段 睿,孫向東,劉文第
(河南中醫(yī)學(xué)院中醫(yī)藥免疫學(xué)實(shí)驗(yàn)室,河南 鄭州450046)
S100A9 是一種鈣結(jié)合蛋白,主要限制性地表達(dá)于單核-巨噬細(xì)胞系、中性粒細(xì)胞以及特定病理狀態(tài)下的角質(zhì)化細(xì)胞中[1]。S100A9 高選擇性結(jié)合Ca2+、Zn2+,以及花生四烯酸、角蛋白中間絲、晚期糖基化終產(chǎn)物受體(receptor for advanced glycation end products,RAGE)、Toll 樣受體4(Toll-like receptor 4,TLR4)、基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)等,具有細(xì)胞內(nèi)、外調(diào)節(jié)活性,參與炎癥反應(yīng)和腫瘤發(fā)展過程[2]。S100A9 與感染性疾病、免疫性疾病、腫瘤等多種疾病相關(guān),以S100A9 蛋白為治療靶點(diǎn)的研究也成為熱點(diǎn)。
1.1 發(fā)現(xiàn)與命名 1965年,Morre 從牛的大腦組織中首次分離出一種神經(jīng)系統(tǒng)特異性蛋白混合物,因?yàn)樵擃惖鞍啄軌?00%溶解在飽和硫酸銨中性溶液中,故稱之為S100 蛋白[3]。目前S100 家族有20 多個(gè)成員,S100A9 是其中較為重要的一個(gè)。1987年,Haimoto 從髓樣細(xì)胞中純化獲得S100A9,并顯示出抑制酪蛋白激酶的活性[4]。同年,Odink 在類風(fēng)濕性關(guān)節(jié)炎患者的浸潤性巨噬細(xì)胞中發(fā)現(xiàn)S100A9,并命名為骨髓相關(guān)蛋白-14(myeloid related protein-14,MRP-14)[5]。Goebeler 稱其為遷移抑制因子相關(guān)蛋白-14,由于MRP-14 能改變角蛋白中間絲的位置以應(yīng)答鈣刺激[6]。1991年,Edgeworth 等[7]證實(shí),豐富的S100A9 存在于中性粒細(xì)胞和單核細(xì)胞中,并且緊隨其后的是第1 次大規(guī)模的純化蛋白質(zhì)結(jié)構(gòu)測定。根據(jù)S100 家族成員編碼基因在染色體上的順序,Herzman 等將之命名為S100A9,2006年,S100A9 命名指南出版[8]。
1.2 結(jié)構(gòu) S100A9 是一種鈣結(jié)合蛋白,在蛋白數(shù)據(jù)庫中可查詢其結(jié)構(gòu),由114 個(gè)氨基酸殘基構(gòu)成。每個(gè)S100A9 單體都包含一個(gè)低親和力氨基端鈣結(jié)合位點(diǎn)和高親和力羧基端鈣結(jié)合位點(diǎn)。低親和力鈣結(jié)合位點(diǎn)EF-1 手型結(jié)構(gòu)由14 個(gè)氨基酸殘基組成:1-螺旋(E)、1-環(huán)、2-螺旋(F);高親和力鈣結(jié)合位點(diǎn)由12 個(gè)氨基酸殘基組成:3-螺旋(E)、2-環(huán)和4-螺旋(F),即EF-2 手型結(jié)構(gòu)。螺旋2 和3 由鉸鏈區(qū)連接。在鈣結(jié)合位點(diǎn)之上有一個(gè)構(gòu)象變化通過螺旋3 旋轉(zhuǎn),這樣,暴露的疏水裂可能作為一個(gè)與大分子相互作用的錨定點(diǎn)[9]。羧基端殘基103 ~105 是花生四烯酸的結(jié)合區(qū)。鋅結(jié)合位點(diǎn)是位于羧基端區(qū)域鄰近的一系列組氨酸殘基,但是Zn2+-S100A9 的結(jié)構(gòu)至今尚未確定。還有一種相對分子質(zhì)量12 700 的S100A9 的截?cái)嘈问?,丟失了殘基1 ~4,但生物功能尚不清楚[10]。
S100A9 可以形成同源二聚體,并可以與S100A8結(jié)合形成異源二聚體,目前已經(jīng)清楚S100A9 同源二聚體、S100A8/A9 異源二聚體和異源四聚體的三維結(jié)構(gòu)[11]。自然狀態(tài)的蛋白質(zhì)結(jié)構(gòu)是依賴其所在的環(huán)境,二聚體的形成期具有鈣依賴性,鋅也引發(fā)四聚體的形成。S100A8/A9 異二聚體存在于大多數(shù)生物相互作用中,在異二聚體中,S100A9 的羧基端和S100A8 的氨基端以反相平行的形式結(jié)合,S100A8/A9 異二聚體的形成使鉸鏈區(qū)3-螺旋和2-鈣粘環(huán)結(jié)構(gòu)改變,鈣黏環(huán)疏水表面暴露,結(jié)合各種靶蛋白,能夠傳遞Ca2+信號以及調(diào)節(jié)胞質(zhì)中的Ca2+濃度,在機(jī)體中發(fā)揮著重要的生物學(xué)作用[4]。
1.3 定位與表達(dá) S100A9 與S100A8 染色體均定位于1 號染色體的1q21 區(qū)帶[8],該區(qū)的表皮分化復(fù)合物參與上皮細(xì)胞的最終分化,該區(qū)穩(wěn)定性差,易發(fā)生染色體的缺失、易位、重疊等改變,與腫瘤的發(fā)生關(guān)系密切[12]。
S100A9 實(shí)際定位的不同取決于細(xì)胞類型和疾病狀態(tài)。S100A9 蛋白主要定位表達(dá)于中性粒細(xì)胞和單核細(xì)胞的胞質(zhì)中,分別占胞內(nèi)蛋白的45%和1%,在細(xì)胞特定的分化階段以及細(xì)胞內(nèi)鈣離子濃度增高時(shí),S100A9 也能在細(xì)胞膜表面表達(dá)[1]。在正常人類的胃腸生理中,S100A9 位于胰腺細(xì)胞的細(xì)胞質(zhì)和質(zhì)膜[13],而在食管黏膜組織中S100A9 位于細(xì)胞核[14]。S100A9 分布在正常人口腔黏膜、舌、食管、宮頸等組織的上皮細(xì)胞,也表達(dá)于鼻息肉、內(nèi)翻型乳頭狀瘤、銀屑病、濕疹、肺癌等多種組織[15]。表達(dá)S100A8/A9 的巨噬細(xì)胞富集于許多惡性腫瘤的炎癥部位,包括胰腺腺癌、胃腺癌、小細(xì)胞肺癌、胰腺囊腺瘤、肺腺癌、乳腺腺癌、B 細(xì)胞淋巴瘤、食管鱗癌、肺鱗癌[16]。
2.1 介導(dǎo)炎癥反應(yīng) 中性粒細(xì)胞的呼吸爆發(fā)功能在宿主防御及炎癥反應(yīng)中起著重要的作用?;ㄉ南┧崾且环N多元不飽和ω-6 脂肪酸,是細(xì)胞信號的第二信使。S100A9 在中性粒細(xì)胞細(xì)胞質(zhì)和細(xì)胞膜還原型輔酶Ⅱ(NADPH)氧化酶復(fù)合物之間運(yùn)輸花生四烯酸,作為炎癥信號級聯(lián)的一部分。S100A9 將花生四烯酸轉(zhuǎn)移到NADPH 復(fù)合物gp91phox,而S100A8 結(jié)合NADPH 氧化酶復(fù)合物的p67phox 和rac-2,引起炎癥細(xì)胞重要的氧化爆發(fā)[17]。因此,S100A8/A9 異源二聚體有可能對NADPH 復(fù)合物有多重效應(yīng)。S100A9 羧基端殘基103 ~105 在同源二聚體或S100A8 異源二聚體均促進(jìn)了花生四烯酸運(yùn)輸。S100A8/A9 二聚體中的S100A9 蘇氨酸-113 磷酸化增強(qiáng)NADPH 氧化酶的活化,而鋅阻礙花生四烯酸與S100A8/A9 結(jié)合[18]。中性粒細(xì)胞S100A9 基因敲除小鼠NADPH 氧化爆發(fā)降低[17]。在HaCaT 角質(zhì)細(xì)胞的研究中,S100A9 過表達(dá)表現(xiàn)出NADPH 氧化酶增強(qiáng),核因子活化B 細(xì)胞κ 輕鏈增強(qiáng)子(nuclear factor kappa-light-chain-enhancer of activated B cells,NF-κB)活動[19]。
S100A8/A9 結(jié)合RAGE 和TLR4,啟動信號轉(zhuǎn)導(dǎo),通過NF-κB 通路促進(jìn)S100A9 轉(zhuǎn)錄增加,在細(xì)胞膜附近介導(dǎo)炎癥級聯(lián)反應(yīng)?,F(xiàn)有證據(jù)表明在體外和許多細(xì)胞類型中,髓系細(xì)胞分泌的S100A8/A9 與RAGE 的羧酸鹽聚糖或RAGE 自身結(jié)合。S100A8/A9-RAGE 復(fù)合物可以激活多條信號通路,包括促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、結(jié)腸腫瘤細(xì)胞NF-κB、二甲基苯蒽/佛波酯引起的小鼠皮膚癌[20]。S100A9 亞基可能是S100A8/A9 異源二聚體與RAGE 或TLR4-MD2 相互作用重要的結(jié)構(gòu),S100A8可能起調(diào)控作用[21]。另外,細(xì)胞外S100A8/A9 增強(qiáng)細(xì)胞膜上脂多糖(lipopolysaccharide,LPS)信號,導(dǎo)致LPS 誘導(dǎo)的小鼠死亡率增加[22]。S100A9 與多糖的相互作用促進(jìn)S100A9 在炎癥部位的富集。
S100A8 和S100A9 均具有亞硝基化的能力,亞硝基化通常會導(dǎo)致炎癥活動減少。S100A9 的亞硝基化依賴鈣。胞質(zhì)NADPH 氧化酶成分的遷移,例如p47phox 和p67phox 到質(zhì)膜和后續(xù)超氧化物的產(chǎn)生,都由S100A8/A9 復(fù)合物S100A8 亞組亞硝基化合物殘留控制,一旦在質(zhì)膜外,非鈣依賴形式S100A8 亞硝基化作用產(chǎn)物起一氧化氮穿梭作用[17]。S100A9 的S-谷胱甘肽化降低其與S100A8 形成異二聚體和與纖維連接蛋白結(jié)合的能力,但S100A9 與花生四烯酸結(jié)合的能力是相同的。S100A9 的S-谷胱甘肽化可能因此作為限制細(xì)胞外基質(zhì)的炎癥反應(yīng)的一種機(jī)制[23]。蛋氨酸63 和83 的氧化消除S100A9 對外周血中性粒細(xì)胞的化學(xué)排斥作用[24]。因此,S100A8/A9 的亞硝基化、谷胱甘肽化、氧化,起翻譯后調(diào)控免疫反應(yīng)的量和程度的作用。
2.2 調(diào)節(jié)髓系細(xì)胞成熟 在炎癥反應(yīng)中,單核細(xì)胞分化為成熟的巨噬細(xì)胞,首先表達(dá)S100A8 和S100A9,之后,炎癥部位的巨噬細(xì)胞將失去S100A8 表達(dá)[25]。S100A9 上調(diào)與早幼粒細(xì)胞分化為中幼粒細(xì)胞/粒細(xì)胞相關(guān),并與已表達(dá)CD15 的嗜中性細(xì)胞CD11b 的表達(dá)相關(guān)。S100A9 在單核細(xì)胞表達(dá)CD15 之前上調(diào)。在單核細(xì)胞和巨噬細(xì)胞,S100A9 的生成與CD11b 在細(xì)胞表面的表達(dá)相關(guān)。Kruppel 相關(guān)鋅指結(jié)構(gòu)蛋白和轉(zhuǎn)錄中介因子1-β 可能參與調(diào)節(jié)S100A9 基因表達(dá)和促進(jìn)分化[26]。S100A9 還與集落刺激因子-1 刺激中性粒細(xì)胞向巨噬細(xì)胞轉(zhuǎn)分化有關(guān)[27]。
S100A9 在髓系細(xì)胞成熟中的作用并不完全清楚,但有趣的是,早期髓系細(xì)胞即髓源性抑制細(xì)胞(myeloid derived suppressor cells,MDSCs)可能被S100A9 誘導(dǎo)并能抑制腫瘤細(xì)胞的免疫反應(yīng)。S100A9 和MDSCs之間的關(guān)系已被深入研究。人類MDSCs 是早期髓系細(xì)胞的異質(zhì)群體,表現(xiàn)出多種細(xì)胞表面標(biāo)志物包括:CD11b、HLADRlow/-、CD33、CD15、CD14 和IL4Rα,鼠類MDSCs 表達(dá)CD11b 和Gr1[28]。MDSCs 也以其通過釋放活性氧、細(xì)胞因子和精氨酸酶抑制T 細(xì)胞功能和腫瘤細(xì)胞的免疫反應(yīng)的能力為特征。無S100A9 小鼠淋巴瘤腫瘤迅速增長低于野生型小鼠,這些結(jié)果依賴MDSCs 富集減少。過表達(dá)S100A9 增加MDSCs 富集并抑制樹突狀細(xì)胞的分化[29]。在生化水平,有可能MDSCs 上的S100A8/A9 結(jié)合到內(nèi)皮表面的羧酸鹽聚糖或腫瘤細(xì)胞上的 RAGE 促進(jìn) MDSCs 遷移。S100A8/A9 也表達(dá)于腫瘤細(xì)胞,并可能提供一個(gè)富集額外MDSC 進(jìn)入腫瘤微環(huán)境的機(jī)制,通過與MDSCs 上的RAGE 結(jié)合并促進(jìn)NF-κB 炎性通路信號轉(zhuǎn)導(dǎo)[30]。
2.3 調(diào)節(jié)細(xì)胞遷移 細(xì)胞骨架和其結(jié)合蛋白是細(xì)胞遷移的物質(zhì)基礎(chǔ),鈣依賴四聚物S100A8/A9 的形成對胞質(zhì)骨架微管的形成至關(guān)重要,并且已在體外被測量。微管聚合時(shí),S100A8 與微管蛋白相互作用,同時(shí)S100A9 作為調(diào)節(jié)亞基[21]。在上皮細(xì)胞,鈣作為第二信使并結(jié)合到S100A8 和S100A9,誘發(fā)他們向角蛋白中間絲的易位,被認(rèn)為調(diào)解細(xì)胞遷移[5]。S100A9 在蘇氨酸-113 的磷酸化作用通過蛋白激酶C(protein kinase C,PKC)調(diào)節(jié)S100A9 遷移到人類中性粒細(xì)胞的細(xì)胞膜,這種磷酸化活動可能控制細(xì)胞骨架重組,對髓系細(xì)胞遷移很重要[31]。在單核細(xì)胞中,S100A9 以鈣依賴的方式集中在Ⅲ型中間絲波形蛋白。在單核細(xì)胞培養(yǎng)系統(tǒng)S100A9 集中在細(xì)胞質(zhì),鈣含量的增加促進(jìn)S100A9 向細(xì)胞膜易位,很可能是通過PKC 依賴機(jī)制[32]。在細(xì)胞外空間,S100A8/A9 與花生四烯酸以鈣依賴的方式結(jié)合,而且與內(nèi)皮細(xì)胞(CD36)的主要脂肪酸運(yùn)輸者交互作用,促進(jìn)脂肪酸攝取和硫酸肝素蛋白聚糖,經(jīng)由S100A9 亞基,從而促進(jìn)髓系細(xì)胞遷移[33]。MMP-2 和MMP-9 需要鋅來阻斷S100A9,從而限制其在炎癥通路的活動。S100A8/A9 本身能夠通過隔離鋅來阻止MMPs 降解細(xì)胞外基質(zhì),從而形成負(fù)反饋環(huán)[34]。在二價(jià)離子存在時(shí),通過與細(xì)胞骨架和細(xì)胞外基質(zhì)因素的相互作用,S100A8/A9 能調(diào)節(jié)細(xì)胞遷移,促進(jìn)炎癥,并創(chuàng)造負(fù)責(zé)生物活動終止的分子環(huán)境。
3.1 感染性疾病 S100A9 與多種感染性疾病密切相關(guān)。在小鼠尿路感染模型中,膀胱和腎組織中S100A8/A9 大幅增加,但研究[35]證實(shí)S100A8/A9 不參與宿主防御。小鼠結(jié)腸上皮細(xì)胞S100A9 表達(dá)升高可能在結(jié)腸炎的發(fā)展中起著重要的作用,S100A9 介導(dǎo)IL-6/STAT3 信號級聯(lián)反應(yīng)[36]。S100A8/A9 在肺炎克雷伯氏菌引起的膿毒癥中具有抗菌活性,但在急性暴發(fā)性敗血癥模型中卻導(dǎo)致器官損傷和死亡[37]。在小鼠S100A9 基因敲除胰腺炎模型中發(fā)現(xiàn),S100A9 能直接減少胰腺組織白細(xì)胞浸潤,并通過自身鈣調(diào)特性調(diào)節(jié)細(xì)胞間信號傳導(dǎo),顯著減輕胰腺炎[38]。
3.2 腫瘤 S100A9 在許多腫瘤中表達(dá)上調(diào),包括乳腺癌、肝癌、胃癌、胰腺癌、肺癌、結(jié)直腸癌、宮頸癌、鼻咽癌、膀胱癌、前列腺癌等[2]。例如,在非小細(xì)胞肺腺癌中,S100A9 與不良預(yù)后相關(guān),腫瘤細(xì)胞內(nèi)過表達(dá)S100A9 的早期肺癌患者表現(xiàn)出一個(gè)十分糟糕的總體5 a 存活率[39]。在胰腺腺癌中,S100A9 與CD14 共表達(dá)于單核細(xì)胞和巨噬細(xì)胞的間質(zhì),S100A9 可能與轉(zhuǎn)化生長因子-β 信號通路相互作用影響細(xì)胞生長和遷移[40]。在肝細(xì)胞癌中,NF-κB 結(jié)合到S100A9 啟動子并激活轉(zhuǎn)錄,S100A9 繼續(xù)激活活性氧相關(guān)信號通路,保護(hù)肝癌細(xì)胞不受細(xì)胞凋亡死亡[41]。S100A9 在結(jié)直腸癌中表達(dá)上調(diào),并參與結(jié)直腸腫瘤的入侵表型和發(fā)展,S100A8 和S100A9 蛋白有助于大腸癌細(xì)胞的存活和遷移,其中一個(gè)分子機(jī)制是通過Wnt/β-catenin 信號通路[42]。S100A8/A9 過表達(dá)與乳腺浸潤性導(dǎo)管癌不良病理特征有關(guān),也有研究表明S100A9 可能在較高濃度抑制腫瘤生長而在較低濃度促進(jìn)腫瘤生長,還需要做更多的研究來區(qū)分劑量效應(yīng)和模型的差異[43]。
3.3 免疫性疾病 S100A9 是哮喘病理生理過程中的重要介質(zhì),可通過促進(jìn)氣道炎癥、誘導(dǎo)細(xì)胞增殖、招募炎癥細(xì)胞、促進(jìn)膠原合成等機(jī)制參與哮喘發(fā)?。?4]。類風(fēng)濕性關(guān)節(jié)炎患者血清和關(guān)節(jié)腔液S100A8/A9 水平顯著高于骨性關(guān)節(jié)炎或其他炎癥性關(guān)節(jié)炎患者,并且血清S100A8/A9 水平與臨床和實(shí)驗(yàn)室指標(biāo)顯著相關(guān)[45]。S100A8/A9 在銀屑病、牛皮癬、異位性皮炎等皮膚病上皮細(xì)胞中的表達(dá)均上調(diào)[46]。S100A9 還與系統(tǒng)性紅斑狼瘡、大細(xì)胞性動脈炎、多發(fā)性硬化等多種免疫性炎癥密切相關(guān)[47]。
3.4 其他疾病 伴有冠狀動脈疾病的2 型糖尿病患者血清S100A8/A9 水平升高,并且與冠狀動脈疾病的嚴(yán)重程度以及無明顯臨床表現(xiàn)的頸動脈內(nèi)膜中層厚度正相關(guān)[48]。另有報(bào)道S100A8 和S100A9 血清水平已被確定為健康人心血管事件的獨(dú)立危險(xiǎn)因子[49]。S100A9 在神經(jīng)炎斑塊和反應(yīng)性神經(jīng)膠質(zhì)細(xì)胞含量增加,并參與阿爾茨海默病神經(jīng)炎癥發(fā)病過程[50]。
目前,在炎性疾病或惡性腫瘤等的位點(diǎn)阻止S100A9 和(或)其活動的多種治療策略正在開發(fā)。吡美莫司是一種鈣調(diào)磷酸酶抑制劑,已成功地用于治療和預(yù)防異位性皮炎,近期研究顯示,這種藥物誘導(dǎo)S100A8/A9 及其他基因表達(dá)上調(diào),對正常皮膚的屏障功能是必不可少的[46]。喹啉- 3- 甲酰胺可以與S100A9 同源二聚體結(jié)合,并限制鋅和鈣依賴的S100A9 與RAGE、TLR4-MD2 和花生四烯酸的相互作用,這些化合物已用于轉(zhuǎn)移性前列腺癌放療后患者二期試驗(yàn)[51]。在心血管系統(tǒng)中,S100A9 可能通過改變磷脂結(jié)合鈣的能力促進(jìn)營養(yǎng)不良性鈣化,阻斷S100A8/A9 可能成為通過下調(diào)炎癥通路治療動脈粥樣硬化的療法[52]。S100A9 基因表達(dá)在阿爾茨海默病神經(jīng)病理學(xué)和記憶損害中起著重要的作用,這表明該基因的敲除有很大的治療潛力[50]。
國內(nèi)對S100A9 蛋白的研究尚處于起步階段,該蛋白在發(fā)病機(jī)制、疾病診斷和治療靶點(diǎn)等研究中的價(jià)值亟待開發(fā),隨著研究的進(jìn)一步深入,S100A9 在感染性疾病、免疫性疾病、腫瘤等諸多疾病中的潛在應(yīng)用價(jià)值也會逐漸被發(fā)掘。
[1]Hessian PA,Edgeworth J,Hogg N.MRP-8 and MRP-14,two abundant ca2+-binding proteins of neutrophils and monocytes[J].J Leukoc Biol,1993,53(2):197-204.
[2]Markowitz J,Carson WE.Review of S100A9 biology and its role in cancer[J].Biochim Biophys Acta,2013,1835(1):100-109.
[3]Moore BW. A soluble protein characteristic of the nervous system[J].Biochem Biophys Res Commun,1965,19(6):739-744.
[4]Zimmer DB,Cornwall EH,Landar A,et al.The S100 protein family:history,function,and expression[J]. Brain Res Bull,1995,37(4):417-429.
[5]Odink K,Cerletti N,Bruggen J,et al.Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis[J].Nature,1987,330(6143):80-82.
[6]Goebeler M,Roth J,van den Bos C,et al.Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8)and MRP14 to keratin intermediate filaments[J]. Biochem J,1995,309 (Pt 2):419-424.
[7]Edgeworth J,Gorman M,Bennett R,et al.Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells[J].J Biol Chem,1991,266(12):7706-7713.
[8]Marenholz I,Lovering RC,Heizmann CW. An update of the S100 nomenclature[J]. Biochim Biophys Acta,2006,1763(11):1282-1283.
[9]Chazin WJ.Relating form and function of ef-hand calcium binding proteins[J].Acc Chem Res,2011,44(3):171-179.
[10]Teigelkamp S,Bhardwaj RS,Roth J,et al.Calcium-dependent complex assembly of the myeloic differentiation proteins MRP-8 and MRP-14[J].J Biol Chem,1991,266(20):13462-13467.
[11]Korndorfer IP,Brueckner F,Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer,calprotectin,illustrates how conformational changes of interacting alpha-helices can determine specific association of two EF-hand proteins[J]. J Mol Biol,2007,370(5):887-898.
[12]Ravasi T,Hsu K,Goyette J,et al. Probing the S100 protein family through genomic and functional analysis[J]. Genomics,2004,84(1):10-22.
[13]Fanjul M,Renaud W,Merten M,et al. Presence of MRP8 and MRP14 in pancreatic cell lines:differential expression and localization in cfpac-1 cells[J].Am J Physiol,1995,268(5 Pt 1):C1241-C1251.
[14]Wang J,Cai Y,Xu H,et al.Expression of MRP14 gene is frequently down-regulated in chinese human esophageal cancer[J]. Cell Res,2004,14(1):46-53.
[15]Wilkinson MM,Busuttil A,Hayward C,et al. Expression pattern of two related cystic fibrosis-associated calcium-binding proteins in normal and abnormal tissues[J].J Cell Sci,1988,91(Pt 2):221-230.
[16]Kurata A,Terado Y,Schulz A,et al. Inflammatory cells in the formation of tumor-related sarcoid reactions[J].Hum Pathol,2005,36(5):546-542.
[17]Kerkhoff C,Nacken W,Benedyk M,et al. The arachidonic acidbinding protein S100A8/A9 promotes nadph oxidase activation by interaction with p67phox and rac-2[J]. FASEB J,2005,19(3):467-469.
[18]Sopalla C,Leukert N,Sorg C,et al.Evidence for the involvement of the unique c-tail of S100A9 in the binding of arachidonic acid to the heterocomplex S100A8/A9[J]. Biol Chem,2002,383(12):1895-1905.
[19]Benedyk M,Sopalla C,Nacken W,et al. Hacat keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased nadph oxidase and NF-kappab activities[J]. J Invest Dermatol,2007,127(8):2001-2011.
[20]Gebhardt C,Riehl A,Durchdewald M,et al.Rage signaling sustains inflammation and promotes tumor development[J]. J Exp Med,2008,205(2):275-285.
[21]Leukert N,Vogl T,Strupat K,et al. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity[J].J Mol Biol,2006,359(4):961-972.
[22]Vogl T,Tenbrock K,Ludwig S,et al.MRP8 and MRP14 are endogenous activators of toll-like receptor 4,promoting lethal,endotoxininduced shock[J].Nat Med,2007,13(9):1042-1049.
[23]Lim SY,Raftery MJ,Goyette J,et al. S-glutathionylation regulates inflammatory activities of S100A9[J]. J Biol Chem,2010,285(19):14377-14388.
[24]Sroussi HY,Berline J,Palefsky JM.Oxidation of methionine 63 and 83 regulates the effect of S100A9 on the migration of neutrophils in vitro[J].J Leukoc Biol,2007,81(3):818-824.
[25]Zwadlo G,Bruggen J,Gerhards G,et al. Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues[J].Clin Exp Immunol,1988,72(3):510-515.
[26]Kerkhoff C,Hofmann HA,Vormoor J,et al.Binding of two nuclear complexes to a novel regulatory element within the human S100A9 promoter drives the S100A9 gene expression[J]. J Biol Chem,2002,277(44):41879-41887.
[27]Sasmono RT,Ehrnsperger A,Cronau SL,et al. Mouse neutrophilic granulocytes express mrna encoding the macrophage colony-stimulating factor receptor (CSF-1r)as well as many other macrophagespecific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1[J]. J Leukoc Biol,2007,82(1):111-123.
[28]Filipazzi P,Huber V,Rivoltini L. Phenotype,function and clinical implications of myeloid-derived suppressor cells in cancer patients[J].Cancer Immunol Immunother,2012,61(2):255-263.
[29]Cheng P,Corzo CA,Luetteke N,et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein[J].J Exp Med,2008,205(10):2235-2249.
[30]Sinha P,Okoro C,F(xiàn)oell D,et al.Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells[J]. J Immunol,2008,181(7):4666-4675.
[31]Guignard F,Mauel J,Markert M.Phosphorylation of myeloid-related proteins MRP-14 and MRP-8 during human neutrophil activation[J].Eur J Biochem,1996,241(1):265-271.
[32]Roth J,Burwinkel F,van den Bos C,et al. MRP8 and MRP14,S-100-like proteins associated with myeloid differentiation,are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner[J].Blood,1993,82(6):1875-1883.
[33]Kerkhoff C,Sorg C,Tandon NN,et al. Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells[J].Biochemistry,2001,40(1):241-248.
[34]Isaksen B,F(xiàn)agerhol MK.Calprotectin inhibits matrix metalloproteinases by sequestration of zinc[J]. Mol Pathol,2001,54(5):289-292.
[35]Dessing MC,Butter LM,Teske GJ,et al. S100A8/A9 is not involved in host defense against murine urinary tract infection[J].PLoS One,2010,5(10):e13394.
[36]Lee MJ,Lee JK,Choi JW,et al.Interleukin-6 induces S100A9 expression in colonic epithelial cells through stat3 activation in experimental ulcerative colitis[J].PLoS One,2012,7(9):e38801.
[37]Achouiti A,Vogl T,Urban CF,et al. Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis[J].PLoS Pathog,2012,8(10):e1002987.
[38]Schnekenburger J,Schick V,Kruger B,et al. The calcium binding protein S100A9 is essential for pancreatic leukocyte infiltration and induces disruption of cell-cell contacts[J]. J Cell Physiol,2008,216(2):558-567.
[39]Kawai H,Minamiya Y,Takahashi N. Prognostic impact of S100A9 overexpression in non-small cell lung cancer[J]. Tumour Biol,2011,32(4):641-646.
[40]Massague J,Blain SW,Lo RS. TGF-beta signaling in growth control,cancer,and heritable disorders[J]. Cell,2000,103(2):295-309.
[41]Nemeth J,Stein I,Haag D,et al.S100A8 and S100A9 are novel nuclear factor kappa b target genes during malignant progression of murine and human liver carcinogenesis[J]. Hepatology,2009,50(4):1251-1262.
[42]Duan L,Wu R,Ye L,et al. S100A8 and S100A9 are associated with colorectal carcinoma progression and contribute to colorectal carcinoma cell survival and migration via wnt/beta-catenin pathway[J].PLoS One,2013,8(4):e62092.
[43]Arai K,Takano S,Teratani T,et al. S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast[J]. Curr Cancer Drug Targets,2008,8(4):243-252.
[44]Chizzolini C,Brembilla NC,Montanari E,et al. Fibrosis and immune dysregulation in systemic sclerosis[J]. Autoimmun Rev,2011,10(5):276-281.
[45]Kang KY,Woo JW,Park SH.S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients with rheumatoid arthritis[J].Korean J Intern Med,2014,29(1):12-19.
[46]Kerkhoff C,Voss A,Scholzen TE,et al.Novel insights into the role of S100A8/A9 in skin biology[J]. Exp Dermatol,2012,21(11):822-826.
[47]Gebhardt C,Nemeth J,Angel P,et al. S100A8 and S100A9 in inflammation and cancer[J]. Biochem Pharmacol,2006,72(11):1622-1631.
[48]Peng WH,Jian WX,Li HL,et al. Increased serum myeloid-related protein 8/14 level is associated with atherosclerosis in type 2 diabetic patients[J].Cardiovasc Diabetol,2011,10:41.
[49]Healy AM,Pickard MD,Pradhan AD,et al.Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events[J].Circulation,2006,113(19):2278-2284.
[50]Chang KA,Kim HJ,Suh YH.The role of S100A9 in the pathogenesis of alzheimer's disease:the therapeutic effects of S100A9 knockdown or knockout[J].Neurodegener Dis,2012,10(1/4):27-29.
[51]Dalrymple SL,Becker RE,Zhou H,et al.Tasquinimod prevents the angiogenic rebound induced by fractionated radiation resulting in an enhanced therapeutic response of prostate cancer xenografts[J].Prostate,2012,72(6):638-648.
[52]McCormick MM,Rahimi F,Bobryshev YV,et al. S100A8 and S100A9 in human arterial wall.implications for atherogenesis[J].J Biol Chem,2005,280(50):41521-41529.