李益+張一卉+李化銀
摘 要:本文主要利用擬南芥、玉米、牽牛花和金魚草的類黃酮合成途徑推測并繪制了蕓薹屬花青素合成途徑;紫色蕓薹屬花青素合成結構基因CHS、F3′5′H、DFR和ANS的高水平轉錄是蕓薹屬著色的直接原因;調控花青素合成途徑中后期合成基因的R2R3-MYB類轉錄因子啟動子突變并高水平轉錄是蕓薹屬蔬菜組織中花青素大量積累的關鍵。
關鍵詞:蕓薹屬;花青素;結構基因;R2R3-MYB;bHLH
中圖分類號:S312:Q946.83+6 文獻標識號:A 文章編號:1001-4942(2014)11-0137-06
蕓薹屬蔬菜味道鮮美、營養(yǎng)豐富,備受大家的喜愛。中國白菜和甘藍都是世界衛(wèi)生組織推薦的營養(yǎng)蔬菜,尤其是中國白菜是中國北方冬季主要蔬菜[1]。蕓薹屬蔬菜中有多個紫色物種,如紫菜薹、紫甘藍、紫色花椰菜和紫色白菜等(圖1),它們之所以顯示艷麗紅紫色是因為含有大量的花青素。目前,越來越多資料證明花青素及其與糖等配基結合物能很好清除體內(nèi)的自由基[2],在抗氧化衰老、抗癌與抗動脈硬化等方面具有很強的醫(yī)療保健作用[3]。紫色蕓薹屬蔬菜花青素含量都很高,因此是非常有價值的天然色素資源。
1 紫色蕓薹屬花青素的種類和分布
花青素是構成植物顏色的主要水溶性色素之一[8],形成于細胞質而儲存于液泡[9]?;ㄇ嗨鼐哂蠧6-C3-C6基本碳架結構,它基環(huán)的3、5、7位羥基可以通過糖苷鍵結合不同種類的單糖或多糖形成不同種類的花色苷?;ㄉ盏牧u基還可以結合一個或幾個分子的香豆酸、阿魏酸、咖啡酸、丙二酸、芥子酸和琥珀酸等有機酸形成穩(wěn)定的花色苷結構[10]?;ㄇ嗨氐念伾饕Q于羥基在B環(huán)上的位置,也因所帶羥基、甲基及醣基的種類、數(shù)目以及連接位置不同而產(chǎn)生差異[11]?;ㄇ嗨氐姆N類主要有橙紅色花葵色素(Pelargonidin)、紫紅色矢車菊色素(Cyanidin)、藍色飛燕草色素(Delphinidin)、紅色芍藥花色素(Peonidin)、藍紫色牽?;ㄉ兀≒etunnidin)、藍紫色錦葵色素
化合成無色矢車菊素,進而由無色花青素二氧化酶(leucoanthocyanidin dioxygenase, LDOX)或花青素合酶(anthocyanidin synthase, ANS)形成顯色的矢車菊花青素(在紫白菜[6,17]、紫甘藍[18~20]和紫色花椰菜[4]中大量存在),再進一步由葡萄糖-類黃酮糖基轉移酶[uridine diphosphate (UDP)- glucose: flavonoid- O- glycosyltransferase, UFGT]和轉甲基酶(methyltransferases, MT)催化形成芍藥色素(紫白菜[17]和紫甘藍[18]中測出);二氫黃酮醇還可經(jīng)類黃酮-3′,5′-羥化酶(flavonoid-3′,5′-hydroxylase, F3′5′H)、DFR、ANS/LDOX生成飛燕草色素(紫白菜[17]中測出),然后經(jīng)UFGT和MT生成牽牛花色素 (紫白菜[17]中測出),最后經(jīng)過MT催化生成錦葵素(紫甘藍[17]、紫白菜[18]中測出);另外,二氫黃酮醇可直接經(jīng)DFR、ANS/LDOX和UFGT生成花葵素(紫甘藍[21]中測出)。
蕓薹屬植物花青素在植物器官分布上具有組織特異性(圖3),紫羅蘭小白菜[6]的花青素僅分布于上表皮臨近的幾層葉肉細胞中(圖3C),而紫甘藍[22]上下表皮及臨近的幾層葉肉細胞中都含有花青素(圖3B)。段巖嬌等[7]用‘09S17與紫菜薹經(jīng)多代測交、自交選育獲得的紫心大白菜‘11S96(圖3A),花青素分布在上下表皮臨近的基礎葉肉細胞中。花青素在葉片上的分布不同表明它們的著色調控機理存在差異。
2 CHS、F3′5′H、DFR和ANS/LDOX的高水平轉錄是蕓薹屬蔬菜形成紫色性狀的直接原因 通過分析花青素合成途徑中酶基因功能與紫色性狀之間的關系發(fā)現(xiàn):結構基因CHS、F3′5′H、DFR和ANS/LDOX高水平表達與紫色性狀形成關系最為密切。CHS是花青素合成啟動酶,其基因反義表達可以使牽?;ㄗ仙誀钔巳?,邵莉等[23]認為這種現(xiàn)象可能與共抑制有關。F3′5′H是形成飛燕草色素、牽牛花素和錦葵素的關鍵酶(圖2),紫色馬鈴薯缺失F3′5′H基因則塊莖表皮失去紅色和紫色,且F3′5′H對紫色性狀產(chǎn)生的作用在月季花[24]、煙草[25]、美女櫻[26]、香石竹[27]中均通過異源表達得到證實。蕓薹屬蔬菜紫心白菜[17]和紫色甘藍[18]含有飛燕草和錦葵素,不過目前蕓薹屬蔬菜中還未有F3′5′H基因表達水平變化的報道。DFR特異地催化二氫黃酮醇還原成無色的花色素,是花青素合成的瓶頸[28],很多作物紫色性狀的形成與其有關,洋蔥鱗莖缺失DFR時鱗莖失去紫色[29],而異源DFR在白色康乃馨中表達,其花色由白變紫[24]。ANS在花色素苷合成過程中將無色花青素苷元氧化,產(chǎn)生有顏色的花青苷元,ANS缺失可以使藍豬耳花色由藍變白[30],使洋蔥表皮顏色由紫變黃[31],水稻轉入ANS種皮變紫紅色[32]。CHS、DFR和ANS在紫色蕓薹屬作物中的重要作用也逐漸得到驗證,段巖嬌等[7]對紫心大白菜‘11S96中心著色葉和外葉綠色葉片花青素合成途徑中的結構基因進行了熒光定量PCR表達分析,發(fā)現(xiàn)著色葉片中全部花青素合成的結構基因表達水平均上升,其中DFR和ANS基因轉錄水平上調萬倍;張彬[5]對羽衣甘藍的顯紫色的‘紅鴿與不顯紫色‘白鴿、紫甘藍和普通甘藍以及紅菜薹和小青菜的花青素合成相關的結構基因表達進行了分析,發(fā)現(xiàn)ANS和DFR表達量明顯上升是顏色產(chǎn)生差異的原因。紫色花椰菜突變體Pr-D之所以顯色,DFR和LDOX轉錄水平顯著上調是其重要原因[4]。
3 轉錄調控是蕓薹屬蔬菜著色的關鍵
Gonzllez等[33]把擬南芥中花青素合成途徑中的結構基因分為早期合成基因(Early biosynthesis genes,EBGs)CHS、CHI、F3H、F3′H和FLS1與后期合成基因(Late biosynthesis genes,LBGs)DFR和LDOX/ANS等(圖2)。這些結構基因分別受特異的MYB轉錄因子調控,R2R3-MYB類轉錄因子基因AtMYB11/PFG1、AtMYB12/PFG2和AtMYB111/PFG3調控擬南芥所有組織中花青素合成途徑EBGs基因的表達[34],而DFR和ANS/LDOX等LBGs受AtMYB75/PAP1、AtMYB90/PAP2、AtMYB113和AtMYB114轉錄因子基因調控[33,35]。調控DFR和ANS/LDOX基因的MYB類轉錄因子對植物組織著色作用更突出,因此,當調控LBGs的轉錄因子表達水平發(fā)生變化時植物組織顏色會發(fā)生劇烈變化。例如,擬南芥中轉入PAP1基因可以產(chǎn)生紫色性狀[36];葡萄VvMYBA1和VvMYBA2與擬南芥AtMYB75、AtMYB90、AtMYB113和AtMYB144同源,當VvMYBA1的啟動子被反轉錄轉座子插入或VvMYBA2編碼區(qū)存在突變點時,葡萄(Vitis vinifera)失去紅色[37]。蘋果MdMYB10是調控LBGs轉錄的MYB轉錄因子,啟動子中5個重復的23 bp基序使具有自激活特性[38],因此在‘Red Field蘋果品種所有組織中表達而使葉片、花朵和果肉都著紅色。蘋果果實外皮層組織的花青素合成則由MdMYB10 同源基因MdMYB110a調控,兩者在特定的蘋果品種內(nèi)具有保守的功能,對果實成熟的響應及表達模式存在差異[39]。在紫色蕓薹屬蔬菜著色的研究中,Yuan等[22]調查了4個紫色甘藍品種中具有激活花青素合成的[KPRPR(S/T)F]序列,且分析了與擬南芥AtPAP1和AtPAP2同源的4個R2R3-MYB轉錄因子BoMYB1~4的表達情況,結果發(fā)現(xiàn)僅有BoMYB2與紫甘藍著色有關。Chiu等[4]利用精細制譜技術和候選基因篩選的方法鑒定出紫色花椰菜突變體基因Pr是紫色花椰菜著色的決定基因。Pr之所以超量表達是因為啟動子上游插入轉座子,從而使花椰菜顏色顯紫色。通過序列分析表明紫色花椰菜Pr核酸序列與紫甘藍BoMYB2核酸序列的相似度為99.6%,進一步說明紫色蕓薹屬蔬菜中調控LBGs的R2R3-MYB轉錄因子對著色的調控作用。紫心大白菜‘11S96外葉為綠色,球葉呈現(xiàn)不同深度的紫色,段巖嬌等[7]對已在十字花科中獲得的對花青素合成有影響的6個R2R3-MYB轉錄調控因子基因(MYB0、MYB1、MYB2、MYB4、MYB12和MYB111)進行實時熒光定量PCR分析發(fā)現(xiàn),MYB2、MYB4、MYB12和MYB111在整個紫心大白菜中著色部分大幅上調,其中MYB2和MYB4最為顯著,推測這可能是紫心大白菜花青素積累的重要原因。endprint
調控DFR和ANS/LDOX等結構基因轉錄的R2R3-MYB轉錄因子受環(huán)境因子調節(jié)。光是花青素合成調控的重要因素,紫甘藍轉錄因子BoMYB113可能參與光調控花青素合成過程,青甘藍幼苗在光照處理的條件下,BoMYB113表達量差異較高,并有少量花青素合成,但黑暗條件下BoMYB113表達量明顯降低,花青素的含量也幾乎難以測出。紅菜薹和小青菜幼苗BrPAP1、BrPAP2、BrMYB113、BrMYB114同樣受光誘導表達[5]。溫度是影響花青素合成的重要因素,羽衣甘藍品種‘紅鴿是‘白鴿的突變體,常溫下它們的顏色都為綠色,當在低溫下‘紅鴿顯紫色,轉錄因子基因BoPAP1在‘紅鴿受低溫后顯著表達,強烈預示BoPAP1是低溫條件下造成‘紅鴿呈現(xiàn)紫色的原因[5]。缺素也可使植物顯色,擬南芥缺失N素和P素時,轉錄因子基因AtPAP1、AtPAP2、AtGL3和AtMYB12轉錄水平都顯著提高[40]。紫甘藍缺失N素和P素BoMYB2轉錄水平上升,花青素合成量也顯著提高[22]。
轉錄因子R2R3-MYB可以單獨發(fā)揮調節(jié)作用,也可以與bHLH(TT8、GL3和EGL3)[33,35,41,42]以及WD40(TTG1) [42,43]類轉錄因子組成蛋白復合物MYB-bHLH-WD40 (MBW)激活花青素合成的結構基因。MBW調控花青素合成具有物種特異性,玉米中的 MYB類轉錄因子ZmC1需要和bHLH類轉錄因子ZmR或ZmB相互作用后協(xié)同激活結構基因DFR的表達,而ZmC對DFR的激活作用卻不需要bHLH轉錄因子的參與;蘋果MdbHLH3 和MdbHLH33 轉錄因子是MYB類轉錄因子不可或缺的協(xié)作因子[35]。外界低溫條件可誘導MdbHLH3蛋白磷酸化,增強其啟動子結合能力和轉錄活性,進而增強蘋果花青苷的合成[44]。紫色花椰菜[4]和紫甘藍中[22]MYB轉錄因子可能與bHLH組成復合蛋白來激活結構基因的過量表達調節(jié)花青素的合成,因為在BoMYB2轉錄過程中BoTT8同樣大量轉錄,值得注意的是光照和黑暗處理條件下紫甘藍中的BoTT8的表達水平是一致的,這與紫甘藍在黑暗條件下仍然能夠少量積累花青素的現(xiàn)象吻合[5]。在紫菜薹花青素合成過程中結構基因的轉錄對bHLH類轉錄因子的依賴更為明顯,BrTT8與CHS、F3H、ANS、DFR 這4個關鍵結構基因的表達模式是一致的,即在紅菜薹花青素積累的組織中都有高豐度的表達,在紅菜薹沒有花青素積累的組織還有小白菜中的表達量都非常低,但是羽衣甘藍‘紅鴿調控花青素合成的BoPAP1和BoPAP2轉錄因子調控花青素合成卻不依賴于BoTT8[5]。
4 總結與展望
綜上可知,花青素合成受結構基因、調節(jié)基因和環(huán)境因子的影響。蕓薹屬蔬菜紫甘藍BoMYB2和紫色花椰菜Pr基因是兩種蔬菜著色的決定因素,它們上調DFR和ANS/LDOX等基因的表達。紫甘藍內(nèi)葉和外葉的花青素含量相差不大。但是,紫心大白菜花青素含量卻是由外葉到中心葉逐漸增多,形成的機理還不得而知。光敏色素A(phytochromeA,phyA)在極低的光強下能調控光形態(tài)建成,而在高光強條件下易分解,我們推測光通過phyA對紫心白菜著色起調控作用。光照產(chǎn)生抑制因子,抑制花青素合成結構基因的轉錄,而隨著光強的減弱抑制物合成也減少,從而形成白菜的紫心現(xiàn)象。大白菜紫心形成的機制尚需進一步探索。
參 考 文 獻:
[1] 郁有健, 張耀偉, 張德雙. 大白菜紫色性狀的 SRAP 連鎖標記的篩選[J]. 分子植物育種, 2009, 7(3):573-578.
[2] 張寧, 胡宗利, 陳緒清, 等. 植物花青素代謝途徑分析及調控模型建立[J]. 中國生物工程雜志, 2008,28(1):97-105.
[3] 胡雅馨, 李京, 惠伯棣, 等. 藍莓果實中主要營養(yǎng)及花青素成分的研究[J]. 食品科學, 2006, 27(10):600-603.
[4] Chiu L W, Zhou X, Burke S, et al. The purple cauliflower arises from activation of a MYB transcription factor [J]. Plant Physiology, 2010, 154:1470-1480.
[5] 張彬. 蕓薹屬植物花青素生物合成代謝途徑調控機制的研究[D]. 重慶:重慶大學, 2011.
[6] 李長新. 紫色小白菜花青素理化性質研究[D]. 楊凌:西北農(nóng)林科技大學, 2011.
[7] 段巖嬌, 張魯剛, 何瓊, 等. 紫心大白菜花青素積累特性及相關基因表達分析[J].園藝學報, 2012, 39(11):2159-2167.
[8] Clifford M N. Anthocyanins-nature, occurrence and dietary burden [J]. Science of Food and Agriculture, 2000, 80:1063-1072.
[9] Fleschhut J, Kratzer F, Rechkemmer G, et al. Stability and biotransformation of various dietary anthocyanins in vitro [J]. European Journal of Nutrition, 2006, 45(1):7-18.
[10] Arapitsas P, Sjoberg P J R, Turner C, et al. Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry [J]. Food Chemistry, 2008, 109:219-226.endprint
[11] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. The Plant Journal, 2008, 54:733-749.
[12] 任玉林, 李華, 邴貴德. 天然食用色素——花色苷[J]. 食品科學, 1995(16):22-27.
[13] Broun P. Transcriptional control of flavonoid biosynthesis:A complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis [J]. Curr. Opin. Plant Biol., 2005, 8(3): 272-279.
[14] Dixon R A, Xie D Y, Sharma S B. Proanthocyanidins-a final frontier in flavonoid research? [J].New Phytologist, 2005, 165(1):9-28.
[15] Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways [J]. Trends Plant Science, 2005, 10:236-242.
[16] Grotewold E. The genetics and biochemistry of floral pigments[J]. Annu. Rev. Plant Biol., 2006, 57:761-780.
[17] 林文超, 王德森, 劉維信. 紫色白菜花色苷組分鑒定及抗氧化性研究[C]//中國園藝學會十字花科蔬菜分會第十屆學術研討會論文集. 2012.
[18] 王海. 紫甘藍花青素的提取純化、結構鑒定及其生物學作用的研究[D]. 泰安:山東農(nóng)業(yè)大學, 2012.
[19] 王倩. 紫甘藍色素的研究[D]. 無錫:江南大學, 2011.
[20] 劉玉芹, 江婷, 趙先恩, 等. 高效液相色譜-四極桿飛行時間質譜分析紫甘藍和羽衣甘藍中花色苷[J].分析化學, 2011, 39(3):419-424.
[21] McDougall G J, Fyffe S, Dobson P, et al. Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion [J]. Phytochemistry, 2007, 68:1285-1294.
[22] Yuan Y X, Chiu L W, Li L, et al. Transcriptional regulation of anthocyanin biosynthesis in red cabbage [J]. Planta, 2009, 230:1141-1153.
[23] 邵莉, 李毅, 楊美珠, 等. 查爾酮合酶基因對轉基因植物花色和育性的影響[J]. 植物學報,1996, 38(7): 517-524.
[24] Holton T A, Cornish E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. Plant Cell, 1995, 7:1071-1083.
[25] 王宇塵. 轉F3′5′H基因煙草的花色改變[D]. 重慶:西南大學, 2005.
[26] Katsumoto Y, Fukuchi-Mizutani, Fukui Y, et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin [J]. Plant Cell Physiol., 2007, 48(11): 1589-1600.
[27] Tanaka Y, Fukui Y, Fukuchi-Mizutani M et al. Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene [J].Plant and Cell Physiology,1995, 36:1023-1031.
[28] Feyissa D, Lvdal T, Olsen K, et al. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves [J]. Planta, 2009, 230:747-754.
[29] Kim J S, Lee B H, Kim S H, et al. Response to environmental and chemical signals for anthocyanin biosynthesis in non-chlorophyllous corn (Zea mays L.) leaf [J]. Journal of Plant Biology, 2006, 49: 16-25.endprint
[30] 蔣明, 陳孝賞, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表達與序列分析 [J].浙江大學學報:農(nóng)業(yè)與生命科學版,2011, 37(4):393-398.
[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.
[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.
[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.
[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.
[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.
[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.
[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.
[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.
[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.
[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.
[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.
[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.
[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.
[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 東 農(nóng) 業(yè) 科 學 2014,46(11):143~147endprint
[30] 蔣明, 陳孝賞, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表達與序列分析 [J].浙江大學學報:農(nóng)業(yè)與生命科學版,2011, 37(4):393-398.
[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.
[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.
[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.
[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.
[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.
[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.
[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.
[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.
[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.
[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.
[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.
[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.
[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.
[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 東 農(nóng) 業(yè) 科 學 2014,46(11):143~147endprint
[30] 蔣明, 陳孝賞, 李金枝. 紫菜薹花青素合成酶基因BcANS的克隆、表達與序列分析 [J].浙江大學學報:農(nóng)業(yè)與生命科學版,2011, 37(4):393-398.
[31] Kim S, Endress P, Hauser B, et al. Origin of the calyptra and characterization of B class genes in Eupomatia(Eupomatiaceae)[J]. International Journal of Plant Sciences, 2005,166:185-198.
[32] Reddy A M, Reddy V S, Scheffler B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering, 2007, 9: 95-111.
[33] Gonzalez A, Zhao M, Leavitt J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings [J]. Plant, 2008, 53:814-827.
[34] Stracke R, Ishihara H, Huep G, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling [J]. The Plant Journal, 2007, 50:660-677.
[35] Borevitz J O, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. Plant Cell, 2000, 12: 2383-2394.
[36] Tohge T, Nishiyama Y, Hirai M Y, et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor [J]. The Plant Journal, 2005, 42:218-235.
[37] Walker A R, Lee E, Bogs J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes [J]. The Plant Journal, 2007, 49:772-785.
[38] Espley R V, Brendolise C, Chagne D, et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples [J]. Plant Cell, 2009, 21: 168-183.
[39] Chagné D, Lin-Wang K, Espley R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Plant Physiology, 2013, 161(1):225-239.
[40] Lea U S, Slimestad R, Smedvig P, et al. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway[J]. Planta, 2007, 225:1245-1253.
[41] Dubos C, Le Gourrierec J, Baudry A ,et al. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana [J].The Plant Journal, 2008, 55:940-953.
[42] Matsui K. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis [J]. The Plant Journal, 2008, 55:954-967.
[43] Walker A R, Davison P A, Bolognesi-Winfield A C, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein [J]. The Plant Cell Online, 1999, 11(7):1337-1349.
[44] Xie X B, Li S, Zhang R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples [J]. Plant Cell and Environment,2012,35(11):1884-1897. 山 東 農(nóng) 業(yè) 科 學 2014,46(11):143~147endprint