• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unicast Network Topology Inference Algorithm Based on Hierarchical Clustering

    2015-03-21 03:36:26肖甫是晨航黃凱祥

    (肖甫), (是晨航), (黃凱祥),

    1.College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China; 2.Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China (Received 16 December 2014; revised 17 August 2015; accepted 8 October 2015)

    Unicast Network Topology Inference Algorithm Based on Hierarchical Clustering

    XiaoFu(肖甫)1,2*,ShiChenhang(是晨航)1,HuangKaixiang(黃凱祥)1,

    WangRuchuan(王汝傳)1,2

    1.College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China; 2.Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts and Telecommunications, Nanjing 210003, P.R.China (Received 16 December 2014; revised 17 August 2015; accepted 8 October 2015)

    Network topology inference is one of the important applications of network tomography. Traditional network topology inference may impact network normal operation due to its generation of huge data traffic. A unicast network topology inference is proposed to use time to live (TTL) for layering and classify nodes layer by layer based on the similarity of node pairs. Finally,the method infers logical network topology effectively with self-adaptive combination of previous results. Simulation results show that the proposed method holds a high accuracy of topology inference while decreasing network measuring flow, thus improves measurement efficiency.

    network topology inference; network tomography; hierarchical clustering; time to live(TTL)

    0 Introduction

    Network topology inference is to identify the logical connection relationships between network elements using a variety of measurements and then to speculate the network topology. As the key technology in the field of network measurement,it is of great significance for network management, network operations and network security. Traditional network topology inference methods, including active measurement method like Traceroute[1,2], usually need collaboration of intermediate nodes and protocol support. With an expanding network size and an increasing security requirements, the collaboration between nodes has become more and more difficult, resulting in difficult implement of traditional network topology inference method . Therefore, network topology inference based on end-to-end measurement, also known as network topology inference based on network tomography, has been the focus of scholars.

    Network tomography can obtain network internal characteristics based on end-to-end measurement and does not need the collaboration among network internal nodes. In the tree structure network, the corresponding characteristics will be more relevant with the increasing shared link of nodes[3]. Network topology inference, as a typical application of network tomography, can infer the network topology according to the relevance of the performance characteristics of network nodes. Network topology inference based on network tomography was first applied to the multicast network. Tian et al.[4]proposed a method based on hamming distance and hop count to infer multicast network topology, where hop count was used to obtain topology level information, while hamming distance was used to identify multicast network topology. However, this algorithm can be applied only to the network with lighter load, and the need for clock synchronization between nodes is also the restriction for this method to practical applications. Due to the less equipment support muticast in actual network, this results in the research on unicast network topology inference have become more practical and valuable. Zhao et al.[5]proposed a ″transport train″ measurement which just needed one measurement source without clock synchronization and inferred network topology based on queuing delay. In order to decrease restrict of single parameter in network topology, another multi-parameter topology inference algorithm was developed by combining time delay with packet loss rate[6]. Su et al.[7]divided leaf nodes into mutually disjoint groups through fan-out attenuation mechanism, then inferred the general structure of network topology based on SBA sorting method.Brian et al. clustered terminal nodes through depth first ordering, and reconstructed the logical topology on the basis of depth-first-search (DFS) ordering[8]. Recently, Brett et al.[9.10]proposed a prototype iTop, an algorithm for inferring the network topology when only partial information was available, by construcing a virtual topology, and then repeatedly merged links in this topology toward true network structure. Zhang[11]proposed a novel binary tree pruning algorithm based on t-test to infer the network topology and a lower bound on the correctly identified probability of the proposed method as well. However, network topology inference based on network tomography assumes that the intermediate router nodes are all cooperative, and that it will cause excessive probe packets and large network measuring flow seriously affecting normal operation of the network. Therefore, how to decrease the measuring flow without influencing the accuracy of topology inference deserves our exploration.

    A unicast network topology inference based on hierarchical clustering is proposed. This method uses TTL field of probe packets for layering on leaf nodes at first, and then clusters leaf nodes on each layer based on similarity clustering algorithm. Finally, it infers the whole network topology based on hierarchical clustering results and the changing TTL value.

    1 Measurement of Network Topology Inference

    1.1Related definition

    1.2Sandwich probe measurement method

    Fig.1 Sandwich probe packets

    Sandwich probe measurement method was first proposed by Castro et al.[12]Each sandwich probe packet is composed of two short packets, and a long packet and the length of the long packet has to be considerably longer than that of the short ones. The long packet is located in the middle of the two short packets with a same destination address, but the destination address of the long packet is differ from that of the short ones. As shown in Fig.1, short packetsp1,p2haveasamedestinationaddresswhichisnode3,whilethedestinationaddressofthelongpacketqisnode5.Theinitialintervalbetweentwoshortpacketsisd.Duetothequeuedelayoflongpacketbyrouter,thetimeintervalbetweentwoshortpacketsreachingthedestinationbecomeslarge.InFig. 1,longpacketqgeneratesqueuingdelaywhenbeingforwardedbynode1,whichresultsinincreaseofdtod+Δdeventually.Themoresharedlinkswhichtheshortpacketsandthelongpacketgothrough,thelongerqueuingdelaywillbegeneratedbythelongpacket,andthelargertheintervalbetweenp1andp2comes.

    1.3Calculation for similarity of node pair

    2 Network Topology Inference Based on Hierarchical Clustering

    Network topology inference algorithm based on hierarchical clustering consists of the following three steps: First, the source node sends probe packets to all leaf nodes, and the leaf nodes are layered by time to live (TTL) fields of the received packets; Then each layer of leaf nodes is clustered by similarity clustering algorithm; Finally, according to the result of hierarchical clustering and the changing TTL value, the network topology is inferred.

    2.1TTL hierarchical algorithm

    TTL field of 8 bit in IP datagram header is mainly used in TTL hierarchical algorithm. TTL indicates the amount of routers through which the packet passes at most, and it is also the lifetime of the packet in the network. As stipulated in IP protocol, router subtracts 1 from TTL field of the packet before forwarding it. If the TTL value is 0, the router will discard the packet and never forward it. TTL field is set by source point to prevent the waste of network resources caused by undeliverable packet forwarding indefinitely in the Internet. In practice, most OSes, including Microsoft Windows, Linux, and Unix systems,only select a few figures,including 32, 64,128 and 255, as initial TTL value. The difference between an initial TTL value and its final TTL value is the number of routers which the packet goes through in the network, also known as the hop count. Since the differences between the above initial TTL values are large, and practically few Internet hosts are apart by more than 30 hops[13], one can determine the initial TTL value of a packet as the smallest one in the above set but larger than its final TTL. Therefore, firstly the source node sends probe packets to all leaf nodes with a set initial TTL values. And then final TTL fields of received packets in leaf nodes are recorded. Finally, leaf nodes are stratified according to the hop count between source node and the destination node.

    2.2Similarity clustering algorithm

    Leaf nodes are divided into different layers according to the TTL hierarchical algorithm. Then leaf nodes are clustered by similarity layer by layer. First of all, the similarities of all node pairs in a certain layer are obtained by sandwich probe measurement and sorted ascendingly. Then minimum similarity set is calculated by variance ratio. The incompatible K-Bucket is built. Finally, leaf nodes are clustered.

    2.2.1Minimum similarity set

    For a set of similarity values in ascending order, the first element is the lower bound of the minimum similarity set and the key is to find the upper bound of the minimum similarity set. Variance is used to measure the volatility of a batch of data. By analyzing experimental data, we discovered that the difference between elements in the minimum similarity set and other elements was generally large. Therefore, variance ratio is selected to obtain minimum similarity set.

    The definition of variance is as

    Input:Thenumberofleafnodesonlayeri:n

    Similarity set of all node pairs on layeri:

    ThesizeofthesetSi:L=n×(n-1)/2

    The threshold of variance ratio:R=K

    Minimumsimilaritysetofleafnodesonlayeri:Mi=Φ

    Output:Mi

    Begin

    SortsimilarityinSiascendinglyandgetsimilaritysetinascendingorderSA={sa,b,sc,d,se,f,…},wherea,b,c,d,e,f∈[1,n].

    SelectthefirstandthesecondsmallestsimilaritiesfromSA(thatissa,b,sc,d)tocalculatetheirvarianceV2accordingtothevarianceformula;InthesamewayselectthefirstthreesmallestsimilaritiesfromSA(thatissa,b,sc,d,se,f)tocalculatetheirvarianceV3;

    IfV2≠0

    Forj={4,5,…,L}do

    Begin

    IfRj-1,j-2≥Kthen

    Begin

    Takej-2astheupperboundoftheminimumsimilaritysetofleafnodesonlayeri;

    Addthefirstj-2smallestsimilaritiesfromSAtosetMi;

    Break;

    End

    IfRj-1,j-2

    Begin

    CalculatethevarianceVjofthefirstjsmallestsimilaritiesfromSAto;

    IfVj-1≠0

    thencalculatevarianceratiosVjandVj-1:

    End;

    End;

    End;

    2.2.2IncompatibleK-Bucket

    IncompatibleK-Bucketisanarrayoflinkedlistsbasedontheminimumsimilarityset.Theleafnodepairsintheminimumsimilaritysetuniformlymaptotheincompatiblerelationsbetweenthefirstnodeanditssubsequentnodesineachlinkedlist,whilethefirstnodeineachlinkedlistconstitutesthesetofleafnodesinlayeri. Take the set of leaf nodes in a certain layer {5,7,8,10,11} for example. Firstly, build initial incompatible K-Bucket and only one node leads each linked list, as shown in Fig.2 (a). Assume that the minimum similarity set is {(5, 8),(5, 10),(7, 8),(8, 10),(7, 10),(5, 11),(8, 11),(7, 11)}. For the first node pair(5, 8),add incompatible node 8 to the linked list with the first node of 5, and add incompatible node 5 to the linked list with the first node of 8, as shown in Fig.2(b). Similarly,add the rest node pairs in the minimum similarity to the lists and the final incompatible K-Bucket is shown in Fig.2(c).

    Fig.2 Establishment of incompatible K-Bucket

    2.2.3Leaf node clustering algorithm

    Leaf nodes in layeriare clustered based on incompatible K-Bucket. First, suppose the leaf nodes in layeriare divided into two categories, set 1 and set 2, whose representative elements are the first and the second nodes of the first linked list in incompatible K-Bucket, respectively. For the leaf node in addition to the two representative elements, its incompatible nodes in incompatible K-Bucket(that is all subsequent nodes of the linked list where it is the first node) are compared with all the elements in set 1. If they are all different, then add the leaf node to set 1. If there is at least one same node, then compare its incompatible nodes with all the elements in set 2. If they are all different, then add the leaf node to set 2, otherwise build a new category set 3 and add the leaf node to set 3. By that analogy, we finally get the clustering sets of leaf nodes in layeri. The specific algorithm in pseudo-code is described as follows.

    Leaf node clustering algorithm based on incompatible K-Bucket.

    Input: the number of leaf nodes in layeri:n

    Set of leaf nodes in layeri:Ni={x1,x2,…,xn}.

    IncompatibleK-Bucketofleafnodesinlayeri:K_Bufferi,wheretheorderofthefirstnodeineachlinkedlistissameassetNi,thatisx1,x2,…,xn.

    Output:clusteringsetsofleafnodesinlayeri:Set1,Set2,….

    Forj={1,2,…,n}do

    Begin

    Ifxj≠aandxj≠bthen

    Begin

    Fork={1,2,…,SetNum}do

    Begin

    Compareincompatiblenodesofthefirstnodexjofthejthlinkedlist(K_Bufferi[j-1])inincompatibleK-Bucket(thatisallsubsequentnodesafterxjofthejthlinkedlist)withalltheelementsinSetkonebyone;

    IfincompatiblenodesofxjandalltheelementsinSetkarealldifferentthen

    Begin

    addxjto Setk, that is

    xj∈Setk;

    Break;

    End

    IfthereisatleastonenodeinSetksamewithxjand incompatible nodes ofxjthen

    Continue;

    End

    IfincompatiblenodesofxjandtheelementsinexistingSetNumcategoriesallhavethesamethen

    Begin

    SetNum=SetNum+1;

    BuildanewcategorySetSetNum;

    AddxjtoSetSetNum,thatisxj∈SetSetNum;

    End;

    End;

    End;

    2.3Inference of hierarchical clustering network topology with changing TTL

    Now a layered network topology which is clustered in each layer is obtained by TTL hierarchical algorithm and similarity clustering algorithm. It is essential that how to merge and connect the lower clustering set and the upper clustering set to obtain a complete network topology. For instance, Fig.3 shows a hierarchical clustering network topology. The first layer is source node. The second layer contains two clustering setsAandBwhile the third layer contains setsCandD. There are 9 solutions to merge and connect the lower and the upper clustering sets together. Suppose it is corresponding to an unordered tree. There are 6 merge connection solutions which are shown in Fig.4. Through analyzing the network topology structure in these solutions, we find that the number of shared links and shared routers are not the same between each clustering set in each solution. On basis of this and the traceroute method, we obtain the number of shared routers between each clustering sets through changing the TTL value of long sandwich probe packets to infer the network topology.

    Fig.3 Hierarchical clustering network topology

    Fig.4 Merge connection solutions to hierarchical clustering network

    The sandwich probe measurement method shows that the queuing delay is generated by store-and-forward when the long packets pass through the routers, which is related with the number of shared routers. As long as the long packet and the short packets still share links, queuing delay will increase with an increasing number of shared routers. Once the long packet is separated from the short packets, queuing delay will remain unchanged as the second short packet is no long affected by long packet.

    In our method, the source node sends sandwich probe. TTL value of the long packet starts from 1 and pluses one by one to two different clustering sets. Meanwhile, the similarity of the two clustering sets is calculated. The TTL value at the turning point where the similarity stops rising and begins to be unchanged equals to the number of shared routers of the two clustering sets. Since the TTL value of the long packet is no larger than hop count of nodes in clustering sets, with limited sandwich probe packets we can get the number of shared routers among all clustering sets and then infer the complete network topology.

    3 Experimental Evaluations

    In order to verify network topology inference method based on hierarchical clustering, we conducted simulations with lighter and moderate network load based on NS-2.26 by controlling the size of background traffic. The simulation topology is shown in Fig.5. Simulation results in the case of moderate network load are as follows.

    Fig.5 The simulation network topology

    The initial TTL value of the probe packet was set as 128 based on the TTL hierarchical algorithm. The final TTL value was recorded in leaf nodes. Thus the hop count was calculated. The layering result based on hop count is shown in Table 1 and the source node 0 was set as layer 1.

    Table 1 Layering result of leaf nodes

    We sent sandwich probe packets to all node pairs in each layer and the similarity of node pairs are shown in Tables 2, 3.

    Then we clustered the leaf nodes in each layer based on similarity clustering algorithm, and the clustering result is shown as follows(Fig.6).

    Table 2 Similarity of node pairs in layer 2

    Table 3 Similarity of node pairs in layer 3

    Fig.6 Hierarchical clustering network topology

    Each clustering set was represented by a capital letter, namelyA={5,7},B={8},C={10,11},D={13,14},E={15,16,17},F={18,19}. After successively sending sandwich probe packets with changing TTL value to the clustering sets, we obtained the similarity of each two cluster sets, as shown in Fig. 7. The number of shared routers between clustering setsAandD,BandE,CandFwas two while the number of shared routers between the other clustering sets was one. It is easy to infer the whole network topology, as shown in Fig. 8, the number of shared routers.

    Fig.7 Variation of similarity between clustering sets and changing TTL

    Fig.8 Network topology inference based on hierarchical clustering network topology

    Compare Fig.8 with Fig.5, the network topology inferred from network topology inference method based on hierarchical clustering is exactly the same with origin network topology. And topology inference method based on hierarchical clustering for 4-layer network topology can be verified. In order to verify inference algorithm when increase the level of network topology, different simulations were conducted for 5-layer and 6-layer network topology under lighter and moderate network loads, and the simulation results are shown in Table 4.

    Table 4 Topology inference accuracy rate with different topology levels under different network loads

    Accuracy rate of hierarchical clustering network topology inference algorithm in lighter load case was higher than that of moderate load case. We infered that the algorithm works well in lighter load network environment. Table 4 also shows that as the network level increases, accuracy rate of the algorithm will be slightly reduced, but still relatively high.

    While in Refs.[9, 10], the complexity is dominated by the calculation of the merging options, which corresponding toO(|EVT|2×|VVT|3),where|VVT|thenumberofnodesinthenetworkvirtualtopologyand|EVT|thenumberoflinksconnectingthem. |VVT|equalstoN.Comparedwiththesenetworktopologyinferencebasedonnetworktomography,ourmethodcanbasicallyensurehighaccuracyoftopologyinferencewitheffectivelydecreasingmeasuringflow,thusimprovestheefficiencyoftopologyinference.

    4 Conclusions

    A unicast network topology inference algorithm based on hierarchical clustering is proposed and the simulation test is conducted on the NS-2. The experiment result shows that the network topology inference can basically ensure high accuracy of topology inference while effectively decreases measuring flow, thus improves efficiency of topology inference. How to further infer the physical topology of network is our future work.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Nos. 61373137, 61373017, 61373139), the Major Program of Jiangsu Higher Education Institutions (No.14KJA520002), the Six Industries Talent Peaks Plan of Jiangsu(No.2013-DZXX-014), and the Jiangsu Qinglan Project.

    [1]Luckie M, Hyun Y, Huffaker B. Traceroute probe method and forward IP path inference[C]// Proceeding of the 8th ACM SIGCOMM. New York, USA: ACM, 2008: 311-324.

    [2]Jin X, Tu W, Chan S H G. Traceroute-based topology inference without network coordinate estimation[C]// IEEE International Conference on Communications. Washington, DC, USA: IEEE, 2008: 1615-1619.

    [3]Zhao Honghua, Chen Ming. Topology Inference Based on Network Tomography [J]. Journal of Software, 2010, 21(1):133-146 .(in Chinese)

    [4]Tian H, Shen H. Hamming distance and hop count based classificcation for multicast network topology inference[C]// 19th International Conference on Advanced Information Networking and Applications. Washington DC, USA: IEEE, 2005 (1): 267-272.

    [5]Zhao Honghua, Ding Ke, Chen Ming. Topology inference algorithm by using one measuring node [J]. Journal of University of Electronic Science and Technology of China, 2010, 39(2): 275-278.(in Chinese)

    [6]Zhao Honghua, Chen Ming, Qiu Xiaofeng, et al. Multiple parameters network topology inference based on tomography [J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(4): 24-28. (in Chinese)

    [7]Su H B, Li Y, Lin S J, et al. A sort-based approach to infer the network topology[C]// 2010 IEEE International Conference on Communications. Washington, DC, USA: IEEE, 2010: 1-6.

    [8]Eriksson B, Dasarathy G, Barford P, et al. Efficient network tomography for internet topology discovery [J]. IEEE Transactions on Networking, 2012, 20(3): 931-943.

    [9]Holbert B, Tati S, Silvestri S, et al. Network topology inference with partial information [J].IEEE Transactions on Network and Service Management, 2015, 12(3):406-419.

    [10]Holbert B, Tati S, Silvestri S, et al. Network topology inference with partial information[C]// International Conference on Computing, Networking and Communications, Network Algorithm & Performance Evaluation Symposium. Washington, DC, USA: IEEE, 2015:796-802.

    [11]Zhang Runsheng, Li Yanbin, Li Xiaotian. Topology inference with network tomography based on t-Test [J]. IEEE Communications Letters, 2014, 18(6):921-924.

    [12]Castro R, Coates M, Liang G, et al. Network tomography: Recent developments [J]. Statistical Science, 2003, 19(3): 499-517.

    [13]Wang H, Ding W, Zhu H. A method of tree network topology inference based on hierarchical host table[C]∥ Systems and Informatics (ICSAI), 2012 International Conference on. USA:IEEE, 2012: 1477-1481.

    (Executive Editor: Zhang Bei)

    TP393Document code:AArticle ID:1005-1120(2015)06-0591-09

    *Corresponding author: Xiao Fu, Professor, E-mail:xiaof@njupt.edu.cn.

    How to cite this article: Xiao Fu, Shi Chenhang, Huang Kaixiang,et al. Unicast network topology inference algorithm based on hierarchical clustering[J]. Trans. Nanjing U. Aero. Astro., 2015,32(6):591-599. http://dx.doi.org/10.16356/j.1005-1120.2015.06.591

    老司机午夜十八禁免费视频| 亚洲av片天天在线观看| 国产精品1区2区在线观看.| 波多野结衣高清无吗| 黄片小视频在线播放| 交换朋友夫妻互换小说| 美女 人体艺术 gogo| 久久久久久久久免费视频了| 国产精品98久久久久久宅男小说| 女人高潮潮喷娇喘18禁视频| 国产三级黄色录像| 18禁裸乳无遮挡免费网站照片 | av有码第一页| 国产精华一区二区三区| 亚洲国产中文字幕在线视频| 女人爽到高潮嗷嗷叫在线视频| 国产高清视频在线播放一区| 99热只有精品国产| 1024视频免费在线观看| 亚洲精品国产一区二区精华液| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区三区四区久久 | 免费日韩欧美在线观看| av中文乱码字幕在线| 国产一卡二卡三卡精品| 国产蜜桃级精品一区二区三区| videosex国产| 欧美日韩中文字幕国产精品一区二区三区 | 久久亚洲精品不卡| 香蕉丝袜av| 黄色片一级片一级黄色片| 人人妻人人添人人爽欧美一区卜| 在线观看舔阴道视频| netflix在线观看网站| 岛国视频午夜一区免费看| 欧美日韩亚洲综合一区二区三区_| 日韩大码丰满熟妇| e午夜精品久久久久久久| 91大片在线观看| 香蕉久久夜色| 亚洲国产欧美日韩在线播放| 亚洲国产毛片av蜜桃av| 国产精品一区二区三区四区久久 | 淫妇啪啪啪对白视频| av电影中文网址| 久久久久国产精品人妻aⅴ院| 侵犯人妻中文字幕一二三四区| 老熟妇仑乱视频hdxx| av欧美777| 亚洲熟妇中文字幕五十中出 | 国产高清国产精品国产三级| 免费在线观看日本一区| 亚洲欧美一区二区三区久久| 亚洲色图av天堂| 国产成人欧美| 成人三级黄色视频| 国产精品免费一区二区三区在线| 成人免费观看视频高清| 天堂中文最新版在线下载| 在线观看免费日韩欧美大片| 国产精品秋霞免费鲁丝片| 女人被狂操c到高潮| 91精品国产国语对白视频| 国产成人欧美| 国产黄a三级三级三级人| 国产色视频综合| 欧美大码av| 国产精品亚洲一级av第二区| 欧美午夜高清在线| 久久精品成人免费网站| 91大片在线观看| 亚洲成人免费电影在线观看| 亚洲av美国av| 久久午夜亚洲精品久久| 夜夜看夜夜爽夜夜摸 | 三级毛片av免费| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 国产av一区二区精品久久| 一个人观看的视频www高清免费观看 | 国产精品成人在线| 亚洲在线自拍视频| 欧美亚洲日本最大视频资源| 国产欧美日韩精品亚洲av| 91国产中文字幕| 国产精品一区二区在线不卡| 在线观看www视频免费| 99热只有精品国产| 久久久国产成人免费| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 欧美午夜高清在线| 久久午夜亚洲精品久久| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 国产一区二区激情短视频| 日本一区二区免费在线视频| 亚洲中文日韩欧美视频| 亚洲精品一区av在线观看| 99国产综合亚洲精品| 国产97色在线日韩免费| 色婷婷久久久亚洲欧美| avwww免费| 一级片免费观看大全| 男女高潮啪啪啪动态图| 热re99久久精品国产66热6| 91精品三级在线观看| 99在线视频只有这里精品首页| 免费在线观看日本一区| 99久久人妻综合| 久久人妻福利社区极品人妻图片| 精品日产1卡2卡| 老司机亚洲免费影院| 在线观看免费视频网站a站| 男女下面插进去视频免费观看| 夫妻午夜视频| 精品国产超薄肉色丝袜足j| 亚洲熟妇中文字幕五十中出 | 热re99久久精品国产66热6| 午夜免费成人在线视频| 国产蜜桃级精品一区二区三区| 国产一区二区在线av高清观看| 国产伦人伦偷精品视频| 久久精品亚洲av国产电影网| av片东京热男人的天堂| 黑人欧美特级aaaaaa片| 超碰成人久久| 999精品在线视频| 无遮挡黄片免费观看| 午夜免费观看网址| 日本免费a在线| 久久精品亚洲av国产电影网| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久久久久久久免费视频 | 亚洲国产看品久久| 女性生殖器流出的白浆| 又大又爽又粗| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 热99国产精品久久久久久7| 午夜a级毛片| 日韩大码丰满熟妇| 看片在线看免费视频| 国产男靠女视频免费网站| 一夜夜www| 黑人猛操日本美女一级片| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 一级片'在线观看视频| 一区二区三区激情视频| 久久精品人人爽人人爽视色| 91麻豆av在线| 动漫黄色视频在线观看| 久久久久久大精品| 熟女少妇亚洲综合色aaa.| 变态另类成人亚洲欧美熟女 | 欧美日韩一级在线毛片| 久久精品亚洲熟妇少妇任你| 两个人免费观看高清视频| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 天天影视国产精品| 国产成人影院久久av| 成人18禁高潮啪啪吃奶动态图| 女人被躁到高潮嗷嗷叫费观| 日韩欧美免费精品| 在线播放国产精品三级| 好男人电影高清在线观看| 久久人妻熟女aⅴ| 97超级碰碰碰精品色视频在线观看| 可以在线观看毛片的网站| 日本三级黄在线观看| 欧美丝袜亚洲另类 | 日韩免费高清中文字幕av| 成人三级黄色视频| 99精国产麻豆久久婷婷| 女警被强在线播放| 99国产精品99久久久久| 成人国产一区最新在线观看| 啦啦啦 在线观看视频| 国产精品偷伦视频观看了| 国内久久婷婷六月综合欲色啪| 亚洲一区中文字幕在线| 亚洲欧美日韩无卡精品| 大陆偷拍与自拍| 一进一出抽搐动态| 脱女人内裤的视频| 妹子高潮喷水视频| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片 | 美女高潮到喷水免费观看| 国产精华一区二区三区| 久久午夜综合久久蜜桃| 黄色成人免费大全| 国产高清激情床上av| 交换朋友夫妻互换小说| av网站在线播放免费| 无限看片的www在线观看| 新久久久久国产一级毛片| 午夜福利在线免费观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜躁狠狠躁天天躁| 欧美日韩黄片免| 黄片小视频在线播放| 超色免费av| 中文字幕最新亚洲高清| 亚洲人成网站在线播放欧美日韩| 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 久久热在线av| 亚洲成人久久性| 久久精品人人爽人人爽视色| 人人妻人人澡人人看| 久久 成人 亚洲| 亚洲精品在线美女| 黄片小视频在线播放| 久久久久九九精品影院| www.精华液| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 久久精品国产亚洲av高清一级| 老司机午夜福利在线观看视频| 午夜福利影视在线免费观看| 波多野结衣高清无吗| 久久久久久大精品| 国产成人av教育| 9191精品国产免费久久| 久久人人精品亚洲av| 欧美成人性av电影在线观看| 久久九九热精品免费| 欧美黄色淫秽网站| 精品久久久精品久久久| 精品久久久久久,| 久久久精品欧美日韩精品| 欧美日韩亚洲国产一区二区在线观看| 欧美激情久久久久久爽电影 | 精品少妇一区二区三区视频日本电影| 亚洲第一av免费看| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 美国免费a级毛片| 亚洲精品在线观看二区| 俄罗斯特黄特色一大片| 久久久国产成人精品二区 | 久久人妻福利社区极品人妻图片| 色婷婷av一区二区三区视频| 好看av亚洲va欧美ⅴa在| 国产xxxxx性猛交| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 午夜福利,免费看| 成年女人毛片免费观看观看9| 悠悠久久av| 夜夜爽天天搞| 咕卡用的链子| 久久精品影院6| 法律面前人人平等表现在哪些方面| 18禁观看日本| 一区二区三区精品91| 欧美精品啪啪一区二区三区| 淫秽高清视频在线观看| 日韩大尺度精品在线看网址 | 亚洲五月天丁香| 99久久99久久久精品蜜桃| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9| 日韩免费av在线播放| 午夜福利在线观看吧| 亚洲国产欧美网| 搡老岳熟女国产| 一边摸一边抽搐一进一小说| 免费女性裸体啪啪无遮挡网站| 精品无人区乱码1区二区| 国产乱人伦免费视频| 婷婷六月久久综合丁香| 国产麻豆69| 老司机深夜福利视频在线观看| 亚洲精品一二三| 亚洲欧美激情综合另类| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 国产成人av教育| 777久久人妻少妇嫩草av网站| 国产精品九九99| 久久久国产一区二区| 国产无遮挡羞羞视频在线观看| 国内毛片毛片毛片毛片毛片| 精品第一国产精品| 亚洲国产精品999在线| 亚洲人成电影观看| 精品高清国产在线一区| 欧美黑人精品巨大| 色婷婷av一区二区三区视频| 久热爱精品视频在线9| 一二三四社区在线视频社区8| 桃色一区二区三区在线观看| 国产乱人伦免费视频| 免费高清视频大片| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| 免费看a级黄色片| 男女之事视频高清在线观看| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 99精品欧美一区二区三区四区| 国产成人av教育| 岛国在线观看网站| 国产精品国产av在线观看| 久9热在线精品视频| 一区二区三区国产精品乱码| 日韩成人在线观看一区二区三区| 亚洲一码二码三码区别大吗| 黑人欧美特级aaaaaa片| 神马国产精品三级电影在线观看 | 手机成人av网站| 欧美在线黄色| 免费搜索国产男女视频| 男女高潮啪啪啪动态图| 黄色 视频免费看| 90打野战视频偷拍视频| 婷婷丁香在线五月| 中文亚洲av片在线观看爽| 亚洲久久久国产精品| aaaaa片日本免费| 女性被躁到高潮视频| 少妇 在线观看| 亚洲熟妇中文字幕五十中出 | 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频| 精品久久久久久久久久免费视频 | 欧美一级毛片孕妇| 国产成人系列免费观看| 十分钟在线观看高清视频www| 日韩欧美国产一区二区入口| 99久久国产精品久久久| 亚洲全国av大片| 午夜精品在线福利| 亚洲精品国产区一区二| 久久午夜亚洲精品久久| 亚洲精品国产区一区二| 后天国语完整版免费观看| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 国产精品免费视频内射| 亚洲一区二区三区欧美精品| 一二三四在线观看免费中文在| 国产成人精品久久二区二区91| 超碰成人久久| 在线看a的网站| 久久精品亚洲精品国产色婷小说| 香蕉丝袜av| 国产亚洲精品一区二区www| 嫩草影院精品99| 国产成人精品久久二区二区免费| 久久久久久久午夜电影 | 亚洲一码二码三码区别大吗| 又黄又爽又免费观看的视频| 男女下面插进去视频免费观看| 久久精品亚洲熟妇少妇任你| 亚洲一码二码三码区别大吗| 老熟妇乱子伦视频在线观看| av网站免费在线观看视频| 欧美国产精品va在线观看不卡| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 丝袜美腿诱惑在线| 国产亚洲精品一区二区www| 国产av精品麻豆| 精品卡一卡二卡四卡免费| 国产成人精品在线电影| 美国免费a级毛片| 久久人妻福利社区极品人妻图片| 99国产精品一区二区三区| 一夜夜www| 久久精品亚洲熟妇少妇任你| 亚洲黑人精品在线| 亚洲五月色婷婷综合| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| 又大又爽又粗| 精品国产超薄肉色丝袜足j| 中文欧美无线码| 亚洲精品国产区一区二| 久久久国产成人免费| 国产精品综合久久久久久久免费 | 亚洲第一欧美日韩一区二区三区| 国产一区在线观看成人免费| 日韩欧美在线二视频| 国产免费av片在线观看野外av| svipshipincom国产片| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 久久久水蜜桃国产精品网| 国产精品野战在线观看 | 亚洲av五月六月丁香网| 中国美女看黄片| 亚洲专区国产一区二区| 18禁美女被吸乳视频| 啦啦啦在线免费观看视频4| 久久久久久久午夜电影 | 亚洲精品美女久久av网站| 伦理电影免费视频| 中文字幕人妻丝袜一区二区| 亚洲精品av麻豆狂野| 午夜福利免费观看在线| 亚洲一区二区三区不卡视频| 男女之事视频高清在线观看| 97人妻天天添夜夜摸| 在线观看午夜福利视频| 老司机靠b影院| 日韩有码中文字幕| 亚洲伊人色综图| 首页视频小说图片口味搜索| avwww免费| 亚洲欧洲精品一区二区精品久久久| 欧美老熟妇乱子伦牲交| 一级毛片精品| 国内毛片毛片毛片毛片毛片| 老司机在亚洲福利影院| 久久精品亚洲av国产电影网| 少妇粗大呻吟视频| 国产区一区二久久| 久久亚洲精品不卡| 91老司机精品| 色综合站精品国产| 超碰成人久久| a在线观看视频网站| 麻豆久久精品国产亚洲av | 精品一区二区三卡| 丰满迷人的少妇在线观看| 99在线人妻在线中文字幕| 91精品国产国语对白视频| 极品教师在线免费播放| 欧美激情久久久久久爽电影 | 精品第一国产精品| 色综合站精品国产| 在线十欧美十亚洲十日本专区| 久久人妻熟女aⅴ| 在线观看舔阴道视频| 在线看a的网站| 亚洲欧美日韩另类电影网站| 在线观看日韩欧美| 色在线成人网| 伦理电影免费视频| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 亚洲aⅴ乱码一区二区在线播放 | 桃色一区二区三区在线观看| 欧美黑人精品巨大| 看免费av毛片| 91av网站免费观看| 黑人巨大精品欧美一区二区mp4| 欧美色视频一区免费| 亚洲精品在线观看二区| 午夜久久久在线观看| 国产成年人精品一区二区 | 人成视频在线观看免费观看| 妹子高潮喷水视频| 日本vs欧美在线观看视频| 99re在线观看精品视频| 欧美另类亚洲清纯唯美| 搡老岳熟女国产| 中出人妻视频一区二区| 日本五十路高清| 久久久国产成人免费| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 99国产精品99久久久久| 男女床上黄色一级片免费看| 伦理电影免费视频| 男女下面进入的视频免费午夜 | 韩国精品一区二区三区| 男人操女人黄网站| 精品一区二区三区视频在线观看免费 | 亚洲av熟女| 老司机亚洲免费影院| 性色av乱码一区二区三区2| 热re99久久国产66热| 国产精品日韩av在线免费观看 | 99国产精品一区二区三区| av在线播放免费不卡| 亚洲欧美一区二区三区黑人| netflix在线观看网站| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| www.自偷自拍.com| av网站免费在线观看视频| 97人妻天天添夜夜摸| 精品福利永久在线观看| a级毛片黄视频| 母亲3免费完整高清在线观看| 又黄又爽又免费观看的视频| 好男人电影高清在线观看| 女警被强在线播放| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 国产xxxxx性猛交| 黄色丝袜av网址大全| 岛国视频午夜一区免费看| 亚洲精品久久午夜乱码| 十八禁网站免费在线| 怎么达到女性高潮| av有码第一页| 咕卡用的链子| 一夜夜www| 美女国产高潮福利片在线看| 久久久久国内视频| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 午夜免费成人在线视频| 国产成人欧美在线观看| 日本免费一区二区三区高清不卡 | av超薄肉色丝袜交足视频| 又紧又爽又黄一区二区| 色精品久久人妻99蜜桃| 国产无遮挡羞羞视频在线观看| 黄色片一级片一级黄色片| 亚洲美女黄片视频| 国产激情久久老熟女| 国产蜜桃级精品一区二区三区| av天堂久久9| 亚洲精品美女久久av网站| 美女福利国产在线| 国产精品av久久久久免费| 精品国产乱子伦一区二区三区| 国产成年人精品一区二区 | 国产精品一区二区三区四区久久 | 悠悠久久av| 一级作爱视频免费观看| 精品电影一区二区在线| 国产成人啪精品午夜网站| 亚洲中文av在线| 曰老女人黄片| 黄色片一级片一级黄色片| 两个人免费观看高清视频| 热re99久久国产66热| 视频在线观看一区二区三区| 乱人伦中国视频| 国产高清国产精品国产三级| 丝袜美腿诱惑在线| 国产无遮挡羞羞视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲av成人av| 国产精品乱码一区二三区的特点 | 免费在线观看日本一区| 久久久久久久精品吃奶| 大型黄色视频在线免费观看| 欧美中文综合在线视频| 视频区欧美日本亚洲| 变态另类成人亚洲欧美熟女 | 高清欧美精品videossex| 久久性视频一级片| 啦啦啦免费观看视频1| 精品国内亚洲2022精品成人| 国产精品久久久久久人妻精品电影| 热re99久久精品国产66热6| 精品欧美一区二区三区在线| 亚洲精品国产精品久久久不卡| 欧美日韩精品网址| 无人区码免费观看不卡| 精品国产美女av久久久久小说| 亚洲av成人一区二区三| 国产精华一区二区三区| 久久国产精品男人的天堂亚洲| 日日爽夜夜爽网站| 视频在线观看一区二区三区| 久久人人精品亚洲av| 人妻丰满熟妇av一区二区三区| 高清黄色对白视频在线免费看| 久久久久久人人人人人| 男女高潮啪啪啪动态图| 国内毛片毛片毛片毛片毛片| 麻豆久久精品国产亚洲av | av网站在线播放免费| 亚洲久久久国产精品| 欧美不卡视频在线免费观看 | 国产三级在线视频| 中文字幕最新亚洲高清| 天堂中文最新版在线下载| ponron亚洲| 黑人猛操日本美女一级片| 免费高清视频大片| 国产伦一二天堂av在线观看| 色精品久久人妻99蜜桃| 无遮挡黄片免费观看| 日日夜夜操网爽| 丝袜人妻中文字幕| 免费少妇av软件| 一区二区三区国产精品乱码| 男人的好看免费观看在线视频 | 欧美最黄视频在线播放免费 | 亚洲va日本ⅴa欧美va伊人久久| 在线观看免费午夜福利视频| 久久天堂一区二区三区四区| 久久精品亚洲熟妇少妇任你| 无人区码免费观看不卡| 亚洲av美国av| 欧美日韩av久久| 最新在线观看一区二区三区| 亚洲成av片中文字幕在线观看| 国产乱人伦免费视频| 十分钟在线观看高清视频www| 国产黄a三级三级三级人| 女同久久另类99精品国产91| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利在线免费观看网站| 999精品在线视频| 丰满人妻熟妇乱又伦精品不卡| 性色av乱码一区二区三区2| 欧美+亚洲+日韩+国产|