黃祺 程海燕 卜瑞芳
1-磷酸鞘胺醇與胰島素抵抗
黃祺 程海燕 卜瑞芳
1-磷酸鞘胺醇(S1P)是神經(jīng)酰胺代謝產(chǎn)生的一種生物活性脂質(zhì)。它不僅是細(xì)胞外介質(zhì),也是細(xì)胞內(nèi)第二信使,參與細(xì)胞的增殖、分化等生理過(guò)程。S1P與不同的受體結(jié)合產(chǎn)生的作用各異。研究表明其可以通過(guò)不同的途徑參與胰島素信號(hào)的調(diào)節(jié),對(duì)胰島素信號(hào)產(chǎn)生不同的影響,與肝臟、骨骼肌、胰島等組織胰島素抵抗的發(fā)生密切相關(guān)。
1-磷酸鞘胺醇;神經(jīng)酰胺;胰島素抵抗
1-磷酸鞘胺醇(S1P)作為神經(jīng)酰胺代謝產(chǎn)生的一種生物活性脂質(zhì),廣泛存在于各種細(xì)胞中[1]。 它與神經(jīng)酰胺之間的反向調(diào)節(jié)作用稱為“鞘酯變阻器”[2]。大量研究表明,當(dāng)S1P的活性占主導(dǎo)地位時(shí),細(xì)胞趨向于存活和增殖,并且其在多種生物反應(yīng)中起保護(hù)作用[1]。S1P通過(guò)與其受體結(jié)合后發(fā)揮調(diào)節(jié)胰島素信號(hào)的作用,與胰島素抵抗(IR)的發(fā)生、發(fā)展緊密相關(guān)。
S1P作為鞘脂類代謝的中間產(chǎn)物,既可以作為第二信使又可以作為細(xì)胞間信號(hào)分子傳遞信息[3]。細(xì)胞膜上S1P發(fā)揮作用依賴其G蛋白耦聯(lián)受體家族,目前發(fā)現(xiàn)的S1P受體有5個(gè),分別為S1P受體1~5,在不同組織中這些受體的分布不同。這些受體與其異源三聚體G蛋白的多元α亞單位結(jié)合后,可誘導(dǎo)激活細(xì)胞外信號(hào)調(diào)節(jié)激酶、c-Jun氨基末端激酶、腺苷酸環(huán)化酶及磷脂酶C等,從而發(fā)揮抗氧化、抗血栓、抗炎等生物學(xué)效應(yīng)[4]。
SphK是鞘胺醇磷酸化形成S1P過(guò)程中的關(guān)鍵酶,有SphK1和2兩種亞型,兩者在結(jié)構(gòu)上非常相似,但分布卻不同[5]。SphK2主要存在于內(nèi)質(zhì)網(wǎng)或細(xì)胞核中,與細(xì)胞凋亡有關(guān),而SphK1由于缺乏疏水區(qū)和特異性信號(hào)肽而主要存在于細(xì)胞質(zhì)中。與SphK1相比,目前對(duì)SphK2在生物反應(yīng)中所起的調(diào)節(jié)作用及其機(jī)制了解甚少,有實(shí)驗(yàn)證明表皮生長(zhǎng)因子和佛波酯能將其激活,并且在缺氧環(huán)境中SphK2蛋白水平會(huì)增加[6]。至于其在IR及糖尿病的發(fā)生、發(fā)展中是否發(fā)揮作用還有待進(jìn)一步研究。
2.1 S1P與肝臟IR 肝臟IR 的發(fā)生與大量肝糖的合成有關(guān)。當(dāng)胰島素對(duì)抑制肝糖異生及肝糖原分解的作用減弱,同時(shí)胰島素依賴的肝糖原合成受損時(shí),會(huì)導(dǎo)致肝葡萄糖清除率下降,長(zhǎng)期處于此狀態(tài)下肝臟IR便會(huì)形成甚至進(jìn)一步發(fā)展。
有研究顯示S1P參與了體內(nèi)、外肝臟IR的形成過(guò)程[7]。棕櫚酸刺激肝細(xì)胞生成神經(jīng)酰胺和S1P,S1P分泌到胞外后與S1P受體2結(jié)合,導(dǎo)致胰島素介導(dǎo)的蛋白激酶B(Akt)磷酸化及葡萄糖激酶表達(dá)下降,糖原合酶激酶-3(GSK-3)失活,導(dǎo)致糖原合成下降。而Akt、GSK-3等是胰島素轉(zhuǎn)導(dǎo)通路的重要信號(hào)分子,當(dāng)這些信號(hào)分子的活性發(fā)生改變時(shí)就會(huì)引起胰島素信號(hào)傳遞異常,導(dǎo)致IR的產(chǎn)生。當(dāng)S1P的合成受抑制時(shí)肝細(xì)胞的存活量可以從28%增加到100%,說(shuō)明S1P會(huì)像神經(jīng)酰胺一樣抑制細(xì)胞增殖分化,促進(jìn)凋亡[8]。使用S1P受體2拮抗劑JTE-013后,其對(duì)胰島素信號(hào)的干擾能力削弱,由此說(shuō)明S1P通過(guò)S1P受體2對(duì)胰島素信號(hào)產(chǎn)生干擾作用,促進(jìn)肝臟IR的產(chǎn)生[7]。
然而有研究卻發(fā)現(xiàn)S1P可以抵消神經(jīng)酰胺的作用,改善肝臟IR,起保護(hù)肝細(xì)胞的作用。神經(jīng)酰胺激活非典型蛋白激酶C,通過(guò)胰島素受體絲氨酸/蘇氨酸磷酸化抑制胰島素受體的激活,使胰島素信號(hào)下傳受限。用絲氨酸棕櫚酸轉(zhuǎn)移酶1的抑制劑多球殼菌素處理肥胖小鼠,發(fā)現(xiàn)神經(jīng)酰胺的合成減少,同時(shí)肥胖小鼠葡萄糖的耐受性得到了改善[9]。脂聯(lián)素可以降低神經(jīng)酰胺水平,增加小鼠肝臟S1P的合成,改善組織對(duì)胰島素的敏感性[10]。
S1P在肝臟IR中的作用機(jī)制尚未明確,雖然有實(shí)驗(yàn)證明其具有保護(hù)肝細(xì)胞的作用,但近期大量實(shí)驗(yàn)數(shù)據(jù)顯示S1P/S1P受體2軸會(huì)削弱胰島素信號(hào)進(jìn)而促進(jìn)IR的形成,那么抑制S1P受體2是否能成為治療IR及2型糖尿病的新靶點(diǎn)還需進(jìn)一步研究。
2.2 S1P與骨骼肌IR 餐后產(chǎn)生的葡萄糖中80%以上需要骨骼肌處理利用。骨骼肌IR主要與葡萄糖轉(zhuǎn)運(yùn)蛋白4(GLUT4)攝取葡萄糖減少及葡萄糖利用受損有關(guān)[11]。
骨骼肌細(xì)胞內(nèi)胰島素受體信號(hào)介導(dǎo)胰島素刺激的葡萄糖轉(zhuǎn)運(yùn)至肌細(xì)胞中,當(dāng)胰島素與其受體結(jié)合后,能激活酪氨酸激酶,胰島素受體發(fā)生磷酸化反應(yīng),然后通過(guò)酪氨酸磷酸化激活骨骼肌細(xì)胞上胰島素受體底物1及胰島素受體底物2,后者再與磷脂酰肌醇3激酶的p85及p110亞基相互作用,激活3-磷酸肌醇依賴的Akt的蘇氨酸308磷酸化,使GLUT4能夠完成葡萄糖的攝取。血漿中游離脂肪酸的增加,導(dǎo)致甘油三酯、二酰甘油及鞘脂類等在骨骼肌細(xì)胞沉積,而二酰甘油及神經(jīng)酰胺是抑制骨骼肌細(xì)胞中胰島素信號(hào)的必須信號(hào)分子[12]。神經(jīng)酰胺通過(guò)激活非經(jīng)典的蛋白激酶C,使Akt活性下降,導(dǎo)致胰島素信號(hào)轉(zhuǎn)導(dǎo)異常,促進(jìn)骨骼肌IR的產(chǎn)生。
S1P/SphK1軸被認(rèn)為在胰島素信號(hào)調(diào)節(jié)中有協(xié)同作用。SphK1過(guò)表達(dá)會(huì)使C2C12細(xì)胞基礎(chǔ)葡萄糖攝取及胰島素刺激的葡萄糖攝取明顯增加,同時(shí)血漿胰島素、游離脂肪酸、甘油三酯及神經(jīng)酰胺減少,骨骼肌胰島素敏感性改善,而當(dāng)SphK1表達(dá)受抑制后葡萄糖攝取明顯減少[13]。研究表明,使用神經(jīng)酰胺的抑制劑FTY720能夠抑制神經(jīng)酰胺的合成。在高脂飲食的小鼠中使用FTY720后不僅抑制了神經(jīng)酰胺在骨骼肌中的聚集,而且降低了二酰甘油及甘油三酯水平,同時(shí)能改善葡萄糖穩(wěn)態(tài),激活骨骼肌Akt磷酸化,增加胰島素刺激的葡萄糖攝取,使血漿胰島素水平下降,從而改善全身葡萄糖的耐受性[14]。C2C12肌小管中的S1P/S1P受體2信號(hào)可能通過(guò)反式激活胰島素受體,使胰島素受體通過(guò)蛋白酪氨酸磷酸酶-1B的磷酸化,誘導(dǎo)Ca2+依賴的活性氧簇的產(chǎn)生,增加GLUT4對(duì)葡萄糖的轉(zhuǎn)運(yùn),促進(jìn)骨骼肌攝取利用葡萄糖,從而發(fā)揮改善骨骼肌IR的作用[15]。
然而Ross等[16]通過(guò)實(shí)驗(yàn)得到了截然相反的結(jié)果。與肝細(xì)胞一樣,用棕櫚酸干預(yù)C2C12肌小管會(huì)通過(guò)激活過(guò)氧化物酶體增殖物活化受體(PPAR)α,使SphK1表達(dá)增加,細(xì)胞內(nèi)S1P合成增加,S1P分泌到胞外與其受體3結(jié)合,促進(jìn)白細(xì)胞介素6的生成,使胰島素受體底物表達(dá)下調(diào),導(dǎo)致骨骼肌IR的形成[17]。游離脂肪酸過(guò)量同樣會(huì)激活C2C12細(xì)胞中轉(zhuǎn)錄因子PPARα,結(jié)果SphK1的轉(zhuǎn)錄水平上調(diào),SphK1的增加及S1P的合成反而會(huì)導(dǎo)致IR[16]。
S1P/SphK1軸可以通過(guò)多種途徑影響骨骼肌葡萄糖的轉(zhuǎn)運(yùn)及代謝,因此需要更多的實(shí)驗(yàn)來(lái)明確其在骨骼肌IR形成中的作用,為疾病的治療提供依據(jù)。
2.3 S1P與胰腺IR S1P對(duì)β細(xì)胞起保護(hù)作用。研究表明鞘脂類的代謝產(chǎn)物在糖、脂毒性中發(fā)揮了重要的作用,它們參與調(diào)節(jié)β細(xì)胞的凋亡、細(xì)胞因子的分泌、胰島的自身免疫及胰島素的分泌等過(guò)程[18]。增加的S1P水平能夠分泌到細(xì)胞外與S1P受體結(jié)合激活A(yù)MP活化蛋白激酶及促進(jìn)Akt的磷酸化,影響β細(xì)胞的存活與凋亡[19]。葡萄糖引起的S1P水平的升高與SphK2的活性有關(guān),使用SphK的抑制劑或者敲除了SphK2基因會(huì)使葡萄糖刺激的胰島素分泌減少,S1P水平下降[20]。而且目前的研究顯示白細(xì)胞介素1β及腫瘤壞死因子α能夠增加SphK的活性,使S1P增多,后者在細(xì)胞因子誘導(dǎo)β細(xì)胞凋亡的過(guò)程中起保護(hù)作用,從而改善胰腺IR[21]。
實(shí)驗(yàn)證明增加外源性的S1P可通過(guò)激活磷脂酶C,促進(jìn)HIT-T15細(xì)胞及小鼠胰島細(xì)胞分泌胰島素,緩解IR[19]。在脂毒性的情況下S1P及SphK1對(duì)β細(xì)胞仍有保護(hù)作用。高脂狀態(tài)下SphK1基因敲除小鼠胰島細(xì)胞數(shù)量明顯減少,而過(guò)表達(dá)的SphK1明顯減輕由棕櫚酸引起的細(xì)胞凋亡[22-23]。Qi等[22]以高脂飲食誘導(dǎo)的肥胖小鼠作為研究對(duì)象,對(duì)比發(fā)現(xiàn)缺乏SphK1能促進(jìn)β細(xì)胞凋亡,從而增加罹患糖尿病的風(fēng)險(xiǎn)。
綜上所述,S1P在人體各組織中表達(dá),并且參與體內(nèi)多種重要的病理生理反應(yīng),但S1P/S1P受體及S1P/SphK軸發(fā)揮的作用仍存在爭(zhēng)議,具體的機(jī)制也尚未完全闡明,在各組織IR形成中,它們起到了促進(jìn)還是改善作用,或者哪種作用更占優(yōu)勢(shì)需要進(jìn)一步研究。
[1] Natarajan V, Dudek SM, Jacobson JR, et al. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury[J]. Am J Respir Cell Mol Biol,2013,49(1):6-17.
[2] Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction[J]. Islets,2012,4(3):177-187.
[3] Bektas M, Allende ML, Lee BG, et al. Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver[J]. J Biol Chem, 2010,285(14): 10880-10889.
[4] Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity[J]. Nat Rev Immunol,2011,11(16): 403-415.
[5] Pyne S, Lee SC, Long J, et al. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signaling in health and disease[J]. Cell Signal,2009,21(1):14-21.
[6] Schnitzer SE, Weigert A, Zhou J,et al. Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells[J]. Mol Cancer Res,2009,7(3):393-401.
[7] Fayyaz S, Henkel J, Japtok L, et al. Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype[J]. Diabetologia,2014,57(2):373-382.
[8] Shi Y, Rehman H, Ramshesh VK, et al. Sphingosine kinase-2 inhibition improves mitochondrial function and survival after hepatic ischemia-reperfusion[J]. J Hepatol,2012,56(1):137-145.
[9] Liu Y, Saiyan S, Men TY, et al. Hepatopoietin Cn reduces ethanol-induced hepatoxicity via sphingosine kinase 1 and sphingosine 1-phosphate receptors[J]. J Pathol,2013,230(4):365-376.
[10] Park SW, Kim M, Chen SW,et al. Sphinganine-1-phosphate attenuates both hepatic and renal injury induced by hepatic ischemia and reperfusion in mice[J]. Shock,2010,33(1):31-42.
[11] Chiu TT, Jensen TE, Sylow L, et al. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle[J]. Cell Signal,2011,23(10):1546-1554.
[12] Chavez JA, Summers SA. A ceramide-centric view of insulin resistance[J]. Cell Metab,2012,15(5):585-594.
[13] Mastrandrea LD, Sessanna SM, Del Toro A, et al. ATP-independent glucose stimulation of sphingosine kinase in rat pancreatic islets[J]. J Lipid Res,2010,51(8):2171-2180.
[14] Bruce CR, Risis S, Babb JR, et al. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice[J]. Endocrinology,2013,154(1):65-76.
[15] Rapizzi E, Taddei ML, Fiaschi T, et al. Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor[J]. Cell Mol Life Sci,2009,66(19):3207-3218.
[16] Ross JS, Hu W, Rosen B, et al. Sphingosine kinase 1 is regulated by peroxisome proliferator-activated receptor α in response to free fatty acids and is essential for skeletal muscle interleukin-6 production and signaling in diet-induced obesity[J]. J Biol Chem,2013,288(31):22193-22206.
[17] Hu W, Bielawski J, Samad F, et al. Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity[J]. J Lipid Res,2009,50(9):1852-1862.
[18] Zhu Q, Shan X, Miao H,et al.Acute activation of acid ceramidase affects cytokine-induced cytotoxicity in rat islet beta-cells[J]. FEBS Lett,2009,583(12):2136-2141.
[19] Tao C, Sifuentes A, Holland WL. Regulation of glucose and lipid homeostasis by adiponectin: effects on hepatocytes, pancreatic β cells and adipocytes[J]. Best Pract Res Clin Endocrinol Metab,2014,28(1):43-58.
[20] Cantrell Stanford J, Morris AJ, Sunkara M, et al.Sphingosine 1-phosphate (S1P) regulates glucose-stimulated insulin secretion in pancreatic beta cells[J]. J Biol Chem,2012,287(16):13457-13464.
[21] Laychock SG, Sessanna SM, Lin MH,et al.Sphingosine 1-phosphate affects cytokine-induced apoptosis in rat pancreatic islet beta-cells[J]. Endocrinology,2006,147(10):4705-4712.
[22] Qi Y, Chen J, Lay A, et al. Loss of sphingosine kinase 1 predisposes to the onset of diabetes via promoting pancreatic β-cell death in diet-induced obese mice[J]. FASEB J,2013,27(10):4294-4304.
[23] Véret J, Coant N, Gorshkova IA, et al. Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 β-cell survival[J]. Biochim Biophys Acta,2013,1831(2):251-262.
Sphingosine-1-phosphateandinsulinresistance
HuangQi,ChengHaiyan,BuRuifang.
DepartmentofEndocrinology,WuxiPeople′sHospitalAffiliatedtoNanjingMedicalUniversity,Wuxi214023,China
BuRuifang,Email:brfang2003@163.com
Sphingosine-1-phosphate(S1P) is a bioactive lipid metabolite of ceramide. It is not only the extracellular mediator, but also the intracellular second messenger involved in cell proliferation, differentiation, and other physiological processes.S1P has various effects when combining to different receptors. Studies have showed that it plays a role in insulin signaling regulation by diverse ways resulting in different influence. It is closely correlated with insulin resistance in liver, skeletal muscle, islet and so on.
Sphingosine-1-phosphate; Ceramide; Insulin resistance
(IntJEndocrinolMetab,2015,35:348-350)
10.3760/cma.j.issn.1673-4157.2015.05.015
214023 無(wú)錫,南京醫(yī)科大學(xué)附屬無(wú)錫人民醫(yī)院內(nèi)分泌科
卜瑞芳,Email:brfang2003@163.com
2015-03-02)