• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    溶膠—凝膠法尺寸選擇性合成ZnO納米顆粒及其光催化性能

    2014-10-23 12:03:14袁慧敏呂林林李亞萍錢東
    關(guān)鍵詞:分散性光催化

    袁慧敏+呂林林+李亞萍+錢東

    摘要在溶膠凝膠合成過程中,分別利用超聲波處理ZnO溶膠、加水至溶膠中煮沸、加庚烷至溶膠中、蒸發(fā)除去部分溶劑等簡單的沉淀方法制備了10 nm以下不同尺寸的ZnO顆粒.在60 ℃下通過超聲波處理ZnO溶膠可得到高質(zhì)量的ZnO納米顆粒,顆粒粒徑為6.2±1.5 nm,標(biāo)準(zhǔn)偏差為8%.同時,基于作者以前的發(fā)現(xiàn),提出了在該溶膠凝膠法中新的ZnO形成機(jī)理.在光催化降解甲基橙過程中,納米ZnO不同的顆粒尺寸及團(tuán)聚情況導(dǎo)致其光催化活性有所差異,具有較小粒徑和團(tuán)聚較輕的ZnO納米顆粒顯示出較高的光催化活性.

    關(guān)鍵詞ZnO納米顆粒;沉淀;溶膠凝膠法;顆粒尺寸;分散性;光催化

    The properties of ZnO nanocrystals are highly dependent on their sizes and agglomeration situations. The synthesis of ZnO nanocrystals with controllable sizes and less agglomerations is still one of the most challenging and urgent topics.

    It is well known that a facile precipitation method is an operative way to synthesize ZnO nanocrystals with different sizes. Hoyer et al[11] precipitated ZnO nanoparticles through the addition of water to the boiling colloidal ZnO solution. Meulenkamp[2] achieved this by using alkanes, e.g., heptane, to precipitate ZnO nanoparticles. In our previous paper[12], we found that sonicating the colloidal ZnO solution could also precipitate ZnO nanoparticles without using any solvents. Inevitably, these different methods for the precipitations of ZnO nanoparticles have effects on the sizes, polydispersities and agglomerations of ZnO nanoparticles.

    Herein, we prepared ZnO nanoparticles with different sizes by diverse facile precipitation methods during a solgel synthesis procedure and investigated the influences of these precipitation methods on the sizes, polydispersities and agglomerations of ZnO nanoparticles. Meanwhile, their photocatalytic properties were also studied and a new mechanism for the formation of ZnO nanocrystals via the solgel route was proposed based on our previous findings.

    1Experimental

    1.1Syntheses of colloidal ZnO solution

    The synthesis of colloidal ZnO solution was similar to the methods described by Meulenkamp[2] and in our previous paper[13]. A 2.86 g (13 mmol) amount of Zn(Ac)2·2H2O was placed in 130 mL of absolute ethanol, and then the mixture was heated to dissolve Zn(Ac)2·2H2O under magnetic stirring. When Zn(Ac)2·2H2O was dissolved completely, the Zn2+containing solution obtained was diluted to 130 mL by the addition of absolute ethanol and cooled to 0 ℃. 0.754 g of LiOH·H2O (18 mmol) was dissolved in 130 mL of absolute ethanol at room temperature under magnetic stirring. The hydroxidecontaining solution was then added dropwise into the Zn2+containing solution at 0 ℃ under stirring. The sol obtained was the mixture of ZnO colloid and an intermediate of hydroxy double salt Zn5(OH)8(Ac)2·2H2O (ZnHDS). The hydroxy double salt could easily transform into ZnO phase through sonicating or heating[13].

    1.2Precipitation of ZnO nanoparticles

    Different methods were employed to treat the colloidal ZnO solution obtained until white precipitates were formed: (1) sonicating the colloidal ZnO solution by an ultrasonic cleaner at 60 ℃ to give sample A, (2) adding 1 mL of water to 50 mL of the colloidal ZnO solution and then boiling it to result in sample B, (3) sonicating the colloidal ZnO solution for 20 min at 0 ℃ to ensure the transformation of the hydroxy double salt intermediate into ZnO phase and then adding heptane to it to lead to sample C, and (4) removing part of the solvent by distillation to produce sample D.

    1.3Characterization of Xray powder diffraction (XRD) and transmission electron microscopy (TEM)

    The XRD patterns of the asprecipitated ZnO nanoparticles were characterized by a RigakuDMax rA 12 kW diffractometer with CuKα radiation (λ=1.54056 ) at an operation voltage and current of 40 kV and 300 mA, respectively. TEM measurements were performed on a JEM2010 microscope operated at an acceleration voltage of 200 kV.

    1.4Photocatalytical degradation of methyl orange

    A 0.20 g amount of the sample A, B, C or D was put into 150 mL of methyl orange solution with a concentration of 20 mg/L. Prior to the irradiation, the suspension was sonicated for 20 min, magnetically stirred in a dark condition for 30 min to establish an adsorption/desorption equilibrium, and then put into a selfassembly reactor. The irradiation resource of the photocatalytic reactor was four 40 W UV lamps set in parallel from the suspension 〖HJ2mm〗surface of 20 cm with a maximum emission at ca. 365 nm. Samples were taken from the reaction suspension at a 20 min interval. The upper lucid liquid obtained after centrifugal separation was analyzed by a UV─Vis spectroscopy.

    2Results and discussion

    2.1XRD analysis of samples

    〖TPS97.TIF;S;Z2;Y1,Y#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.1〖STBZ〗〖WTBZ〗〖ZK(〗XRD patterns of the asprepared samples AD〖ZK)〗

    〖TS)〗

    The XRD patterns of the asprepared samples are shown in Fig.1. The reflections recorded can be indexed to hexagonal ZnO (JCPDS 361451). The peaks are overlapped, which are caused by linebroadening because of the small crystal size. Average crystal sizes for the samples A, B, C and D, estimated by XRD using the Scherrer formula for the (102) reflection, are 6.5, 7.7, 4.7 and 6.4 nm, respectively.

    〖STHZ〗〖WTHZ〗2.2Size distribution and agglomeration situation of samples〖ST〗〖WT〗

    The TEM images and corresponding size histograms of the samples A, B, C and D are presented in Figs. 25, respectively, and the size distributions analyzed from the normal curves and agglomeration situations are listed in Tab.1.

    〖DZ(85mm,85mmK0〗

    〖TPS98.TIF;S*2,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.2〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample A precipitated by sonicating the colloidal ZnO solution〖ZK)〗

    〖TS)〗

    〖TPS99.TIF;S+3.5mm,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.3〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample B precipitated by adding water to the colloidal ZnO solution and then boiling it〖ZK)〗

    〖TS)〗

    〖DZ)〗

    〖DZ(85mm,85mmK0〗

    〖TPS100.TIF;S*2,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.4〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample C precipitated by the addition of heptane to the colloidal ZnO solution〖ZK)〗

    〖TS)〗

    〖TPS101.TIF;S+2.5mm,BP#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.5〖STBZ〗〖WTBZ〗〖ZK(〗TEM image and particle size distribution for the sample D precipitated by evaporating part solvent of the colloidal ZnO solution〖ZK)〗

    〖TS)〗

    〖DZ)〗

    〖KH-1D〗

    〖HJ1.5mm〗〖JZ〗〖WT5"HZ〗〖STHZ〗Tab.1 Size distributions and agglomeration situations of samples A, B, C and D analyzed from their TEM images〖HT5"SS〗

    〖BG(!〗

    〖BHDFG4.5mm,WK30mm,WK40mm,WK50mm,WKW〗

    Samplediameter/nmstandard deviation/%agglomeration situation

    〖BHD〗A6.2±1.58less

    〖BHDW〗B7.4±2.613serious

    〖BH〗C4.6±1.512medium

    〖BH〗D6.6±1.910medium

    〖BG)F〗

    〖HJ1.55mm〗

    Mean diameters of the samples A, B, C and D determined by TEM are 6.2, 7.4, 4.6 and 6.6 nm, respectively, which are in good agreement with the average crystal sizes estimated by XRD. It is well known that the sonochemical synthesis has become a routine method for preparing a wide variety of nanostructured materials[12,14], which is based on the acoustic cavitation resulting from the continuous formation, growth and implosive collapse of bubbles in a liquid. The sample A was precipitated by sonicating the colloidal ZnO solution at 60 ℃, and the ZnO nanoparticles obtained had a rather narrow size distribution with a particle diameter of 6.2±1.5 nm, standard deviation of about 8%, and less agglomeration. The sample B was precipitated through adding 1 mL of water to 50 mL of the colloidal ZnO solution and then boiling it, which gave a particle size of 7.4±2.6 nm, standard deviation of ca. 13%, and serious agglomeration. This may be because that water and heating could accelerate the particle growth, and water could increase the particle agglomeration, which are also confirmed by the samples C and D. The sample C, which was precipitated by adding heptane to the colloidal ZnO solution at 0 ℃, had a particle size of 4.6±1.5 nm, standard deviation of around 12%, and medium agglomeration. However, the TEM image of the sample C is blurred, which could be attributed to the less crystallinity resulting from the low temperature treatment of the colloidal ZnO solution. The polydispersity, mean diameter and agglomeration degree of the sample D decreased in comparison with the sample B probably due to the fact that no water was added to the colloidal ZnO solution produced during the solgel synthesis of ZnO nanoparticles.

    2.3Mechanism for the formation of ZnO nanocrystals

    There are some controversies about the mechanism for the formation of ZnO nanocrystals during the solgel synthesis[13]. In Spanhel and Andersons procedure for the preparation of ZnO, they mentioned an organometallic Zn precursor, containing acetic acid derivatives, produced by refluxing an ethanolic Zn(Ac)2·2H2O solution before the addition of LiOH·H2O [1]. Later, Spanhel et al [15] attributed the organometallic Zn precursor to Zn10O4(Ac)12. However, the precursor was identified to be Zn4O(Ac)6 by Briois et al [16]. In our previous publications[1213], we reported that a hydroxy double salt Zn5(OH)8(Ac)2·2H2O (ZnHDS) intermediate is formed and could directly transform into a ZnO phase in an acetatecontaining solution during the present solgel synthesis of ZnO nanocrystals described above. Therefore, the mechanism for the formation of ZnO nanocrystals in the acetatecontaining solution could roughly be described as:

    4Zn(Ac)2 + H2O → Zn4O(Ac)6 + 2HAc〖JY〗(1)

    5Zn4O(Ac)6 + 22LiOH + 5H2O→ 4Zn5(OH)8(Ac)2 + 22LiAc〖JY〗(2)

    Zn5(OH)8(Ac)2 + 2LiOH5ZnO + 2LiAc + 5H2O〖JY〗(3)

    HAc + LiOH → LiAc + H2O〖JY〗(4)

    In Eq.1 the precursor with probable formula of Zn4O(Ac)6 is formed by the prehydrolysis of the ethanolic Zn(Ac)2·2H2O solution. The ZnHDS intermediate is present after the addition of LiOH·H2O into the ethanolic Zn4O(Ac)6 precursor solution in Eq.2. In Eq.3, the ZnHDS intermediate transforms into ZnO particles by further hydrolysis and the ZnO phase can also transform back to the ZnHDS phase through the dissolution/reprecipitation of ZnO nanoparticles, and a neutralization reaction between acetic acid (HAc) and LiOH exists in Eq.4.

    2.4Photocatalytic activities of samples

    〖TPS102.TIF;%115%115;S*2;Z1,Y#〗〖TS(〗

    〖WT6HZ〗〖STHZ〗Fig.6〖STBZ〗〖WTBZ〗〖ZK(〗Photocatalytic degradation of methyl orange in the presence of the samples AD〖ZK)〗

    〖TS)〗

    Fig.6 exhibits the photocatalytic degradation of methyl orange in the presence of the samples A, B, C and D. After irradiating for 120 min, the degradation rates of methyl orange are 896%, 64.6%, 91.1% and 78.0% for the samples A, B, C and D, respectively. The photocatalytic activities of samples A and C are comparable, being better than the sample D, while the sample B is the worst. The samples A and C have higher photocatalytic activities may be due to their smaller particle sizes and less agglomerations, while the introduction of water and boiling for the sample B leading to the particle growth and serious agglomeration may account for the lowest photocatalytic activity.

    〖HJ1.7mm〗

    3Conclusions

    〖KH-1〗

    ZnO nanoparticles with different sizes less than 10 nm have been successfully synthesized by diverse facile precipitation methods via a solgel route. Different precipitation methods have evident effects on the sizes, polydispersities and agglomerations of ZnO nanoparticles. ZnO nanoparticles, precipitated by sonicating the colloidal ZnO solution at 60 ℃ (sample A), adding water to the colloidal ZnO solution and then boiling it (sample B), adding heptane to the colloidal ZnO solution (sample C), and evaporating part solvent of the colloidal ZnO solution (sample D), have particle diameters of 6.2±1.5, 7.4±2.6, 4.6±1.5 and 6.6±1.9 nm with standard deviations of about 8%, 13%, 12% and 10%, respectively. The agglomeration situation for the sample A is the least, and that for the sample B is the most serious. In the photocatalytic degradation of methyl orange, the samples A and C have the comparably better activities, which can be attributed to their smaller particle sizes and less agglomerations, while the introduction of water and boiling for the sample B leading to the particle growth and serious agglomeration may account for its lowest photocatalytic activity.

    〖WT〗〖HS2〗〖WT5HZ〗References:〖WTBZ〗

    [1]〖ZK(#〗SPANHEL L, ANDERSON M A. Semiconductor clusters in the solgel process: quantized aggregation, gelation, and crystal growth in concentrated ZnO colloid [J]. J Am Chem Soc, 1991,113(8):28262833.

    [2]MEULENKAMP E A. Synthesis and growth of ZnO nanoparticles [J]. J Phys Chem B, 1998,102(29):55665572.

    [3]ZHANG L Y, YIN L W, WANG C X, et al. Solgel growth of hexagonal faceted zno prism quantum dots with polar surfaces for enhanced photocatalytic activity [J]. ACS Appl Mater Interfaces, 2010,2 (6):17691773.

    [4]LI Y, LIU C S. Hydro/solvothermal synthesis of ZnO crystallite with particular morphology [J]. Trans Nonferrous Met Soc China, 2009,19(2):399403.

    [5]HU X L, MASUDA Y, OHJI T, et al. Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate [J]. Langmuir, 2008,24 (14):76147617.

    [6]ZHONG J B, XU B, FENG F M, et al. Fabrication and photocatalytic activity of ZnO prepared by different precipitants using paralled flaw precipitation method [J]. Mater Lett, 2011,65(12):19951997.

    [7]FAN X M, ZHOU Z W, WANG J, et al. Morphology and optical properties of tetrapodlike zinc oxide whiskers synthesized via equilibrium gas expanding method [J]. Trans Nonferrous Met Soc China, 2011,21(9):20562060.

    [8]SARKAR D, TIKKU S, THAPAR V, et al. Formation of zinc oxide nanoparticles of different shapes in waterinoil microemulsion [J]. Colloids Surf A, 2011,381(13):123129.

    [9]TSUZUKI T, MCCORMICK P G. ZnO nanoparticles synthesised by mechanochemical processing [J]. Scripta Mater, 2001,44(89):17311734.〖ZK)〗

    [10]〖ZK(#〗REDMOND G, OKEEFFE A, BURGESS C, et al. Determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J Phys Chem, 1993,97(42):1108111086.

    [11]HOYER P, EICHBERGER R, WELLER H. Spectroelectrochemical investigations of nanocrystalline ZnO films [J]. Ber BunsenGes Phys Chem, 1993,97(4):630635.

    [12]QIAN D, JIANG J Z, HANSEN P L. Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003,3(9):10781079.

    [13]QIAN D, GERWARD L, JIANG J Z. Comment on “Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the solgel route”[J]. J Phys Chem B, 2004,108(39):1543415435.

    [8]SARKAR D, TIKKU S, THAPAR V, et al. Formation of zinc oxide nanoparticles of different shapes in waterinoil microemulsion [J]. Colloids Surf A, 2011,381(13):123129.

    [9]TSUZUKI T, MCCORMICK P G. ZnO nanoparticles synthesised by mechanochemical processing [J]. Scripta Mater, 2001,44(89):17311734.〖ZK)〗

    [10]〖ZK(#〗REDMOND G, OKEEFFE A, BURGESS C, et al. Determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J Phys Chem, 1993,97(42):1108111086.

    [11]HOYER P, EICHBERGER R, WELLER H. Spectroelectrochemical investigations of nanocrystalline ZnO films [J]. Ber BunsenGes Phys Chem, 1993,97(4):630635.

    [12]QIAN D, JIANG J Z, HANSEN P L. Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003,3(9):10781079.

    [13]QIAN D, GERWARD L, JIANG J Z. Comment on “Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the solgel route”[J]. J Phys Chem B, 2004,108(39):1543415435.

    [8]SARKAR D, TIKKU S, THAPAR V, et al. Formation of zinc oxide nanoparticles of different shapes in waterinoil microemulsion [J]. Colloids Surf A, 2011,381(13):123129.

    [9]TSUZUKI T, MCCORMICK P G. ZnO nanoparticles synthesised by mechanochemical processing [J]. Scripta Mater, 2001,44(89):17311734.〖ZK)〗

    [10]〖ZK(#〗REDMOND G, OKEEFFE A, BURGESS C, et al. Determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J Phys Chem, 1993,97(42):1108111086.

    [11]HOYER P, EICHBERGER R, WELLER H. Spectroelectrochemical investigations of nanocrystalline ZnO films [J]. Ber BunsenGes Phys Chem, 1993,97(4):630635.

    [12]QIAN D, JIANG J Z, HANSEN P L. Preparation of ZnO nanocrystals via ultrasonic irradiation [J]. Chem Commun, 2003,3(9):10781079.

    [13]QIAN D, GERWARD L, JIANG J Z. Comment on “Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the solgel route”[J]. J Phys Chem B, 2004,108(39):1543415435.

    猜你喜歡
    分散性光催化
    攪拌對聚羧酸減水劑分散性的影響
    納米SiO2粉體在水泥液相中的分散性
    土體分散性綜合判別方法探討*
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    山西省任莊水庫筑壩土料分散性試驗研究
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    爆轟法合成納米TiO2及其光催化性能
    sPS/PBA-aPS共混體系的相容性及分散性研究
    中國塑料(2016年4期)2016-06-27 06:33:40
    可見光光催化降解在有機(jī)污染防治中的應(yīng)用
    一種高分散性的廢舊氟橡膠膠粉的制備方法
    国产欧美日韩一区二区精品| 熟女电影av网| 两性夫妻黄色片| 日本精品一区二区三区蜜桃| 中文亚洲av片在线观看爽| 啦啦啦观看免费观看视频高清| 成年人黄色毛片网站| 亚洲av成人av| 亚洲成人精品中文字幕电影| 在线观看免费视频日本深夜| 亚洲精品av麻豆狂野| 亚洲avbb在线观看| 久久精品成人免费网站| 精品国产美女av久久久久小说| 免费在线观看影片大全网站| 91字幕亚洲| 国产黄片美女视频| 久久伊人香网站| 欧美另类亚洲清纯唯美| 亚洲色图 男人天堂 中文字幕| 高清毛片免费观看视频网站| 亚洲色图 男人天堂 中文字幕| 亚洲人成电影免费在线| 精品熟女少妇八av免费久了| 久久人妻福利社区极品人妻图片| 色在线成人网| 动漫黄色视频在线观看| xxx96com| 成人国语在线视频| 国产成人欧美在线观看| 国内精品久久久久久久电影| 久久久久九九精品影院| 十八禁人妻一区二区| 日韩大码丰满熟妇| 这个男人来自地球电影免费观看| 欧美黑人巨大hd| а√天堂www在线а√下载| 99国产综合亚洲精品| 色精品久久人妻99蜜桃| 亚洲精品国产精品久久久不卡| 丰满的人妻完整版| 亚洲av美国av| 少妇粗大呻吟视频| 成人国产综合亚洲| 国产亚洲精品一区二区www| 黑人欧美特级aaaaaa片| 观看免费一级毛片| 中文字幕久久专区| 免费在线观看日本一区| 国产熟女xx| 久久青草综合色| 国产伦在线观看视频一区| 国产精品免费视频内射| 老熟妇仑乱视频hdxx| www日本黄色视频网| 波多野结衣高清作品| av有码第一页| 国产亚洲精品久久久久5区| 国产成人影院久久av| 国产日本99.免费观看| 精品国产美女av久久久久小说| 亚洲激情在线av| 男女视频在线观看网站免费 | 亚洲专区国产一区二区| 午夜视频精品福利| 在线观看一区二区三区| 免费无遮挡裸体视频| 国产高清视频在线播放一区| 国产不卡一卡二| 老汉色av国产亚洲站长工具| 亚洲av电影在线进入| 亚洲精品久久国产高清桃花| 国产视频内射| 国产又黄又爽又无遮挡在线| 亚洲专区字幕在线| 999久久久精品免费观看国产| 午夜影院日韩av| 在线免费观看的www视频| 日韩欧美免费精品| tocl精华| 校园春色视频在线观看| 99精品在免费线老司机午夜| 女性被躁到高潮视频| 男人舔女人的私密视频| 一区福利在线观看| 国产精品日韩av在线免费观看| 欧美日韩乱码在线| 国产精华一区二区三区| 成年免费大片在线观看| 制服人妻中文乱码| 久久精品国产综合久久久| 午夜两性在线视频| 午夜福利18| 欧美黄色片欧美黄色片| 精品免费久久久久久久清纯| 在线观看日韩欧美| 亚洲精品国产一区二区精华液| 国产精品野战在线观看| 天天一区二区日本电影三级| 日韩免费av在线播放| 亚洲国产看品久久| 哪里可以看免费的av片| 日日干狠狠操夜夜爽| 99在线视频只有这里精品首页| 久久久久久亚洲精品国产蜜桃av| 九色国产91popny在线| 在线观看舔阴道视频| 中文亚洲av片在线观看爽| 亚洲国产精品999在线| 国产成年人精品一区二区| 18禁美女被吸乳视频| 麻豆国产av国片精品| 精品日产1卡2卡| 黑人欧美特级aaaaaa片| 757午夜福利合集在线观看| 丝袜在线中文字幕| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 99热6这里只有精品| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人看人人澡| 老汉色∧v一级毛片| 国产精品免费一区二区三区在线| 亚洲国产欧美一区二区综合| 特大巨黑吊av在线直播 | 19禁男女啪啪无遮挡网站| 国产色视频综合| www.熟女人妻精品国产| 亚洲午夜精品一区,二区,三区| 精品久久久久久,| 淫秽高清视频在线观看| 亚洲人成电影免费在线| 99精品在免费线老司机午夜| 老司机在亚洲福利影院| 999久久久国产精品视频| 亚洲成人国产一区在线观看| 日本a在线网址| 中文字幕精品亚洲无线码一区 | 色哟哟哟哟哟哟| 岛国视频午夜一区免费看| 日本 欧美在线| 国产单亲对白刺激| 亚洲中文日韩欧美视频| 成人av一区二区三区在线看| 亚洲,欧美精品.| 日本 欧美在线| 午夜久久久在线观看| 欧美国产精品va在线观看不卡| 久久久久亚洲av毛片大全| 久久精品影院6| 成在线人永久免费视频| av福利片在线| 日本一本二区三区精品| 一区二区三区激情视频| 欧美午夜高清在线| 久久久久九九精品影院| www.精华液| 美国免费a级毛片| 免费在线观看影片大全网站| 亚洲精品色激情综合| 少妇裸体淫交视频免费看高清 | 国产一卡二卡三卡精品| 国产精品久久久久久人妻精品电影| 欧美成狂野欧美在线观看| 可以免费在线观看a视频的电影网站| 国产激情欧美一区二区| 老司机在亚洲福利影院| 国产一级毛片七仙女欲春2 | 制服诱惑二区| 成人三级做爰电影| 中文字幕高清在线视频| 侵犯人妻中文字幕一二三四区| 嫩草影视91久久| 精品国产美女av久久久久小说| 亚洲精品中文字幕一二三四区| 国产国语露脸激情在线看| 久久伊人香网站| 免费一级毛片在线播放高清视频| 一级黄色大片毛片| 国产精品久久久av美女十八| 免费高清在线观看日韩| bbb黄色大片| 亚洲第一电影网av| 精品福利观看| 婷婷六月久久综合丁香| 亚洲av第一区精品v没综合| 老司机福利观看| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| 一夜夜www| 成人亚洲精品av一区二区| 在线十欧美十亚洲十日本专区| 午夜福利18| 免费高清在线观看日韩| 女警被强在线播放| 国产成人av激情在线播放| 欧美三级亚洲精品| 亚洲久久久国产精品| 中国美女看黄片| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 精华霜和精华液先用哪个| 叶爱在线成人免费视频播放| 老司机午夜十八禁免费视频| 99国产精品99久久久久| 男人舔女人的私密视频| 露出奶头的视频| 非洲黑人性xxxx精品又粗又长| 亚洲国产日韩欧美精品在线观看 | 国产精品二区激情视频| 桃红色精品国产亚洲av| 在线播放国产精品三级| 老司机在亚洲福利影院| 国产不卡一卡二| 18禁美女被吸乳视频| 国产视频内射| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 美女午夜性视频免费| 欧美激情极品国产一区二区三区| 午夜福利视频1000在线观看| a在线观看视频网站| 国产不卡一卡二| 久久天堂一区二区三区四区| 久久久久久久久久黄片| 亚洲精品国产精品久久久不卡| 日韩欧美免费精品| 免费高清在线观看日韩| 免费女性裸体啪啪无遮挡网站| 久久久久久久久久黄片| 欧美性猛交黑人性爽| 中国美女看黄片| 亚洲av美国av| 黄色丝袜av网址大全| 成年女人毛片免费观看观看9| 天天一区二区日本电影三级| 久久香蕉精品热| 亚洲第一青青草原| 午夜亚洲福利在线播放| 首页视频小说图片口味搜索| 特大巨黑吊av在线直播 | 亚洲熟女毛片儿| 久久久国产欧美日韩av| 国产高清有码在线观看视频 | 久久精品国产99精品国产亚洲性色| 国产亚洲欧美精品永久| 国产1区2区3区精品| 久久久久久久久中文| 精品第一国产精品| 法律面前人人平等表现在哪些方面| 免费女性裸体啪啪无遮挡网站| 麻豆av在线久日| 在线观看免费日韩欧美大片| 琪琪午夜伦伦电影理论片6080| 哪里可以看免费的av片| 男女之事视频高清在线观看| 操出白浆在线播放| 热99re8久久精品国产| 99在线视频只有这里精品首页| 99久久综合精品五月天人人| 欧美最黄视频在线播放免费| 欧美激情久久久久久爽电影| 18禁黄网站禁片免费观看直播| 亚洲激情在线av| 深夜精品福利| 女生性感内裤真人,穿戴方法视频| 亚洲七黄色美女视频| 一边摸一边抽搐一进一小说| a在线观看视频网站| 免费观看精品视频网站| 日韩欧美在线二视频| 国产99久久九九免费精品| 日本成人三级电影网站| 丰满的人妻完整版| 美女高潮到喷水免费观看| 亚洲精品粉嫩美女一区| 女性被躁到高潮视频| 老司机在亚洲福利影院| 日本免费一区二区三区高清不卡| 在线永久观看黄色视频| 午夜亚洲福利在线播放| 色精品久久人妻99蜜桃| 午夜激情福利司机影院| 在线播放国产精品三级| 国产精品1区2区在线观看.| 99国产极品粉嫩在线观看| 久久精品国产清高在天天线| 美女高潮喷水抽搐中文字幕| 免费女性裸体啪啪无遮挡网站| 一个人观看的视频www高清免费观看 | 国产高清有码在线观看视频 | 亚洲精品中文字幕在线视频| 村上凉子中文字幕在线| 天堂√8在线中文| 亚洲人成电影免费在线| 久久伊人香网站| 亚洲中文字幕日韩| 午夜免费成人在线视频| 国产欧美日韩一区二区三| a级毛片a级免费在线| 免费高清视频大片| 久久亚洲真实| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久亚洲精品国产蜜桃av| 天堂动漫精品| av超薄肉色丝袜交足视频| 视频在线观看一区二区三区| 精品久久久久久久久久免费视频| 无限看片的www在线观看| 久久亚洲精品不卡| 成人免费观看视频高清| 国产亚洲av嫩草精品影院| 国产亚洲精品av在线| 国产乱人伦免费视频| 婷婷精品国产亚洲av在线| 久久99热这里只有精品18| 亚洲狠狠婷婷综合久久图片| 亚洲成人久久爱视频| 欧美中文综合在线视频| 女性被躁到高潮视频| 1024手机看黄色片| 久久草成人影院| 欧美一级a爱片免费观看看 | 亚洲在线自拍视频| 看片在线看免费视频| 日本 av在线| 亚洲国产欧洲综合997久久, | x7x7x7水蜜桃| 欧美国产日韩亚洲一区| 婷婷丁香在线五月| 成人国产综合亚洲| 国产亚洲av高清不卡| 亚洲国产精品合色在线| 欧美成人性av电影在线观看| 国产v大片淫在线免费观看| 女同久久另类99精品国产91| 日本五十路高清| 此物有八面人人有两片| 无遮挡黄片免费观看| 国产1区2区3区精品| 熟女少妇亚洲综合色aaa.| 日韩中文字幕欧美一区二区| 丝袜在线中文字幕| 亚洲欧美一区二区三区黑人| 亚洲男人天堂网一区| 亚洲黑人精品在线| 日韩欧美免费精品| 最新在线观看一区二区三区| www国产在线视频色| 身体一侧抽搐| 老司机在亚洲福利影院| 看黄色毛片网站| av天堂在线播放| 欧美性猛交╳xxx乱大交人| 欧美激情高清一区二区三区| 国产成人av教育| 国产免费男女视频| 999久久久国产精品视频| 亚洲aⅴ乱码一区二区在线播放 | 国产精品九九99| 又大又爽又粗| 老司机午夜福利在线观看视频| 少妇 在线观看| 亚洲欧美日韩无卡精品| 久久中文字幕人妻熟女| 久久性视频一级片| 成熟少妇高潮喷水视频| 久久热在线av| 欧美性长视频在线观看| 婷婷精品国产亚洲av在线| 在线观看一区二区三区| 欧美色视频一区免费| 精品久久久久久久久久久久久 | 国产精品乱码一区二三区的特点| av免费在线观看网站| 一区二区日韩欧美中文字幕| 欧美性猛交╳xxx乱大交人| 国产人伦9x9x在线观看| 欧美乱色亚洲激情| 亚洲 国产 在线| 免费在线观看影片大全网站| 亚洲av美国av| 国内精品久久久久久久电影| 在线国产一区二区在线| 男人舔奶头视频| 叶爱在线成人免费视频播放| 国产又黄又爽又无遮挡在线| 久久 成人 亚洲| 18禁观看日本| 色播亚洲综合网| 99久久综合精品五月天人人| 亚洲午夜理论影院| 久久精品国产亚洲av香蕉五月| 成在线人永久免费视频| 嫁个100分男人电影在线观看| 色综合婷婷激情| 动漫黄色视频在线观看| 日韩欧美免费精品| aaaaa片日本免费| 男女那种视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 高清在线国产一区| 黄色a级毛片大全视频| 国产人伦9x9x在线观看| 日日夜夜操网爽| 亚洲国产欧美日韩在线播放| 日韩欧美一区二区三区在线观看| 亚洲精品粉嫩美女一区| 天堂动漫精品| 日本一区二区免费在线视频| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 禁无遮挡网站| 婷婷亚洲欧美| 少妇裸体淫交视频免费看高清 | av天堂在线播放| 久久久久久国产a免费观看| 午夜免费激情av| 少妇的丰满在线观看| 少妇粗大呻吟视频| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 高清毛片免费观看视频网站| 91在线观看av| 欧美又色又爽又黄视频| 欧美性猛交黑人性爽| 91老司机精品| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 久久久久久亚洲精品国产蜜桃av| 免费一级毛片在线播放高清视频| 日本 av在线| 精品熟女少妇八av免费久了| 久久国产精品影院| 久久久久久久久久黄片| 久久香蕉激情| 一边摸一边做爽爽视频免费| 免费电影在线观看免费观看| 欧美人与性动交α欧美精品济南到| 国产伦在线观看视频一区| 久久国产乱子伦精品免费另类| 成人午夜高清在线视频 | 色哟哟哟哟哟哟| 亚洲中文av在线| 亚洲成国产人片在线观看| 久久草成人影院| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 日本一区二区免费在线视频| 亚洲一区二区三区不卡视频| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| 国产又爽黄色视频| av视频在线观看入口| 男男h啪啪无遮挡| 岛国在线观看网站| 在线观看一区二区三区| 国产视频内射| 国产精品1区2区在线观看.| 日本免费a在线| 伦理电影免费视频| 国产在线观看jvid| 精品久久久久久久末码| 两个人看的免费小视频| 丝袜在线中文字幕| 一边摸一边抽搐一进一小说| 啦啦啦韩国在线观看视频| 麻豆久久精品国产亚洲av| 国产精品野战在线观看| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 亚洲国产欧洲综合997久久, | 国产在线精品亚洲第一网站| 好看av亚洲va欧美ⅴa在| 精品福利观看| 99久久精品国产亚洲精品| 久久久久免费精品人妻一区二区 | 国产高清有码在线观看视频 | 脱女人内裤的视频| 久久婷婷人人爽人人干人人爱| а√天堂www在线а√下载| 757午夜福利合集在线观看| 国产91精品成人一区二区三区| 久久久国产成人免费| 女同久久另类99精品国产91| 国产亚洲精品第一综合不卡| 国产精品自产拍在线观看55亚洲| 黄片大片在线免费观看| 最新美女视频免费是黄的| 亚洲三区欧美一区| 国产午夜精品久久久久久| 久久精品成人免费网站| 国产精品永久免费网站| 变态另类成人亚洲欧美熟女| 亚洲黑人精品在线| 精品第一国产精品| 人人妻,人人澡人人爽秒播| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 欧美日韩精品网址| 日日干狠狠操夜夜爽| 欧美久久黑人一区二区| 日本五十路高清| 亚洲人成伊人成综合网2020| 亚洲av中文字字幕乱码综合 | 免费搜索国产男女视频| 欧美一级毛片孕妇| 中文资源天堂在线| 久久人人精品亚洲av| 99热6这里只有精品| 9191精品国产免费久久| 久久精品aⅴ一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 777久久人妻少妇嫩草av网站| 人成视频在线观看免费观看| 老司机午夜十八禁免费视频| 亚洲欧美日韩高清在线视频| ponron亚洲| 真人一进一出gif抽搐免费| 91在线观看av| 国产黄a三级三级三级人| 日韩一卡2卡3卡4卡2021年| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美国产日韩亚洲一区| 亚洲三区欧美一区| 女生性感内裤真人,穿戴方法视频| 成人一区二区视频在线观看| 亚洲精品中文字幕在线视频| 久久久精品欧美日韩精品| 亚洲成a人片在线一区二区| 免费在线观看视频国产中文字幕亚洲| 少妇被粗大的猛进出69影院| 免费人成视频x8x8入口观看| 757午夜福利合集在线观看| 午夜福利欧美成人| 人人妻人人澡人人看| 99久久久亚洲精品蜜臀av| 午夜亚洲福利在线播放| 国产人伦9x9x在线观看| 草草在线视频免费看| 一进一出抽搐动态| 亚洲欧美激情综合另类| 一级毛片高清免费大全| 国产精品一区二区三区四区久久 | 欧美黄色淫秽网站| 曰老女人黄片| 精品国产乱码久久久久久男人| 亚洲第一电影网av| 日韩欧美一区二区三区在线观看| 国产国语露脸激情在线看| 一本大道久久a久久精品| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 午夜视频精品福利| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 精品国产超薄肉色丝袜足j| 国产免费av片在线观看野外av| 婷婷丁香在线五月| 亚洲 国产 在线| 99久久精品国产亚洲精品| 国产黄片美女视频| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 黄网站色视频无遮挡免费观看| 黄色视频,在线免费观看| 中文字幕精品免费在线观看视频| 亚洲,欧美精品.| 精品欧美国产一区二区三| 老熟妇仑乱视频hdxx| 日本a在线网址| 亚洲精品一卡2卡三卡4卡5卡| videosex国产| 国产精品久久久av美女十八| av有码第一页| 女人被狂操c到高潮| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 欧洲精品卡2卡3卡4卡5卡区| 欧美一级a爱片免费观看看 | 日本一本二区三区精品| 国产一区二区激情短视频| 久久热在线av| 亚洲av电影在线进入| 99国产精品99久久久久| 18禁美女被吸乳视频| 夜夜躁狠狠躁天天躁| 亚洲性夜色夜夜综合| 成人一区二区视频在线观看| 亚洲七黄色美女视频| 亚洲三区欧美一区| 老鸭窝网址在线观看| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 少妇 在线观看| 亚洲成av片中文字幕在线观看| 窝窝影院91人妻| 成人欧美大片| 国产午夜福利久久久久久| 欧美乱妇无乱码| 成人永久免费在线观看视频| 1024视频免费在线观看| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 一级毛片女人18水好多| 日韩视频一区二区在线观看| 黄色丝袜av网址大全| 变态另类丝袜制服| 国产亚洲欧美精品永久| 精品国产美女av久久久久小说| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av在线| 国产精品久久电影中文字幕|