flow capacity in the tip region.

    4 Conclusions

    The tip-cutting effect on performance of the large axial ventilation fan has been investigated using steady Reynolds-Averaged-Navier-Stokes (RANS) simulations. A geometry similar fan has been tested to verify the reliability of the numerical simulations. The results are summarized as follows:

    (1) Cutting 6% blade can improve total pressure efficiency. And with the increase of flow efficient, the difference of efficiency between the two fans increases up to 1%. At the same time, 6% blade cutting has little effect on the fan′s stall margin. The fan with tip-cutting keeps almost the same flow coefficient and efficiency at near-stall point as the original one.

    (2) The tip-leakage vortices at maximum efficiency point of the two fans have a vortex rolling up clockwise along the core flow direction. The double leakage flow just occurs in tip clearance, which has little influence on the entire performance.

    (3) At the maximum efficiency point, the tip vortex of fan B passes further away from the pressure side of the adjacent blade than that of fan A, which improves the flow capacity in tip region. While at the near-stall point, the tip leakage vortex extends to the leading edge of the next blade, and the spillage of tip leakage flow from the leading edge occurs. The tip leakage vortex in fan A reaches rotor exit after five blade passages tangential development. In contrast, the development of tip leakage vortex in fan B just needs four blade passages to reach the rotor exit.

    Acknowledgement

    This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113218120006).

    [1] Zhong Jingjun, Han Shaobing, Lu Huawei. Numerical simulation of blade tip winglet on the aerodynamic performance of compressor cascade[J]. Journal of Engineering Thermophysics, 2010,31(2):243-246. (in Chinese)

    [2] Shao Weiwei, Ji Lucheng, Huang Weiguang. Analysis of overall aerodynamic performance of axial-flow compressor with attenuated blade tip[J]. Journal of Aerospace Power, 2008,23(2):367-373. (in Chinese)

    [3] Yuan Wei, Zhou Sheng, Lu Yajun. 3D numerical analysis for the effect between tip clearance and casing treatment in turbomachinery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004,30(9):885-888. (in Chinese)

    [4] Lakshminarayani B, Sitaram N, Zhang J. End-wall and profile losses in a low-speed axial flow compressor rotor[J]. ASME J Engineering for Gas Turbine and Power, 1986, 108:22-31.

    [5] Inoue M, Kuroumaru M, Fukuhara M. Behavior of tip leakage flow behind an axial compressor rotor[J]. ASME J Engineering for Gas Turbine and Power, 1986, 108:7-14.

    [6] Qiu Ming, Zhou Zhenggui. Application of numerical optimization method in aerodynamic design of axial compressor rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013,45(1):75-81. (in Chinese)

    [7] Wang Jun, Yao Ruifeng, Liu Jing, et al. Influence of tip clearance on external performance and tip leakage vortex of low-pressure axial fan[J]. Fluid Machinery, 2011,39(9):26-30. (in Chinese)

    [8] Zhu Xiaocheng, Lin Wanlai, Du Zhaohui. Experimental study on the tip leakage flow of an axial fan[J]. Journal of Shanghai Jiaotong University, 2005,39(2):177-181.

    [9] Lü Feng, Zhao Yanjie, Li Jingyin. Effects of blade cutting on the performance of large-type axial-flow fan[J]. Compressor Blower and Fan Technology, 2012(2):18-22.

    [10]Zhang Yucheng, Yi Dengli, Feng Dianyi, et al. Ventilator design and selection[M]. Beijing: Chemical Industry Press, 2011. (in Chinese)

    [11]Yamada K, Funazaki K, Furukawa M. The behavior of tip clearance flow at near-stall condition in a transonic axial compressor rotor[C]∥Proceedings of the ASME Turbo Expo 2007-Power for Land, Sea, and Air. USA: ASME, 2007:295-306.

    [12]Nishioka T, Joko M. Characteristic of tip-leakage flow at high stagger-angle setting for rotor blade in an axial flow[R]. GT2012-6920, ASME, 2012.

    (Executive Editor: Zhang Bei)

    V211.3 Document code:A Article ID:1005-1120(2015)06-0623-08

    *Corresponding author: Hu Jun, Professor, E-mail:hjape@nuaa.edu.cn.

    How to cite this article: Yin Chao, Hu Jun, Yan Wei, et al. Effect of tip-blade cutting on the performance of large scale axial fan[J]. Trans. Nanjing U. Aero. Astro., 2015,32(6):623-630. http://dx.doi.org/10.16356/j.1005-1120.2015.06.623

    麻豆国产97在线/欧美| 级片在线观看| 一个人观看的视频www高清免费观看| 成人午夜高清在线视频| 亚洲精品久久国产高清桃花| 97在线视频观看| 亚洲国产欧美人成| 成人特级av手机在线观看| 舔av片在线| 中国美女看黄片| 99riav亚洲国产免费| 99riav亚洲国产免费| 别揉我奶头~嗯~啊~动态视频| 久久精品夜色国产| 免费看av在线观看网站| 尤物成人国产欧美一区二区三区| 99久久精品一区二区三区| 在线国产一区二区在线| 成人精品一区二区免费| 中文字幕av在线有码专区| 国产精品亚洲美女久久久| 日韩成人伦理影院| 大香蕉久久网| 插逼视频在线观看| 国产午夜福利久久久久久| 免费在线观看影片大全网站| 亚洲精品日韩在线中文字幕 | 国产高潮美女av| 国产一级毛片七仙女欲春2| 久久欧美精品欧美久久欧美| 国产男靠女视频免费网站| 欧美日韩精品成人综合77777| 99热只有精品国产| 男人舔奶头视频| 国产 一区精品| 丰满人妻一区二区三区视频av| 露出奶头的视频| 一个人观看的视频www高清免费观看| 我要搜黄色片| 免费搜索国产男女视频| 欧美色视频一区免费| 最新在线观看一区二区三区| 色尼玛亚洲综合影院| 日韩一区二区视频免费看| 国产免费男女视频| 亚洲人成网站在线播放欧美日韩| 欧美+亚洲+日韩+国产| 久久精品久久久久久噜噜老黄 | 白带黄色成豆腐渣| 大香蕉久久网| 国产精品综合久久久久久久免费| 亚洲精品日韩av片在线观看| 美女黄网站色视频| 一个人免费在线观看电影| 国内精品宾馆在线| 性欧美人与动物交配| 国产大屁股一区二区在线视频| 国产亚洲精品av在线| 国产黄片美女视频| 亚洲欧美精品自产自拍| 村上凉子中文字幕在线| 高清日韩中文字幕在线| 中国国产av一级| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区| 免费看日本二区| 国产精品久久电影中文字幕| 国内精品久久久久精免费| 一级毛片aaaaaa免费看小| av在线亚洲专区| 国产精品不卡视频一区二区| 国产精品99久久久久久久久| av在线亚洲专区| 日韩,欧美,国产一区二区三区 | 1024手机看黄色片| 国产片特级美女逼逼视频| 在线看三级毛片| 国产精品一二三区在线看| 韩国av在线不卡| 成年女人毛片免费观看观看9| 国产乱人偷精品视频| 中文字幕av在线有码专区| 人人妻,人人澡人人爽秒播| 久久久久久大精品| 精品日产1卡2卡| 黄色一级大片看看| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 97碰自拍视频| 日日摸夜夜添夜夜爱| 欧美另类亚洲清纯唯美| av在线蜜桃| 哪里可以看免费的av片| 国产视频内射| 国产白丝娇喘喷水9色精品| 精品国产三级普通话版| 老司机影院成人| 成人一区二区视频在线观看| 国产精品福利在线免费观看| 嫩草影院入口| 一级毛片aaaaaa免费看小| 天天躁夜夜躁狠狠久久av| 听说在线观看完整版免费高清| 亚洲成a人片在线一区二区| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 女人十人毛片免费观看3o分钟| 欧美另类亚洲清纯唯美| 一区二区三区高清视频在线| 久久精品综合一区二区三区| aaaaa片日本免费| 熟妇人妻久久中文字幕3abv| 欧美日韩精品成人综合77777| 欧美成人a在线观看| 天堂影院成人在线观看| 久久精品人妻少妇| 欧美zozozo另类| 欧美国产日韩亚洲一区| 22中文网久久字幕| 一区二区三区四区激情视频 | 午夜日韩欧美国产| av中文乱码字幕在线| 成年女人永久免费观看视频| 女的被弄到高潮叫床怎么办| 亚洲av二区三区四区| 色吧在线观看| 久久精品国产亚洲网站| av天堂中文字幕网| 天堂动漫精品| 久久久久性生活片| 看十八女毛片水多多多| 国产高清视频在线观看网站| 最新在线观看一区二区三区| 插逼视频在线观看| 18禁在线播放成人免费| 亚洲人成网站在线播| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 亚洲成a人片在线一区二区| 日韩精品中文字幕看吧| 免费高清视频大片| aaaaa片日本免费| 少妇高潮的动态图| 国产精品免费一区二区三区在线| 一个人免费在线观看电影| 精品久久久久久久末码| 大型黄色视频在线免费观看| 在线观看av片永久免费下载| 18禁黄网站禁片免费观看直播| 精品国产三级普通话版| 国产精品爽爽va在线观看网站| 午夜亚洲福利在线播放| 国产亚洲av嫩草精品影院| 国产黄色视频一区二区在线观看 | 久久99热这里只有精品18| 一级av片app| 十八禁国产超污无遮挡网站| 欧美绝顶高潮抽搐喷水| 日韩人妻高清精品专区| 国产高清视频在线观看网站| 女人十人毛片免费观看3o分钟| 久久精品国产99精品国产亚洲性色| 免费一级毛片在线播放高清视频| 麻豆久久精品国产亚洲av| 露出奶头的视频| 成年av动漫网址| 麻豆久久精品国产亚洲av| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看| 国产成年人精品一区二区| 亚洲七黄色美女视频| 国产精品一区www在线观看| 午夜爱爱视频在线播放| 亚洲美女搞黄在线观看 | 日韩三级伦理在线观看| 最近视频中文字幕2019在线8| 给我免费播放毛片高清在线观看| 麻豆av噜噜一区二区三区| 亚洲在线自拍视频| 免费看光身美女| 国内少妇人妻偷人精品xxx网站| 国产精品一及| 日本a在线网址| 99热全是精品| 99精品在免费线老司机午夜| 国语自产精品视频在线第100页| 91av网一区二区| 噜噜噜噜噜久久久久久91| 乱系列少妇在线播放| 淫妇啪啪啪对白视频| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| videossex国产| 国产人妻一区二区三区在| 国产精品永久免费网站| 特大巨黑吊av在线直播| 在线播放国产精品三级| 天堂av国产一区二区熟女人妻| 成人亚洲欧美一区二区av| www日本黄色视频网| or卡值多少钱| 日韩亚洲欧美综合| 国产综合懂色| 黄色日韩在线| 精品久久久久久久久亚洲| 色综合亚洲欧美另类图片| 免费搜索国产男女视频| 国产精品久久久久久久久免| 欧美最黄视频在线播放免费| 九九在线视频观看精品| 久久99热这里只有精品18| 久久综合国产亚洲精品| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看| 99热网站在线观看| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 天美传媒精品一区二区| 国产在线男女| 日韩欧美三级三区| 久久草成人影院| 国产女主播在线喷水免费视频网站 | 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件 | 久久精品91蜜桃| 欧美日韩乱码在线| 国产伦精品一区二区三区四那| 久久精品国产自在天天线| 日韩 亚洲 欧美在线| 亚洲专区国产一区二区| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 男女下面进入的视频免费午夜| 最近的中文字幕免费完整| 亚洲经典国产精华液单| 狠狠狠狠99中文字幕| 中文字幕久久专区| 97超视频在线观看视频| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 嫩草影院入口| 国产精品国产高清国产av| 久久精品综合一区二区三区| 啦啦啦观看免费观看视频高清| 少妇被粗大猛烈的视频| 欧美中文日本在线观看视频| 日韩人妻高清精品专区| 日韩欧美精品免费久久| 免费无遮挡裸体视频| 中国国产av一级| 精品久久久噜噜| 一区福利在线观看| 男人狂女人下面高潮的视频| 麻豆久久精品国产亚洲av| av卡一久久| 国产伦精品一区二区三区四那| 蜜臀久久99精品久久宅男| 亚洲av成人av| 好男人在线观看高清免费视频| 亚洲国产精品国产精品| 欧美不卡视频在线免费观看| 最好的美女福利视频网| 麻豆国产97在线/欧美| 一本久久中文字幕| 乱码一卡2卡4卡精品| 国产伦一二天堂av在线观看| 久久热精品热| 国产高清视频在线观看网站| 男人和女人高潮做爰伦理| 亚洲人成网站高清观看| 日本黄大片高清| 亚州av有码| 美女cb高潮喷水在线观看| 蜜桃亚洲精品一区二区三区| 免费看光身美女| www日本黄色视频网| 色播亚洲综合网| 欧美国产日韩亚洲一区| 两个人的视频大全免费| 国产精品女同一区二区软件| 亚洲欧美精品综合久久99| 精品一区二区三区人妻视频| 最后的刺客免费高清国语| 看免费成人av毛片| 69人妻影院| 国产在线男女| 亚洲国产欧美人成| 国产欧美日韩精品一区二区| 久久久久久久久大av| 一进一出抽搐动态| 91久久精品电影网| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 美女内射精品一级片tv| 国产精品一区二区三区四区免费观看 | 精品午夜福利视频在线观看一区| 国产av在哪里看| 简卡轻食公司| 我的老师免费观看完整版| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 日韩欧美免费精品| 欧美高清成人免费视频www| 国产高清视频在线观看网站| 国产精品一区二区免费欧美| 亚洲av.av天堂| 欧美另类亚洲清纯唯美| 国产 一区精品| 男插女下体视频免费在线播放| av专区在线播放| 天堂网av新在线| 亚洲在线观看片| 大型黄色视频在线免费观看| 一级毛片久久久久久久久女| 老司机影院成人| 日韩在线高清观看一区二区三区| 国产不卡一卡二| videossex国产| 一个人看视频在线观看www免费| 草草在线视频免费看| 禁无遮挡网站| 国产精品电影一区二区三区| 亚洲真实伦在线观看| 免费大片18禁| 亚洲国产精品久久男人天堂| 永久网站在线| or卡值多少钱| 成年av动漫网址| 1000部很黄的大片| АⅤ资源中文在线天堂| 三级毛片av免费| 天天一区二区日本电影三级| 91久久精品国产一区二区三区| 精品人妻一区二区三区麻豆 | 波多野结衣高清作品| 国产色爽女视频免费观看| 久久亚洲精品不卡| 在线播放国产精品三级| 美女黄网站色视频| 天堂网av新在线| 亚州av有码| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 免费看日本二区| 亚洲欧美日韩无卡精品| 国产精品久久久久久久久免| 最新中文字幕久久久久| 亚洲国产精品国产精品| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 国产一区亚洲一区在线观看| 淫妇啪啪啪对白视频| 亚洲自偷自拍三级| 成人一区二区视频在线观看| 成人特级av手机在线观看| 精品久久久久久久人妻蜜臀av| 麻豆国产97在线/欧美| 成人欧美大片| 国国产精品蜜臀av免费| 可以在线观看毛片的网站| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 男人舔女人下体高潮全视频| 亚洲国产精品国产精品| 免费不卡的大黄色大毛片视频在线观看 | 免费看a级黄色片| 精品无人区乱码1区二区| 大型黄色视频在线免费观看| 亚洲成a人片在线一区二区| 免费看a级黄色片| 日本黄色片子视频| 黄片wwwwww| 欧美另类亚洲清纯唯美| 久久久久久久久大av| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 可以在线观看毛片的网站| 麻豆国产97在线/欧美| 看片在线看免费视频| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲国产精品成人综合色| 成年版毛片免费区| 99riav亚洲国产免费| 欧美三级亚洲精品| 可以在线观看的亚洲视频| 大型黄色视频在线免费观看| 桃色一区二区三区在线观看| 国产 一区精品| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| 久久久久久久久久久丰满| 91麻豆精品激情在线观看国产| 国产在视频线在精品| 免费不卡的大黄色大毛片视频在线观看 | 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 免费不卡的大黄色大毛片视频在线观看 | 国产高清激情床上av| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 丝袜喷水一区| 97在线视频观看| 日韩成人伦理影院| 亚洲aⅴ乱码一区二区在线播放| 婷婷亚洲欧美| 俺也久久电影网| 不卡一级毛片| 国产美女午夜福利| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久99热这里只有精品18| 久久久a久久爽久久v久久| 国产欧美日韩精品亚洲av| av专区在线播放| 亚洲性夜色夜夜综合| 日本熟妇午夜| 精品久久久久久久末码| 精品一区二区三区人妻视频| 少妇熟女欧美另类| 成人三级黄色视频| 又爽又黄a免费视频| 国产高清视频在线观看网站| 18+在线观看网站| 国产精品女同一区二区软件| 网址你懂的国产日韩在线| 中国美女看黄片| 国内精品美女久久久久久| 午夜爱爱视频在线播放| 亚洲欧美日韩无卡精品| 精品久久久久久久久久久久久| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 免费看美女性在线毛片视频| 三级经典国产精品| 好男人在线观看高清免费视频| 91午夜精品亚洲一区二区三区| 成人鲁丝片一二三区免费| 一区福利在线观看| 精品久久久噜噜| 久久久久久大精品| 大香蕉久久网| 男人和女人高潮做爰伦理| 日韩精品青青久久久久久| 久久草成人影院| www.色视频.com| 免费观看精品视频网站| 偷拍熟女少妇极品色| 成年版毛片免费区| 欧美色视频一区免费| 蜜臀久久99精品久久宅男| 极品教师在线视频| 欧美日韩一区二区视频在线观看视频在线 | 狂野欧美激情性xxxx在线观看| 免费av观看视频| av视频在线观看入口| 国产视频一区二区在线看| 在现免费观看毛片| av在线观看视频网站免费| 99热这里只有精品一区| 欧美精品国产亚洲| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 99久久久亚洲精品蜜臀av| 成年免费大片在线观看| 搡女人真爽免费视频火全软件 | www.色视频.com| 联通29元200g的流量卡| 美女xxoo啪啪120秒动态图| 亚洲av五月六月丁香网| 麻豆国产av国片精品| 国产三级在线视频| 久久精品国产亚洲av天美| 波多野结衣高清作品| 国产亚洲精品av在线| 99久久无色码亚洲精品果冻| 成人av一区二区三区在线看| 能在线免费观看的黄片| 午夜福利高清视频| 亚洲国产精品成人久久小说 | 午夜福利高清视频| 国产亚洲av嫩草精品影院| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 悠悠久久av| 国产精品一二三区在线看| 搡女人真爽免费视频火全软件 | 91麻豆精品激情在线观看国产| 国产av麻豆久久久久久久| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 99热6这里只有精品| 日韩中字成人| 精品久久久噜噜| 超碰av人人做人人爽久久| 亚洲成人av在线免费| 51国产日韩欧美| 少妇丰满av| 免费观看精品视频网站| 69人妻影院| av.在线天堂| 久久99热6这里只有精品| 久久久成人免费电影| 午夜视频国产福利| 亚洲aⅴ乱码一区二区在线播放| 国内精品美女久久久久久| 成人鲁丝片一二三区免费| 色吧在线观看| 欧美日韩国产亚洲二区| 久久久久国内视频| 国产av在哪里看| 又爽又黄a免费视频| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 国产精品精品国产色婷婷| 黄色视频,在线免费观看| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 亚洲不卡免费看| 午夜影院日韩av| 午夜精品在线福利| 亚洲成人久久性| 高清毛片免费观看视频网站| 又黄又爽又免费观看的视频| 18禁在线播放成人免费| 搡老熟女国产l中国老女人| 中国美女看黄片| 此物有八面人人有两片| 久久精品国产鲁丝片午夜精品| 九九热线精品视视频播放| .国产精品久久| 国产中年淑女户外野战色| 99久久精品热视频| 亚洲成av人片在线播放无| 一区二区三区免费毛片| 亚洲真实伦在线观看| 国产 一区 欧美 日韩| 久久久精品欧美日韩精品| 波野结衣二区三区在线| 久久精品夜色国产| 免费av毛片视频| 亚洲国产日韩欧美精品在线观看| 亚洲婷婷狠狠爱综合网| av天堂在线播放| 一本精品99久久精品77| 舔av片在线| 中文亚洲av片在线观看爽| 国产亚洲欧美98| 亚洲精品色激情综合| 成人永久免费在线观看视频| 亚洲av免费高清在线观看| 五月伊人婷婷丁香| 日日摸夜夜添夜夜添小说| 六月丁香七月| 亚洲真实伦在线观看| 国产高清三级在线| 国产高清有码在线观看视频| 12—13女人毛片做爰片一| 亚洲久久久久久中文字幕| 91久久精品国产一区二区三区| 日本成人三级电影网站| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区久久| 欧美激情久久久久久爽电影| 最近的中文字幕免费完整| 日日撸夜夜添| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆成人午夜福利视频| 男女做爰动态图高潮gif福利片| 亚洲精华国产精华液的使用体验 | 亚洲一区高清亚洲精品| 久久人人爽人人爽人人片va| 欧美激情久久久久久爽电影| 狂野欧美白嫩少妇大欣赏| 99热网站在线观看| 搞女人的毛片| 国产欧美日韩一区二区精品| 色噜噜av男人的天堂激情| 赤兔流量卡办理| 亚洲精品影视一区二区三区av| 亚洲精品日韩在线中文字幕 | 精品一区二区三区视频在线观看免费| 国产精品伦人一区二区| 成年女人永久免费观看视频| 99视频精品全部免费 在线| 成年女人毛片免费观看观看9| 国产精品三级大全| 亚洲人成网站在线播放欧美日韩| 老司机午夜福利在线观看视频| 国产一区二区激情短视频| 国产高清不卡午夜福利| 男人狂女人下面高潮的视频| 男女边吃奶边做爰视频| 中文亚洲av片在线观看爽| 国产精品久久久久久久久免| 久久久久久久午夜电影| 夜夜看夜夜爽夜夜摸| 校园春色视频在线观看| 嫩草影院精品99| 人妻夜夜爽99麻豆av| 久久久久久久久久久丰满| 日韩成人av中文字幕在线观看 | 精品日产1卡2卡| 日韩强制内射视频| 寂寞人妻少妇视频99o| 日本在线视频免费播放| 少妇裸体淫交视频免费看高清| 久久热精品热| 又黄又爽又刺激的免费视频.| 91久久精品国产一区二区成人| 人人妻人人澡欧美一区二区| 联通29元200g的流量卡|