• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    熱處理溫度對鋰氧氣電池用Co-N/C催化劑催化性能的影響

    2014-10-18 05:27:40陽炳檢黃博文廖小珍何雨石馬紫峰
    物理化學學報 2014年1期
    關鍵詞:化工學院物理化學學報

    陽炳檢 王 紅 李 磊 黃博文 廖小珍 何雨石 馬紫峰

    (上海交通大學化學化工學院化學工程系電化學與能源技術研究所,上海 200240)

    1 Introduction

    Metal-air battery has attracted much attention as a possible alternative energy conversion and storage devices because of its extremely high energy density compared to that of other re-chargeable batteries.1-5However,despite some progresses that have been reported on cathode materials and electrolytes,there are several key challenges that limit the practical use of this battery system.One of the most important issues is to develop inexpensive and effective oxygen reduction reaction/oxygen evolution reaction(ORR/OER)catalysts,which play key roles in Li/O2batteries.6-10Until now,noble metals such as Pt,Au and their alloys as ORR/OER catalysts in Li/O2battery have shown the best overall catalytic performance.11-13However,the high price and scarcity of precious metals severely limit their wide spread applications.Therefore,developing alternative,low cost catalysts to reduce or completely replace Pt,Au-based catalysts is necessary.

    It has been demonstrated that transition-metal macrocycles such as phthalocyanine,porphyrin,and their derivatives have high catalytic activity towards the oxygen reduction reaction after pyrolysis.Furthermore,cobalt phthalocyanine showed considerable catalytic activity toward electrochemical ORR/OER in Li/O2battery reported by Abraham and Jiang.14Despite insufficient activity and stability compared to Pt-based catalysts,non-noble metal-nitrogen catalysts can be applied as promising catalysts for Li/O2batteries.14-16,20-22Since it has been found that simple nitrogen ligands also have the same ORR catalyst performance as the organic macrocycles,we used a simple and cheap chemical called phenanthroline(phen)as N-containing ligand to prepare the cobalt-phen(Co-phen)complex.The asprepared Co-phen complexes were coated on BP2000 and then heat-treated at different temperatures(600-900°C)in an inert atmosphere to achieve ORR/OER electrocatalysts.The catalysts obtained at different calcination temperatures were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)analyses.The ORR/OER activities of the prepared catalysts were characterized in an alkaline medium and an organic electrolyte,respectively,using rotating disk electrode(RDE).The Li/O2cell performance of the prepared catalysts was investigated.

    2 Experimental

    The Co-N/C catalysts were prepared using BP2000(American Cabot Co.)as carbon support.The BP2000 carbon was activated by refluxing with 30%H2O2(AR)over night,washed with de-ionized water and then dried in a vacuum oven at 100°C for 4 h.The dried BP2000 powder was milled for 2 h in a planetary mill(Fritsch Pulversette-6)with an agate vessel.

    Following is the preparing procedure for the Co-N/C electrocatalysts.First,0.126 g cobalt acetate was dissolved in 25 mL ethanol(AR)and 0.202 g phenanthroline(99%)ligand was added to form Co(phen)2chelate.The obtained solution was mixed with 1.0 g activated BP2000 for 1 h under ultrasonic condition and then kept stirring for 2 h.After drying to remove ethanol,the resulting powder was calcinated at 600,700,800,and 900°C,respectively,for 90 min under an argon atmosphere to obtain final Co-N/C products.

    For comparison,the cobalt(II)tetramethoxyphenylporphyrin(CoTMPP/C)electrocatalyst was also prepared as following:0.405 g cobalt tetramethoxyphenylporphyrin(96%,Aldrich)was dispersed in ethanol.The obtained suspension was mixed with 1.0 g activated BP2000 for 1 h under ultrasonic condition and then kept stirring for 2 h.After drying to remove ethanol,the resulting powder was calcinated at 800°C for 90 min under an argon atmosphere to obtain final CoTMPP/C product with 2.61%(w,mass fraction)Co loading.

    The prepared Co-N/C catalysts and BP2000 were characterized using X-ray diffraction(D/max-2200/PC,Rigaku Co.Ltd.,Tokyo,Japan)with filtered Cu Kαradiation.The XRD patterns were collected at room temperature by step scanning at the range of 20°≤2θ≤80°.Cobalt content in the samples was determined by inductively coupled plasma mass spectrometer(Agilent 7500cx)and Nitrogen elemental analysis was conducted by Elementar Vario EL-III/Isoprime.XPS experiments were carried out on a KratosTMAxis Ultra DLD surface analysis instrument with Al Kαradiation(hv=1486.6 eV).The binding energy scale was calibrated with the C 1s peak(284.8 eV)of adventitious carbon on the sample surface.

    The catalytic activity toward ORR was evaluated by RDE measurements using a CHI RRDE-3A system.The catalyst ink was prepared by sonicating 5 mg of material in 30 μL of Nafion(5%(w))and 1 mL of Milli-Q H2O.8 μL of the suspension was deposited onto a polished tip of the RDE of 3 mm diameter(catalyst loading:40 μg)and dry at room temperature.All electrochemical measurements were performed at room temperature in the RDE electrochemical cell using an Ag/AgCl reference electrode,a Pt wire counter electrode and 0.1 mol·L-1aqueous KOH solution as electrolyte.For ORR and OER measurements in 1 mol·L-1lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)/propylene carbonate(PC):diethyl carbonate(DEC)solution,the catalyst ink was deposited onto a polished tip of the RDE and dry at 40°C.Pt wires were used as reference electrode and counter electrode,which was calibrated against the Li metal electrode in 1 mol·L-1LiTFSI/PC:DEC solution.

    The oxygen electrodes were prepared by casting a mixture of Co-N/C catalysts and polytetrafluoroethylene(PTFE)binder in a mass ratio of 85:15 onto carbon paper.The electrode disks with a diameter of 20 mm were punch and then dried at 120°C for 8 h.The mass load of catalyst layer was 2 mg·cm-2.The lithium-oxygen cells with Li metal as anode,oxygen electrode as cathode,and polymer electrolyte membrane(polyvinylidenefluoride-hexafluoro propylene(PVDF-HFP))as separator were assembled for electrochemical test.The polymer electrolyte membrane was soaked in the electrolyte(consisting of 1 mol·L-1LiTFSI(99%,Aladdin)dissolved in a mixture of PC and DEC(1:1 in volume)before assembly.All processes of assembling and dismantling the battery cells were carried out in an argon atmosphere in a glove box.

    The Li/O2batteries were tested in 105Pa oxygen atmosphere using a battery test system(LAND CT2001 A model,Wuhan Jinnuo Electronic Co.,Ltd.)at 25°C.Discharge/charge curves were recorded galvanostatically with various current densities at the voltage range of 4.5-2.0 V.The specific capacities are normalized with respect to the mass of catalyst in the cathode.All measurements were carried out under oxygen atmosphere.

    3 Results and discussion

    Powder XRD patterns of the prepared Co-N/C catalysts with different calcination temperatures,and also the carbon support BP2000 are displayed in Fig.1.It was observed that the samples calcinated at 900 and 800°C showed two small sharp peaks at around 44°and 52°,corresponding to the Co(111),and Co(200)planes of a face-centered cubic(fcc)crystalline α-Co phase(PDF No.89-4307),while no obvious peaks at the same place were detected for the other samples calcinated at lower temperature.These results indicate that cobalt crystallized when the heat-treating temperature was up to 800°C.Fig.2 displays the results of element analysis.It can be seen that the cobalt content of the prepared four Co-N/C samples(600,700,800,and 900°C)was in the range of 2.41%-2.64%.In the other hand,the total nitrogen content in the samples decreased obviously with the calcinating temperature due to the pyrolysis of the N containing component.This phenomenon was also reported by other researchers.23

    Fig.1 XRD patterns of the carbon supported BP2000 and Co-N/C catalysts with different calcination temperatures

    Fig.2 Total cobalt and nitrogen contents(w)of the Co-N/C catalysts prepared from different calcination temperatures

    To characterize the nitrogen species on the surface of the catalyst samples,XPS analyses of N 1s were recorded as shown in Fig.3.It can be seen that there were three types of nitrogen on the catalyst surface with binding energies of 398.5-398.6 eV,400.4-401.1 eV,and 402.2-403.7 eV,which may be assigned to pyridinic-type N,pyrrolic-type N,and highly coordinated N atoms(N atoms bound to three carbon atoms within a graphene layer),respectively.With the calcination temperature increased from 600 to 900°C,the proportion of pyrrolic-N decreased significantly.Part of pyrrolic-N was gradually converted to pyridinic-N and highly coordinated nitrogen with the increased temperature.The pyridinic-N and highly coordinated N as the active sites play an important role in oxygen reduce reaction.It is known that O2molecules prefer to adsorb at carbon sites on graphene-like zigzag edges where highly coordinated N is located nearby.24According to density functional theory(DFT)calculation,the presence of pyridine-type N species in graphene structure can activate oxygen reduction.24The experimental results in literature25,26showed that the catalysts with a higher content of highly coordinated N had higher ORR activity.

    The effect of calcination temperature on the ORR catalytic activity of Co-N/C catalysts was investigated in aqueous 0.1 mol·L-1KOH solution,as shown in Fig.4a.The ORR performance of the CoTMPP/C catalyst and bare BP2000 were also compared with the Co-N/C catalysts.It can be seen that the Co-N/C catalysts exhibited obviously superior electrochemical performance to the bare BP2000,and closed to the CoTMPP/C catalyst.Furthermore,the catalyst Co-N/C(800°C)showed slightly higher limiting current density and more positive ORR half-wave potential than the other Co-N/C samples.The catalytic performance of Co-N/C(800°C)is comparable to CoTMPP/C catalyst.It seems that 800°C is a proper calcination temperature for preparing high performance Co-N/C catalyst.It is known that nitrogen plays an importance role in the active site of carbon materials for ORR catalysts.24-26From Fig.3 it can be seen that the Co-N/C(800°C)sample showed higher proportion of the active pyridinic-type N and highly coordinated N.In the other hand,when calcination temperature increased to 900°C,the total N content decreased to a very low value,which was disadvantage to the catalytic activity of the catalyst.The number of cobalt active sites is another important factor that closely related to the behavior of the oxygen cathode.XRD patterns in Fig.1 show that Co-N/C(900°C)sample exhibited a sharp XRD peak at 44.2°of metallic Co(111),while only a very small peak at the same place was observed for Co-N/C(800°C).This result may indicate that cobalt nanoparticles agglomerated when the sample was calcinated at 900°C,which decreased the number of cobalt active sites.

    Fig.3 XPS spectra of N 1s in the Co-N/C catalysts at different calcination temperatures

    Fig.4 Comparison of the voltammetry curves for the Co-N/C,CoTMPP/C,and BP2000 at the rotation rate of 3600 r·min-1 in oxygen-saturated solution

    We further characterized the ORR catalytic activity of the Co-N/C catalysts in a non-aqueous electrolyte of O2-saturated 1 mol·L-1LiTFSI/PC:DEC as shown in Fig.4b.It is clear that the Co-N/C(700,800°C)samples showed similar electrochemical activity as CoTMPP/C electrode,and superior to the other samples.The half-wave potentials of CoTMPP/C,Co-N/C(700 °C),and Co-N/C(800 °C)electrodes were 2.53,2.54,and 2.52 V(vs Li/Li+),respectively.According to the results in Fig.4a and Fig.4b,the proper heat treating temperature for Co-N/C catalyst is 700-800°C.

    We further study the ORR and OER catalytic activity of Co-N/C(800°C)sample in non-aqueous electrolyte,the cyclic voltammograms were measured in O2.As shown in Fig.5,a pair of redox peaks was detected with anodic peak at 2.5 V and cathodic peak at 3.4 V at a scan rate of 10 mV·s-1under O2atmosphere,which indicates excellent ORR and OER activity of the Co-N/C(800°C)catalysts.Furthermore,it is interesting to find that the oxygen reduction overpotential of CoTMPP/C catalyst was larger than Co-N/C catalyst,and the oxidic peak(OER)of CoTMPP/C catalyst was obviously smaller than that of Co-N/C catalyst.These results suggested that the Co-N/C(800°C)catalyst could be an effective ORR and OER catalyst for Li/O2cells.

    The number of electrons involved in the ORR is an important parameter for evaluating the catalyst performance.Rotating disk electrode(RDE)voltammetry measurements for Co-N/C catalysts in both aqueous 0.1 mol·L-1KOH and non-aqueous 1 mol·L-1LiTFSI/PC:DEC electrolytes were conducted at various rotation rates(Fig.6A and Fig.7A,respectively).The Koutecky-Levich(K-L)equation is used to analyze the RDE data.27,28

    Fig.5 CVs of the Co-N/C,CoTMPP/C,and BP2000 catalysts in oxygen-saturated 1 mol·L-1 LiTFSI-PC:DEC solution

    In the above equations,i is the current at different potentials,ikand idare the kinetic and diffusion limited currents respectively,F is Faraday constant,A is the electrode area,ω is angular velocity,C0is bulk concentration of O2in the electrolyte solution,DOis the diffusion coefficient of O2,and v is the kinematic viscosity of the solution.27Fig.6b and Fig.7b show typical K-L plots for oxygen reduction in 0.1 mol·L-1NaOH and non-aqueous 1 mol·L-1LiTFSI/PC:DEC electrolytes,respectively.The numbers of electron transferred per O2molecule in ORR is calculated from the slopes of K-L plots,which were~3.7 in aqueous 0.1 mol·L-1KOH electrolyte and~1.7 in LiTFSI/PC:DEC electrolyte.It is clear that the catalytic activity of Co-N/C is similar to the typical transition-metal macrocycle electrocatalyst CoTMPP/C.17-19We speculate that the product of reduction should be Li2O2or Li2O in non-aqueous Li/O2cell.

    A rechargeable Li/O2cell using Co-N/C(800°C)as cathode catalyst was fabricated and characterized.The cell performance of the CoTMPP/C catalyst and bare BP2000 were also compared with the Co-N/C catalyst.Fig.8 shows the discharge and charge behavior of these Li/O2cells at 0.1 mA·cm-2.It can be seen that the Co-N/C cell exhibited very similar performance with Li/O2(CoTMPP/C)cell,which was obvious superior to BP2000 cell.The Co-N/C cathode showed a constant discharge potential plateau at about 2.9-2.7 V(vs Li/Li+).The first discharge capacities of the Li/O2(Co-N/C)cell was 3221 mAh·g-1,which is slightly higher than the Li/O2(CoTMPP/C)cell(3195 mAh·g-1,with potential plateau at around 2.9-2.7 V(vs Li/Li+)).The Li/O2cell performance of the catalysts was consistent with the results of RDE measurement.Fig.9 further compares the rate performance of Li/O2(Co-N/C)cell and Li/O2(CoTMPP/C)cell.It is clear that the Co-N/C catalyst show comparable performance to CoTMPP/C at all the three test current densities.The discharge capacities of the Li/O2(Co-N/C)cell were 2502 mAh·g-1(0.15 mA·cm-2)and 2101 mAh·g-1(0.2 mA·cm-2),respectively.The good performance of Co-N/C cathode was attributed to the cobalt-nitrogen catalyst which played a key role to promote the ORR and OER reversibility.

    Fig.7 (a)RDE voltammograms of the Co-N/C catalysts in oxygen-saturated 1 mol·L-1 LiTFSI/PC:DEC solution at a scan rate of 10 mV·s-1;(b)Koutecky-Levich plots at different potentials

    Fig.8 Discharge and charge curves corresponding to the first cycle for the Co-N/C,CoTMPP/C,and BP2000 cathodes at 0.1 mA·cm-2

    Fig.9 Discharge and charge curves at different current densities corresponding to the first cycle for the Co-N/C and CoTMPP/C cathodes

    Fig.10 Cycling performance of the Li/O2using Co-N/C(800 °C)as cathode at 0.1 mA·cm-2

    Fig.10 shows the cycling performance of the Li/O2using Co-N/C(800°C)as cathode catalyst.The discharge-charge current density was 0.1 mA·cm-2.The initial discharge capacity of the Co(phen)2/C cathode was 3221 mAh·g-1,which dropped to 2267 mAh·g-1at the second cycle and retained a value of 819 mAh·g-1after 8 cycles.Further work on optimizing air electrodes,developing good performance electrolytes is necessary to improve the Li/O2cell cycling performance.

    4 Conclusions

    The Co-N/C non-noble metal electrocatalysts were synthesized by calcinating cobalt phenanthroline(phen)chelate,which was coated on a carbon support BP2000.The influences of calcination temperature on the catalytic activities of the obtained catalysts have been investigated using cyclic voltammogram and rotating-disk electrode in oxygen saturated in aqueous KOH and non-aqueous PC/DEC electrolyte.The Co-N/C samples calcinated at 700 and 800°C showed higher activity than those calcinated at 600 and 900°C.The Li/O2cell using Co-N/C(800°C)catalyst shows comparable performance with the cell using typical CoTMPP/C catalyst.The cheap Co-N/C catalyst may be a promising candidate for practical application in rechargeable Li/O2cells.

    (2)Lee,J.S.;Kim,S.T.;Cao,R.;Choi,N.S.;Liu,M.;Lee,K.T.;Cho,J.Adv.Energy Mater.2011,1,34.doi:10.1002/aenm.201000010

    (3)Peng,Z.;Freunberger,S.A.;Chen,Y.;Bruce,P.G.Science 2012,337,563.doi:10.1126/science.1223985

    (4)Wang,H.;Liao,X.Z.;Li,L.;Chen,H.;Jiang,Q.Z.;He,Y.;Ma,Z.F.J.Electrochem.Soc.2012,159,A1874.

    (5)Lu,J.;Qin,Y.;Du,P.;Luo,X.;Wu,T.;Ren,Y.;Wen,J.;Miller,D.J.;Millera,J.T.;Amine,K.RSC Adv.2013,3,8276.doi:10.1039/c3ra40451j

    (6)Christensen,J.;Albertus,P.;Sanchez-Carrera,R.S.J.Electrochem.Soc.2012,159,R1.

    (7)Huang,B.W.;Liao,X.Z.;Wang,H.;Wang,C.N.;He,Y.S.;Ma,Z.F.Journal of Electrochemical Society 2013,160,A1112.

    (8)Kraytsberg,A.;Ein-Eli,Y.J.Power Sources 2011,196,886.doi:10.1016/j.jpowsour.2010.09.031

    (9)Wang,H.;Liao,X.Z.;Jiang,Q.Z.;Yang,X.W.;He,Y.S.;Ma,Z.F.Chin.Sci.Bull.2012,57,1959.doi:10.1007/s11434-011-4944-7

    (10)Débart,A.;Bao,J.;Armstrong,G.;Bruce,P.G.Angew.Chem.Int.Edit.2008,47,4521.

    (11)Lu,Y.C.;Xu,Z.;Gasteiger,H.A.;Chen,S.;Kimberly,H.;Yang,S.H.J.Am.Chem.Soc.2010,132,12170.doi:10.1021/ja1036572

    (12)Lu,Y.C.;Gasteiger,H.A.;Parent,M.C.;Vazrik,C.;Yang,S.H.Electrochem.Solid-State Lett.2010,13,A69.

    (13)Thapa,A.K.;Saimen,K.;Ishihara,T.Electrochem.Solid-State Lett.2010,13,A165.

    (14)Abraham,K.M.;Jiang,Z.J.Electrochem.Soc.1996,143,1.doi:10.1149/1.1836378

    (15)Wu,J.;Park,H.W.;Yu,A.;Higgins,D.;Chen,Z.J.Phys.Chem.C 2012,116,9427.doi:10.1021/jp301644e

    (16)He,P.;Wang,Y.G.;Zhou,H.S.Chem.Commun.2011,47,10701.doi:10.1039/c1cc14144a

    (17)Xu,L.;Qiao,J.L.;Ding,L.;Hu,L.Y.;Liu,L.L.;Wang,H.J.Acta Phys.-Chim.Sin.2011,27,2251.[徐 莉,喬錦麗,丁 蕾,胡隆宇,劉玲玲,王海江.物理化學學報,2011,27,2251.]doi:10.3866/PKU.WHXB20111015

    (18)Dai,X.F.;Zheng,M.F.;Xu,P.;Shi,J.J.;Ma,C.Y.;Qiao,J.L.Acta Phys.-Chim.Sin.2013,29,1753.[戴先逢,鄭明富,徐 攀,石晶晶,馬承禺,喬錦麗.物理化學學報,2013,29,1753.]doi:10.3866/PKU.WHXB201306141

    (19)Cao,C.H.;Lin,R.;Zhao,T.T.;Huang,Z.;Ma,J.X.Acta Phys.-Chim.Sin.2013,29,95.[曹春暉,林 瑞,趙天天,黃 真,馬建新.物理化學學報,2013,29,95.]doi:10.3866/PKU.WHXB201209272

    (20)Wang,H.;Liao,X.Z.;Jiang,Q.Z.;Yang,X.W.;He,Y.;Ma,Z.F.Chin.Sci.Bull.2012,57,1.doi:10.1007/s11434-011-9935-1

    (21)Yoo,E.;Nakamurab,J.J.;Zhou,H.S.Energy Environ.Sci.2012,5,6928.doi:10.1039/c2ee02830a

    (22)Li,Y.L.;Wang,J.J.;Li,X.F.;Geng,D.S.;Banis,M.N.;Li,R.Y.;Sun,X.L.Electrochem.Commun.2012,18,12.doi:10.1016/j.elecom.2012.01.023

    (23)Taigo,O.;Takaaki,M.;Shuichi,S.;Jun,K.;Kenji,Y.;Takao,Y.Catalysis Communications 2014,43,66.doi:10.1016/j.catcom.2013.09.011

    (24)Ikeda,T.;Boero,M.;Huang,S.F.;Terakura,K.;Oshima,M.;Ozaki,J.I.J.Phys.Chem.C 2008,112,14706.doi:10.1021/jp806084d

    (25)Niwa,H.;Horiba,K.;Harada,Y.;Oshima,M.;Ikeda,T.;Terakura,K.;Ozaki,J.;Miyata,S.J.Power Sources 2009,187,93.doi:10.1016/j.jpowsour.2008.10.064

    (26)Liu,G.;Li,X.;Lee,J.W.;Popov,B.N.Catal.Sci.Technol.2011,1,207.doi:10.1039/c0cy00053a

    (27)Bard,A.J.;Faulkner,L.R.Electrochemical Methods,2nd ed.;John Wiley&Sons:New York,2004.

    (28)Dilimon,V.S.;Venkata Narayanan,N.S.;Sampath,S.Electrochimica Acta 2010,55,5930 doi:10.1016/j.electacta.2010.05.047

    猜你喜歡
    化工學院物理化學學報
    使固態(tài)化學反應100%完成的方法
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    致敬學報40年
    Chemical Concepts from Density Functional Theory
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    學報簡介
    學報簡介
    国内精品久久久久久久电影| 窝窝影院91人妻| 亚洲五月天丁香| 欧美午夜高清在线| 久久精品91蜜桃| 精品久久久久久久人妻蜜臀av| 夜夜夜夜夜久久久久| 日韩欧美免费精品| 日本 av在线| 亚洲一区中文字幕在线| 观看免费一级毛片| 久久久精品国产亚洲av高清涩受| 哪里可以看免费的av片| 精品人妻1区二区| 在线十欧美十亚洲十日本专区| 亚洲欧美精品综合久久99| 欧美成人性av电影在线观看| 男人舔女人下体高潮全视频| 一区二区三区高清视频在线| 丁香六月欧美| 国产精品亚洲av一区麻豆| 黄频高清免费视频| 丰满的人妻完整版| 欧美日韩黄片免| 成人精品一区二区免费| 成人国语在线视频| 母亲3免费完整高清在线观看| 在线免费观看的www视频| 欧美+亚洲+日韩+国产| 少妇熟女aⅴ在线视频| xxx96com| 麻豆国产av国片精品| 黄色片一级片一级黄色片| 亚洲18禁久久av| 欧美又色又爽又黄视频| 91九色精品人成在线观看| 可以免费在线观看a视频的电影网站| 亚洲精品中文字幕一二三四区| 亚洲精品色激情综合| 国产精品影院久久| 我的老师免费观看完整版| 日日干狠狠操夜夜爽| 女生性感内裤真人,穿戴方法视频| av欧美777| 亚洲 国产 在线| 亚洲成人免费电影在线观看| 国产精品99久久99久久久不卡| 色综合婷婷激情| 91大片在线观看| 欧美3d第一页| 亚洲精品久久国产高清桃花| 极品教师在线免费播放| av国产免费在线观看| 久久久久亚洲av毛片大全| 日本免费一区二区三区高清不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 大型黄色视频在线免费观看| netflix在线观看网站| 国产片内射在线| 狂野欧美白嫩少妇大欣赏| 欧美成人一区二区免费高清观看 | 久久天堂一区二区三区四区| 亚洲乱码一区二区免费版| 身体一侧抽搐| 手机成人av网站| 亚洲色图 男人天堂 中文字幕| 18美女黄网站色大片免费观看| 精品国产乱码久久久久久男人| 在线视频色国产色| 此物有八面人人有两片| 91字幕亚洲| 国产亚洲精品久久久久久毛片| 在线十欧美十亚洲十日本专区| 免费在线观看视频国产中文字幕亚洲| 亚洲av中文字字幕乱码综合| 人妻丰满熟妇av一区二区三区| 午夜久久久久精精品| 校园春色视频在线观看| 美女扒开内裤让男人捅视频| www国产在线视频色| 首页视频小说图片口味搜索| 国产成人一区二区三区免费视频网站| 国产精品美女特级片免费视频播放器 | 88av欧美| 日韩欧美三级三区| 五月玫瑰六月丁香| 日韩欧美三级三区| 精品国产美女av久久久久小说| 美女大奶头视频| 亚洲国产欧洲综合997久久,| 亚洲精品国产精品久久久不卡| 99久久精品热视频| av欧美777| 欧美午夜高清在线| 精品人妻1区二区| 亚洲中文字幕一区二区三区有码在线看 | 男女下面进入的视频免费午夜| 欧美成人午夜精品| 日日摸夜夜添夜夜添小说| 精品久久久久久久人妻蜜臀av| 伦理电影免费视频| 又爽又黄无遮挡网站| 欧美丝袜亚洲另类 | 亚洲精品久久成人aⅴ小说| 麻豆国产97在线/欧美 | 俺也久久电影网| 午夜免费激情av| 91av网站免费观看| 搡老妇女老女人老熟妇| 搡老妇女老女人老熟妇| 99热只有精品国产| 18禁黄网站禁片免费观看直播| 99久久久亚洲精品蜜臀av| 午夜视频精品福利| 一二三四在线观看免费中文在| 可以在线观看毛片的网站| 操出白浆在线播放| 日韩av在线大香蕉| www.999成人在线观看| 村上凉子中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲第一电影网av| 两性夫妻黄色片| 欧美在线一区亚洲| 男插女下体视频免费在线播放| 国产97色在线日韩免费| 伦理电影免费视频| 精品国内亚洲2022精品成人| 在线国产一区二区在线| 搡老熟女国产l中国老女人| av福利片在线观看| 色哟哟哟哟哟哟| 亚洲成人中文字幕在线播放| 波多野结衣高清作品| 亚洲中文av在线| 亚洲aⅴ乱码一区二区在线播放 | 欧美精品亚洲一区二区| 久久精品国产综合久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品98久久久久久宅男小说| 免费无遮挡裸体视频| 国产精品免费视频内射| 午夜免费成人在线视频| 国内揄拍国产精品人妻在线| 黄色视频不卡| 嫩草影院精品99| 最近视频中文字幕2019在线8| 搡老妇女老女人老熟妇| 这个男人来自地球电影免费观看| 久99久视频精品免费| 熟女少妇亚洲综合色aaa.| 人妻丰满熟妇av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 精品国产超薄肉色丝袜足j| 欧美日本亚洲视频在线播放| 夜夜夜夜夜久久久久| 一夜夜www| 色精品久久人妻99蜜桃| 精品一区二区三区四区五区乱码| 久久中文字幕一级| 久久久国产精品麻豆| 久久精品夜夜夜夜夜久久蜜豆 | 丁香欧美五月| 久久婷婷成人综合色麻豆| 老司机靠b影院| 国产精品乱码一区二三区的特点| 欧美日本视频| 色老头精品视频在线观看| 日本成人三级电影网站| 日韩欧美国产一区二区入口| 搡老岳熟女国产| 国产欧美日韩精品亚洲av| 欧美成人性av电影在线观看| 国产欧美日韩一区二区精品| 成熟少妇高潮喷水视频| 观看免费一级毛片| 又黄又粗又硬又大视频| 亚洲熟女毛片儿| 亚洲乱码一区二区免费版| АⅤ资源中文在线天堂| 中文字幕熟女人妻在线| 亚洲精品久久国产高清桃花| 国产视频内射| 国产激情欧美一区二区| 免费在线观看视频国产中文字幕亚洲| 欧美 亚洲 国产 日韩一| 国内精品一区二区在线观看| 日韩免费av在线播放| 婷婷六月久久综合丁香| 日韩欧美一区二区三区在线观看| 午夜a级毛片| 国产精品一区二区三区四区久久| 国产成人精品久久二区二区91| 日日干狠狠操夜夜爽| 免费看十八禁软件| 欧美色视频一区免费| 99久久国产精品久久久| 老司机午夜福利在线观看视频| 免费看日本二区| 美女扒开内裤让男人捅视频| 精品国产乱子伦一区二区三区| 精品高清国产在线一区| 亚洲午夜精品一区,二区,三区| 日韩中文字幕欧美一区二区| 国产av一区二区精品久久| 久久久久久久午夜电影| 亚洲片人在线观看| 亚洲精品久久成人aⅴ小说| 神马国产精品三级电影在线观看 | 国产精品久久久久久人妻精品电影| 亚洲国产欧美一区二区综合| 成人手机av| 狂野欧美白嫩少妇大欣赏| 又爽又黄无遮挡网站| 国产av一区在线观看免费| 精品一区二区三区av网在线观看| 看黄色毛片网站| 欧美不卡视频在线免费观看 | 18禁美女被吸乳视频| 久久久精品国产亚洲av高清涩受| 精品久久久久久久久久久久久| 久久久精品大字幕| 白带黄色成豆腐渣| 午夜免费成人在线视频| 亚洲成人精品中文字幕电影| 1024香蕉在线观看| 久久久国产精品麻豆| 麻豆国产av国片精品| 久久伊人香网站| 国产精品一区二区三区四区免费观看 | 国产片内射在线| 久久人妻av系列| 国产成人精品久久二区二区免费| 不卡av一区二区三区| 18禁观看日本| 五月玫瑰六月丁香| 母亲3免费完整高清在线观看| 桃色一区二区三区在线观看| 男女那种视频在线观看| 搞女人的毛片| 999久久久国产精品视频| 国产av不卡久久| 给我免费播放毛片高清在线观看| 校园春色视频在线观看| 亚洲成av人片在线播放无| 亚洲中文字幕一区二区三区有码在线看 | 日韩欧美国产在线观看| 天天一区二区日本电影三级| ponron亚洲| 美女黄网站色视频| 亚洲aⅴ乱码一区二区在线播放 | 在线观看66精品国产| 看片在线看免费视频| 在线国产一区二区在线| 精品高清国产在线一区| 99精品在免费线老司机午夜| 精品国产亚洲在线| 日韩国内少妇激情av| 天天躁夜夜躁狠狠躁躁| 黄色女人牲交| 叶爱在线成人免费视频播放| 真人一进一出gif抽搐免费| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 久久中文看片网| 色播亚洲综合网| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 日韩有码中文字幕| 免费观看精品视频网站| 日韩中文字幕欧美一区二区| 在线观看一区二区三区| 久久精品aⅴ一区二区三区四区| 国产一区二区三区在线臀色熟女| 日韩有码中文字幕| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 久久精品aⅴ一区二区三区四区| 19禁男女啪啪无遮挡网站| 欧美黑人巨大hd| 久99久视频精品免费| 天堂影院成人在线观看| 99国产精品一区二区三区| 亚洲专区中文字幕在线| 国产私拍福利视频在线观看| 精品免费久久久久久久清纯| 国产熟女午夜一区二区三区| 麻豆一二三区av精品| 日韩免费av在线播放| 亚洲熟妇中文字幕五十中出| 国产成人精品久久二区二区91| 午夜激情福利司机影院| 一区二区三区国产精品乱码| 午夜福利高清视频| 99在线人妻在线中文字幕| 后天国语完整版免费观看| 最新美女视频免费是黄的| 久久精品91蜜桃| 亚洲激情在线av| 亚洲狠狠婷婷综合久久图片| 老鸭窝网址在线观看| 亚洲人成伊人成综合网2020| 精品久久久久久久久久免费视频| 全区人妻精品视频| www.999成人在线观看| 欧美日韩一级在线毛片| 亚洲天堂国产精品一区在线| 国产伦一二天堂av在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情在线av| 后天国语完整版免费观看| 可以在线观看毛片的网站| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 亚洲五月婷婷丁香| 91麻豆av在线| 亚洲专区字幕在线| 亚洲精品一区av在线观看| 精品国产乱码久久久久久男人| 久久久久国产一级毛片高清牌| 手机成人av网站| 亚洲av美国av| 精品欧美国产一区二区三| 美女扒开内裤让男人捅视频| 欧美乱色亚洲激情| 欧美又色又爽又黄视频| 亚洲,欧美精品.| 日本 欧美在线| 老司机福利观看| 成人永久免费在线观看视频| 亚洲专区中文字幕在线| 亚洲精品美女久久av网站| 久久久久九九精品影院| 久久久久国产一级毛片高清牌| 欧美日本视频| 欧美一区二区精品小视频在线| 99精品欧美一区二区三区四区| 中国美女看黄片| www.精华液| www日本在线高清视频| 美女免费视频网站| 90打野战视频偷拍视频| 欧美色视频一区免费| 亚洲欧美日韩高清在线视频| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av香蕉五月| 亚洲国产精品成人综合色| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 波多野结衣高清无吗| 90打野战视频偷拍视频| 国产av又大| 俺也久久电影网| 观看免费一级毛片| 亚洲精品在线美女| 91成年电影在线观看| 人妻久久中文字幕网| 小说图片视频综合网站| 久久香蕉国产精品| 欧美极品一区二区三区四区| 亚洲一区二区三区色噜噜| 国产精品日韩av在线免费观看| 欧美一级毛片孕妇| 国产一区二区三区视频了| АⅤ资源中文在线天堂| 亚洲免费av在线视频| 好看av亚洲va欧美ⅴa在| 国产精品影院久久| 国产av不卡久久| 久久久国产成人免费| 看黄色毛片网站| 少妇人妻一区二区三区视频| 一边摸一边抽搐一进一小说| 精品一区二区三区av网在线观看| 人人妻,人人澡人人爽秒播| 中文字幕熟女人妻在线| 日本撒尿小便嘘嘘汇集6| 婷婷亚洲欧美| 五月玫瑰六月丁香| 成年免费大片在线观看| 手机成人av网站| 长腿黑丝高跟| 亚洲一区高清亚洲精品| 欧美最黄视频在线播放免费| 午夜激情av网站| www.999成人在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 亚洲av五月六月丁香网| 日韩三级视频一区二区三区| 校园春色视频在线观看| 亚洲全国av大片| 国产精品 国内视频| 国产人伦9x9x在线观看| 成人永久免费在线观看视频| 国产精品,欧美在线| 一级片免费观看大全| 国产精品永久免费网站| 搞女人的毛片| 国产成人系列免费观看| 欧美日韩中文字幕国产精品一区二区三区| 两性夫妻黄色片| 50天的宝宝边吃奶边哭怎么回事| 大型黄色视频在线免费观看| 日本免费a在线| 亚洲人成网站高清观看| 搡老岳熟女国产| av福利片在线| 激情在线观看视频在线高清| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 午夜两性在线视频| 一个人免费在线观看电影 | 亚洲色图 男人天堂 中文字幕| 亚洲一区二区三区不卡视频| 亚洲,欧美精品.| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| av在线天堂中文字幕| 国产日本99.免费观看| 亚洲专区字幕在线| 美女黄网站色视频| 日韩有码中文字幕| 曰老女人黄片| 99精品欧美一区二区三区四区| 国产区一区二久久| 日本成人三级电影网站| 91成年电影在线观看| svipshipincom国产片| 999久久久国产精品视频| 两个人视频免费观看高清| 久久人妻av系列| 亚洲精品美女久久av网站| 中亚洲国语对白在线视频| 中文字幕最新亚洲高清| 小说图片视频综合网站| 亚洲国产精品sss在线观看| 色精品久久人妻99蜜桃| 免费观看精品视频网站| 日本五十路高清| 日本 欧美在线| 99精品在免费线老司机午夜| 久久久国产欧美日韩av| 一本久久中文字幕| 国产亚洲精品综合一区在线观看 | 欧美成狂野欧美在线观看| 黄色毛片三级朝国网站| 一a级毛片在线观看| 欧美色视频一区免费| 特级一级黄色大片| 1024香蕉在线观看| 国产日本99.免费观看| 精品不卡国产一区二区三区| 亚洲无线在线观看| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 禁无遮挡网站| 国产免费男女视频| 国产av不卡久久| 特大巨黑吊av在线直播| 久久久久久人人人人人| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 国产精品久久久久久精品电影| 最新在线观看一区二区三区| 99久久久亚洲精品蜜臀av| 免费看十八禁软件| 亚洲国产精品合色在线| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 国产精品一及| 久久久国产成人精品二区| 亚洲 国产 在线| 久久久国产成人免费| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 淫妇啪啪啪对白视频| 最好的美女福利视频网| 午夜免费激情av| 成人国产综合亚洲| 久久人妻福利社区极品人妻图片| 午夜精品一区二区三区免费看| 午夜免费观看网址| 99热这里只有精品一区 | 亚洲在线自拍视频| 国产免费av片在线观看野外av| www国产在线视频色| 国产精品久久久久久亚洲av鲁大| 十八禁人妻一区二区| 国产精品一区二区三区四区免费观看 | 亚洲精品色激情综合| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 三级毛片av免费| ponron亚洲| 久久九九热精品免费| 久久国产精品影院| 99国产精品一区二区蜜桃av| 亚洲国产日韩欧美精品在线观看 | 一本大道久久a久久精品| 成在线人永久免费视频| 国产av麻豆久久久久久久| av欧美777| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 亚洲精品国产一区二区精华液| 精品久久久久久久人妻蜜臀av| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 欧美 亚洲 国产 日韩一| 久久久久久久久久黄片| 可以免费在线观看a视频的电影网站| 18禁观看日本| 真人一进一出gif抽搐免费| 久久久久国产精品人妻aⅴ院| 久久人妻福利社区极品人妻图片| 一级毛片精品| 天堂动漫精品| xxx96com| 婷婷六月久久综合丁香| 熟女少妇亚洲综合色aaa.| 亚洲国产精品sss在线观看| 最新在线观看一区二区三区| 午夜福利在线在线| 99久久国产精品久久久| 久久久久久九九精品二区国产 | 三级男女做爰猛烈吃奶摸视频| 亚洲av第一区精品v没综合| 老司机深夜福利视频在线观看| 国产精品精品国产色婷婷| 国产1区2区3区精品| 九色成人免费人妻av| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 亚洲人成网站高清观看| 黄片小视频在线播放| 亚洲国产中文字幕在线视频| 亚洲自拍偷在线| 久久这里只有精品19| 老汉色∧v一级毛片| 性色av乱码一区二区三区2| 中文字幕av在线有码专区| 哪里可以看免费的av片| 日本一本二区三区精品| 1024香蕉在线观看| 色尼玛亚洲综合影院| 国产精品香港三级国产av潘金莲| 久久精品国产99精品国产亚洲性色| 久久久久亚洲av毛片大全| 久99久视频精品免费| 老司机靠b影院| 香蕉国产在线看| 亚洲 欧美 日韩 在线 免费| 国产亚洲av嫩草精品影院| 人妻夜夜爽99麻豆av| 禁无遮挡网站| 久久久久久免费高清国产稀缺| 亚洲五月婷婷丁香| 精品少妇一区二区三区视频日本电影| 在线永久观看黄色视频| tocl精华| 日本五十路高清| 久久伊人香网站| 一二三四社区在线视频社区8| 亚洲国产欧美网| 嫩草影院精品99| 欧美不卡视频在线免费观看 | 午夜精品一区二区三区免费看| 亚洲国产欧美人成| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯| 国产精品一区二区三区四区免费观看 | 日韩高清综合在线| 身体一侧抽搐| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 久久香蕉精品热| 午夜精品在线福利| 此物有八面人人有两片| 老司机午夜福利在线观看视频| 色综合亚洲欧美另类图片| 两个人看的免费小视频| av有码第一页| 国产伦在线观看视频一区| 国产精品 国内视频| 亚洲 欧美 日韩 在线 免费| 日本一区二区免费在线视频| 无遮挡黄片免费观看| 久久草成人影院| 日本 av在线| 人妻丰满熟妇av一区二区三区| 99国产综合亚洲精品| 日韩精品中文字幕看吧| 最近最新中文字幕大全免费视频| 亚洲av五月六月丁香网| 成年人黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 免费在线观看亚洲国产| 亚洲自拍偷在线| 亚洲欧美精品综合久久99| 国产高清激情床上av| 国内久久婷婷六月综合欲色啪| 国产私拍福利视频在线观看| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 在线国产一区二区在线| 精品国产乱码久久久久久男人| 日本成人三级电影网站|