• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多元醇法合成具有不同長徑比的棒狀LiFePO4/C材料

    2014-10-18 05:27:36胡有坤任建新魏巧玲郭孝東鐘本和
    物理化學(xué)學(xué)報 2014年1期
    關(guān)鍵詞:四川大學(xué)物理化學(xué)工程學(xué)院

    胡有坤 任建新 魏巧玲,3 郭孝東,* 唐 艷 鐘本和 劉 恒

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065;2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610064;3清華大學(xué)化工系,北京 100084)

    1 Introduction

    Olivine-type LiFePO4has recently attracted a great deal of attentions due to its relatively high theoretical capacity of 170 mAh·g-1,low cost,thermal stability.and environmental benign.However,olivine LiFePO4has a low electronic conductivity and a low lithium-ion diffusion coefficient(~1.8×10-14cm2·s-1),1-3which are the limitations of LiFePO4to be used in large scales.The previous progressive efforts have devoted to overcoming this obstacle by doping various metals,4,5minimizing the particle size,6,7coating carbon on particle surface,8,9and customizing particle morphologies.10-13

    Nano-sized materials have high discharge capacity probably due to the small particle size and large specific surface area,which offers short diffusion paths and effective area to the transmission of Li-ions.10Recently,customizing particle morphologies is also becoming more and more prevalent because these factors are well-known to significantly influence electrochemical performance.10,11In order to synthesize homogenous nano-sized LiFePO4and control its morphology at the same time,various synthesis technologies have been adopted such as the polyol process,10-12,14co-precipitation,13,15solid-state reactions,16,17hydrothermal synthesis,18-20solvothermal methods,10,21,22and the solgel process.23

    The polyol process is a new method to synthesize LiFePO4,in this process,the polyol medium acts not only as a solvent,but also as a stabilizer and a deoxidizer.Jinsub et al.10showed that multi-morphous LiFePO4synthesized by solvothermal process achieved high discharge capacity,which was determined to be 161 and 110 mAh·g-1at 0.25C and 8C,respectively.In ethylene glycol medium,Deng12and Sun24et al.reported their researches on three-dimensional(3D)LiFePO4architectures.Deng et al.12showed their nest-like LiFePO4/C architectures with prodigious surface area,which calculated to be 14.4 m2·g-1in the relative pressure(p/p0)range of 0.05-0.30.Sun et al.24discussed the effect of ethylenediamine on controlling the morphology of LiFePO4particles and found that ethylenediamine has a great effect on the release of isolated iron ions in their synthetic system.

    As mentioned in the above literature,LiFePO4nanoparticles with different morphologies were synthesized in different organic solvents.As we known,LiFePO4materials would show better electrochemical properties after calcination,but the special morphologies above mentioned would change their microstructures during the high temperature processing,then it seemed that the materials prepared with special morphologies did not affect electrochemical performance directly because these morphologies were unable to be maintained after heat treatment.

    Our previous work25showed that LiFePO4nanoparticles synthesized in polyol medium have good electrochemical performance.In this work,highly crystalline LiFePO4nanorods were synthesized with different lengths and widths in the medium of triethylene glycol due to its strong chelating ability for assembling the nano-sized building blocks into rod-like microstructures.The surface energies would be dropped to a very low level after long reflux reaction time and the organic compounds are transformed into a layer of carbon that in situ restricted the growth of LiFePO4crystallites,26so the morphologies of precursors would be maintained after heat treatment and its effect on electrochemical performance could be characterized directly.

    2 Experimental

    2.1 Preparation of the LiFePO4/C composites

    Stoichiometric FePO4·2H2O(29.12%content of Fe),LiOH·H2O(99%)were used as the starting materials and triethylene glycol(99%)was employed as solvent,deoxidizer,and chelating agent.

    Firstly,0.3 mol starting materials and 90 mL triethylene glycol were added into anagate jar and milled for 4 h at room temperature.Then the resulting mixture was transferred into three three-neck round flasks with volume of 500 mL equally,each flask was added simultaneously with 90 mL triethylene glycol.The flasks were heated at 280°C and a set of reflux device was superimposed on each flask,the reflux reaction time of the three flasks was controlled at 4,10,and 16 h,respectively.Special attention should be given to remove the water of the flask once an hour.Three precursors were obtained after removing the remaining triethylene glycol of the resulting mixture under reduced pressure atmosphere.The three precursors with the reflux reaction time of 4,10,and 16 h were named as precursors A,B,and C,respectively.

    In order to improve the material crystallinity and electrical conductivity of the LiFePO4,carbon-coating LiFePO4/C composites were obtained by calcining the mixture of the precursors and the remnant of organic compounds under nitrogen atmosphere at 700°C for 4 h,then three products were obtained.The three samples,whose reflux time controlled at 4,10,and 16 h,were denoted as samples A,B,and C,respectively.

    2.2 Material characterization

    The crystalline structures of products were analyzed by X-ray diffraction(XRD,D/max-rB,Rigaku,Cu Kαradiation)(λ=0.15418 nm,operated at 40 kV and 40 mA,scintillation counter,scanning range(2θ):10°-70°,step scanning:0.5(°)·min-1).The morphology and particle size of the prepared particles were observed by scanning electron microscopy(SEM,SPA400 Seiko Instruments,10 keV,vacuity>10-3Pa).The microscopic structure of the as-prepared sample was characterized by transmission electron microscope(TEM)and high resolution transmission electron microscope(HRTEM)(JEM-2100,JEOL,Japan).

    2.3 Battery preparation and electrochemical measurement

    The electrochemical performances of synthesized materials were tested by constant current charge-discharge method.The working cathode was composed of 80%(w)composite power,13%(w)acetylene black as conducting agent,and 7%(w)polyvinylidene fluoride(PVDF)as binder.After being blended in N-methyl-2-pyrrolidine(NMP),the mixtures were spread uniformly onto a thin aluminium foil,dried in vacuum at 120°C for 15 h and then cut into pieces.The electrolyte was 1 mol·L-1LiPF6solution in a mixed solvent of ethylene carbonate(EC)and dimethyl carbonate(DMC)(VEC:VDMC=1:1),Celgard 2400 as the separator.Metal lithium foils were used as the counter electrodes.The coin type cells were assembled in an argon filled glove box.The cells were galvano statically charged and discharged at room temperature between 2.5 and 4.3 V(versus Li/Li+)on the electrochemical test instrument.The cyclic voltammetry tests(CV)and electrochemical impedance spectroscopy(EIS)were performed on electrochemical workstation(CHI660B).The CV test was carried out at a scanning rate of 0.1 mV·s-1between 2.5 and 4.3 V.The amplitude of the AC signal was 5 mV over a frequency range from 100 kHz to 10 mHz.

    3 Results and discussion

    3.1 Material characterizations

    Fig.1 shows the XRD patterns of the samples and precursors.The diffraction peaks except peaks of precursor A are in full accord with the ordered LiFePO4olivine structure indexed with orthorhombic Pnma space group(JCPDS Card No.83-2092)without other peaks such as FePO4,Fe3(PO4)2,and Fe2O3,although FePO4source was used.The main sharp diffraction peaks of LiFePO4are evident for the precursor A in Fig.1a,indicating that the LiFePO4olivine phase is synthesized in the reflux process,however,it also has some other peaks such as Fe3(PO4)2,Li3PO4,which may because its reflux time was only 4 h.Increasing the reflux reaction time from 4 to 10 h or 16 h,the crystallinity of precursors,which is calculated by Jada 5.0,has been heightened from the original about 85%to more than 94%,and the impurity peaks disappear.As shown in Fig.1b,the diffraction peaks get sharper after the precursors are calcined at high temperature,which indicates that all the three samples are well-crystallized.Even though element analyses of the final products reveal that the carbon contents of samples A,B,and C are 2.34%,2.44%,and 2.58%,respectively,there is no evidence of carbon in XRD patterns because the residual carbon from the remnant of organic compounds is in amorphous state.In order to calculate the unit cell parameters of the three samples,Rietveld refinement method is adopted.As shown in Table 1,the lattice parameters and cell volumes show good agreement with that reported in the literature.10The average crystallite sizes(D)estimated from the half width of the most intense peaks taking the Scherrer formula(D=Kλ/B cosθ=0.89λ/B cosθ,where K is Scherrer′s constant,B is half width of diffraction peaks,θ is the diffraction angle,and λ is the X-ray wavelength)theoretical basis,for the samples A,B,and C are instructed to be 35.7,33.1,and 32.6 nm,respectively.

    Fig.1 XRD patterns of(a)precursors A,B,C and(b)samples A,B,C

    Table 1 Lattice parameters of the samples A,B,and C

    The field-emission SEM analysis was used to observe the morphologies and the particle sizes of the samples.The morphologies of precursors A,B,and C have a significant difference.The SEM image in Fig.2a shows microstructure for precursor A,it can be clearly observed that the particles of precursor A present irregular short rod-like shape with some subtle particles.The average size of the microstructures ranges from 100 to 200 nm in length,60 to 100 nm in diameter,and aspect ratio of the rod is small which ranges from 1:1 to 3:1 approximately.The SEM image in Fig.2b reveals that precursor B consists of long rod-like,irregular short rod-like,and other subtle particles.The particle size distribution is wide which ranges from 100 to 400 nm in length,40 to 100 nm in diameter.The microstructure of precursor C with the reflux time of 16 h is shown in Fig.2c,the particle size distribution is narrow,presenting rod-like shape and its aspect ratio is the biggest among the three precursors,which is estimated at 5:1 approximately.In order to study whether these morphologies of the as-prepared precursors can be maintained after heat treatment,the SEM measurements of the three samples are carried out,as shown in Fig.2d,Fig.2e,and Fig.2f,respectively,big change in the morphologies of the three samples does not appear.This result indicates clearly that it is possible to obtain final LiFePO4/C products with desired morphologies by synthesis of lithium iron phosphate precursor in polyol medium.

    Fig.2 SEM images of the obtained particles

    The TEM,high resolution TEM(HRTEM),and the selected area electron diffraction(SAED)images of the sample B are demonstrated in Fig.3.As shown in Fig.3a,it reveals clearly that the obtained LiFePO4/C consists of many irregular shaped particles such as long rod,short rod,and other subtle particles with the size less than 400 nm.A layer of amorphous phase carbon with the thickness over 1 nm covered on the surface of LiFePO4particles can be observed in Fig.3(b,d).This indicates that the remnant of organic compounds after vacuum distillation could be carbonized to provide a layer of homogeneousdispersed residual carbon on the surface of primary particles.The HRTEM image recorded from a part of an individual LiFePO4/C nanorod marked by a white circle(Fig.3c)shows the crystal lattices clearly,demonstrating that the sample is well-crystallized.The demonstrated crystal lattices evidence the d-spacing estimates of the adjacent lattice with 0.392 and 0.202 nm,corresponding to the(210)and(212)planes of orthorhombic LiFePO4crystals,respectively,which agree well with the results observed from the SAED pattern in Fig.3c.These results clearly revealed the growth of the nanocrystals along the[212]direction.

    From the results of XRD analysis,TEM and SEM images,we can make a bold speculation that triethylene glycol acts as deoxidizer and chelating agent,which plays an important role in reducing Fe3+ions into Fe2+ions and changing morphology of the LiFePO4precursor.When FePO4·2H2O and LiOH·H2O were mixed together in polyol medium at its boiling point,due to the stronger reduction and complexing ability of triethylene glycol(TEG),the LiFePO4precursor with short rod-like morphology was synthesized,and with increasing refluxing time,the aspect ratios become bigger as a whole.After reduced pressure distillation,the remnant of organic compounds is well scattered on the surface of LiFePO4particles.Finally,the LiFePO4/C sample was obtained by high-temperature calcination.The above-mentioned product formation mechanism is presented in the schematic drawing,as shown in Fig.4.

    Fig.3 TEM and HRTEM images and SAED pattern of sample B

    Fig.4 Product formation mechanism of the obtained particles

    3.2 Electrochemical measurements

    In order to investigate the electrochemical performances of the three LiFePO4/C samples,they are manufactured into cathode material for lithium-ion batteries.Fig.5a shows the chargedischarge curves of LiFePO4/C at current densities of 0.1C and 5C in the voltage window of 2.5-4.3 V.At 0.1C,it shows that sample B has an apparent charge and discharge plateau at 3.45 and 3.40 V,respectively,corresponding to the Fe2+/Fe3+redox reaction,the charge plateaus of other samples are a little higher than sample B but the discharge plateaus are the opposite.At 5C,the sample C demonstrates a slower enlargement in electrochemical polarization,compared with other samples.The plateau images imply that the electrode reactions27,28of samples B and C are better than others at 0.1C and 5C,respectively.

    From Fig.5(a,b),it can be seen clearly that at low discharge rates sample B exhibits high discharge capacity and little capacity fading,reaching to 163 mAh·g-1at 0.1C in the voltage range of 2.5-4.3 V,samples A and C are registered to be 150 and 153 mAh·g-1,respectively,also with little capacity fading at low discharge rates.As shown in Fig.5c,with the discharge rate increasing,unpredictable but reasonable phenomena appear.The discharge capacities at 1C,3C,5C,and 10C are determined to be 135,122,113,and 101 mAh·g-1for the sample B and 120,100,93,and 78 mAh·g-1for the sample A,respectively,however,higher discharge capacities are registered to be 135,125,118,110 mAh·g-1for the sample C at the corresponding rates.What′s more,when the discharge rate is increased to 20C,the sample C maintains a discharge capacity of about 98 mAh·g-1after 20 cycles,which presents 57.6%of the theoretical capacity.Compared with the sample C,the samples A and B deliver discharge capacities of 86 and 59 mAh·g-1,respectively.As shown in Fig.5c,when the current rate is returned back to 1C again,the discharge capacities of the samples A,B,and C can be resumed to be 134,133,and 119 mAh·g-1,respectively,which means that the crystal structures of the obtained three samples are steady enough to endure electrical discharge at high discharge rates.From the results above,we can see obviously that the sample B at low discharge rates and the sample C at high discharge rates have more consummate electrochemical performances than others at the corresponding rates.As we known,the capacities of the three samples are controlled by some factors,which are variable and have not accurate value,such as the sizes and shapes,surface characteristics,arrangement types,crystallographic directions,and linking characteristics of the particles.As shown in the SEM images of Fig.2,in the sample B,the connections between particles are efficient,which may reduce charge transfer resistance during electrochemical reaction,10and in the sample C,its good performance may be due to the crystal growth with desirable crystallographic direction and smaller particle sizes.Put simply,above reasons situate the sample B at better electronic conductivity and sample C at higher diffusion of lithium ions across the two-phase boundary,what′s more,the electrode reactions are mainly controlled by electronic conductivity and diffusion of lithium ions at low and high discharge rates,respectively,so above phenomena appear.

    The CV curves of the three LiFePO4/C samples in the voltage range of 2.5-4.3 V at the scan rate of 0.1 mV·s-1are shown in Fig.6.Each of the CV curves consists of an anodic peak and a cathodic peak,corresponding to the charge and discharge reactions of the Fe2+/Fe3+redox couple,or the lithium ion intercalation/deintercalation.28In the CV curves of LiFePO4/C cathode material,the smaller distance between charge and discharge voltage plateaus,the higher and sharper current peaks imply more excellent electrode reaction kinetics and more perfect electrochemical performance.The CV curves of samples B and C show more symmetrical,higher and sharper shape of the anodic/cathodic peaks,which indicates an improvement in the kinetics of the lithium insertion/extraction at the electrode/electrolyte interface.Compared with the samples B and C,the sample A has the weaker peaks in CV curves,and the distance between charge and discharge voltage plateaus peaks is bigger,indicating the electrochemical kinetics could be inhibited and the electrode polarization phenomenon is more serious,which are in accord with the electrochemical performances shown in Fig.5.

    Fig.6 CV curves of samples A,B,and C under the potential window of 2.5-4.3 V

    To evaluate the diffusion coefficient of lithium ions,electrochemical impedance spectroscopy(EIS)measurements are carried out under discharge condition with the voltage of 3.4 V.Fig.7a shows the Nyquist curves of the three samples and the equivalent circuit fitted by Zview2.0 program used for imitating the experimental impedance data is shown inset.All of the three Nyquist curves include a semicircle in high frequency region and approximate straight line in low frequency region.An intercept at the Z?axis in high frequency corresponds to the Ohmic resistance(Rs),representing the resistance of electrons and lithium ions getting through the electrolyte.The semicircle represents electric charge transfer process,and the numerical value of the diameter of the semicircle on the Z?axis is approximately equal to the charge transfer resistance(Rct).The slope line in the lower frequency region represents the Warburg impedance,which is associated with lithium-ion diffusion in material particles.29As shown in Fig.7a,the Ohmic resistances of the three samples are small and almost the same,which indicates the resistances of electrons and lithium ions getting through electrolyte in the three samples are similar and can be ignored for the survey of cathode materials.Rctof the sample B is the smallest one among the three electrodes,which indicates that its contact resistance is the smallest.The fitting impedance parameters according to the equivalent circuit and the diffusion coefficient of lithium ions calculated from EIS are shown in Table 2.

    Fig.7 (a)Electrochemical impedance spectra of samples A,B,and C(inset:the equivalent circuit used for imitating the experimental impedance data);(b)relationship plot between impedance and angle frequency at low frequency region

    Table 2 Fitting impedance parameters according to the equivalent circuit form Nyquist curves for the three samples and the diffusion coefficients of lithium ions(D Li+)

    The lithium-ion diffusion coefficient could be calculated using the formula as follows:

    In above formula,R is the gas constant,T is the absolute temperature,n is the number of charge transfer,A is the surface area of cathode,F is the Faraday constant,c is the concentration of lithium ions.The Warburg coefficient(σ)is calculated by the linear fit result of Z?and ω-1/2from the EIS data,obeying the following formula:

    In the second formula,ω is the angle frequency.According to this formula,the slope σ can be calculated,as shown in Fig7b.Utilizing this σ in the first formula,the lithium-ion diffusion coefficients of the samples A,B,and C can be calculated to be 0.49×10-13,1.96×10-13,and 1.58×10-13cm2·s-1,respectively,it can be seen clearly that the electrochemical kinetics with Li+extraction for the sample B is the easiest compared with other samples.

    4 Conclusions

    In summary,we proposed an economical and simple polyol synthesis route to control the morphology of LiFePO4/C only by different reflux reaction time and the characteristics of TEG itself.The TEG medium can act not only as a deoxidizer in the process,but also as a chelating agent.In the synthesis process,TEG reduces Fe3+ions to Fe2+ions and controls the moving direction of Fe2+and Fe3+ions,leading to modulating the growth direction of LiFePO4crystallite,therefore,at different reflux reaction time,the material is assembled into different morphologies.What?s more,the remnant of organic compounds deriving from TEG can be served as carbon source for coating a layer of carbon on LiFePO4/C particles during thermal treatment.Electrochemical tests show that the specific discharge capacities can be improved at low discharge rate or high discharge rate by choosing appropriate time.The sample with reflux reaction time of 10 h exhibits the highest discharge capacity at low discharge rate.The sample with reflux reaction time of 16 h shows par excellence reversible capacities at high discharge rate,which is determined to be 110,98 mAh·g-1at 10C,20C,respectively.Under the current levels,we can not know the exact diffusing direction of Li+ions in the materials and just deduce it from the results of electrochemical performance,more in depth studies should be carried out.

    (1)Andersson,A.S.;Thomas,J.O.J.Power Sources 2001,97,498.

    (2)Whittingham,M.S.;Savinell,R.F.;Zawodzinski,T.Chem.Rev.2004,104,4243.doi:10.1021/cr020705e

    (3)Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough,J.B.J.Electrochem.Soc.1997,144,1188.doi:10.1149/1.1837571

    (4)Yang,M.R.;Ke,W.H.;Wu,S.H.J.Power Sources 2007,165,646.doi:10.1016/j.jpowsour.2006.10.054

    (5)Cheng,Y.;Wang,G.;Yan,M.M.;Jiang,Z.Y.J.Solid State Electrochem.2007,11,310.

    (6)Ferrari,S.;Lavall,R.L.;Capsoni,D.;Quartarone,E.;Magistris,A.;Mustarelli,P.;Canton,P.J.Phys.Chem.C 2010,114,12598.doi:10.1021/jp1025834

    (7)Delacourt,C.;Poizot,P.;Levasseur,S.;Masquelier,C.Electrochem.Solid-State Lett.2006,9,A352.

    (8)Konarova,M.;Taniguchi,L.J.Power Sources 2010,195,3661.doi:10.1016/j.jpowsour.2009.11.147

    (9)Yang,S.T.;Zhao,N.H.;Dong,H.Y.;Yang,J.X.;Hue,H.Y.Electrochim.Acta 2005,51,166.doi:10.1016/j.electacta.2005.04.013

    (10)Jinsub,L.;Mathew,V.;Kangkun,K.;Jieh,M.;Jaekook,K.J.Electrochem.Soc.2011,158,A736.

    (11)Kim,D.;Lim,J.;Choi,E.;Gim,J.;Mathew,V.;Paik,Y.;Jung,H.;Lee,W.;Ahn,D.;Paek,S.;Kim,J.Surf.Rev.Lett.2010,17,111.doi:10.1142/S0218625X10014053

    (12)Deng,H.G.;Jin,S.L.;Zhan,L.;Qiao,W.M.;Ling,L.C.Electrochim.Acta 2012,78,633.doi:10.1016/j.electacta.2012.06.059

    (13)Zheng,J.C.;Li,X.H.;Wang,Z.X.;Guo,H.J.;Zhou,S.Y.J.Power Sources 2008,184,574.doi:10.1016/j.jpowsour.2008.01.016

    (14)Cao,Y.B.;Duan,J.G.;Jiang,F.;Hu,G.R.;Peng,Z.D.;Du,K.Acta Phys.-Chim.Sin.2012,28(5),1183.[曹雁冰,段建國,姜 峰,胡國榮,彭忠東,杜 柯.物理化學(xué)學(xué)報,2012,28(5),1183.]doi:10.3866/PKU.WHXB201202221

    (15)Franger,S.;Le,C.F.;Bourbon,C.;Rouault,H.J.Power Sources 2003,119,252.

    (16)Arnold,G.;Garche,J.;Hemmer,R.;Strobele,S.;Vogler,C.;Wohlfahrt-Mehrens,A.J.Power Sources 2003,119,247.

    (17)Yamada,A.;Chung,S.C.;Hinokuma,K.J.Electrochem.Soc.2001,148,A224.

    (18)Yang,S.F.;Zavalij,P.Y.;Whittingham,M.S.Electrochem.Commun.2001,3,505.doi:10.1016/S1388-2481(01)00200-4

    (19)Dokko,K.;Koizumi,S.;Nakano,H.;Kanamura,K.J.Chem.Mater.2007,17,45.doi:10.1039/b613457m

    (20)Zhao,H.C.;Song,Y.;Guo,X.D.;Zhong,B.H.;Dong,J.;Liu,H.Acta Phys.-Chim.Sin.2011,27(10),2347.[趙浩川,宋 楊,郭孝東,鐘本和,董 靜,劉 恒.物理化學(xué)學(xué)報,2011,27(10),2347.]doi:10.3866/PKU.WHXB20110905

    (21)Murugan,A.V.;Muraliganth,T.;Manthiram,A.Electrochem.Commun.2008,10,903.doi:10.1016/j.elecom.2008.04.004

    (22)Gong,H.X.;Yu,Y.;Li,T.;Mei,T.;Xing,Z.;Zhu,Y.C.;Qian,Y.T.;Shen,X.Y.Mater.Lett.2012,66,374.doi:10.1016/j.matlet.2011.08.093

    (23)Kim,J.K.;Choi,J.W.;Chauhan,G.S.;Ahn,J.H.;Hwang,G.C.;Choi,J.B.;Ahn,H.J.Electrochim.Acta 2008,53,28.

    (24)Sun,C.W.;Rajasekhara,S.;Goodenough,J.B.;Zhou,F.J.Am.Chem.Soc.2011,133,2132.doi:10.1021/ja1110464

    (25)Wen,J.J.Study on the Lquid Phase Synthesis of Lithium Iron Phosphate for Cathode Materials.MS Dissertation,Sichuan University,Chengdu,2012.[文嘉杰.液相法合成磷酸鐵鋰正極材料的研究[D].成都:四川大學(xué),2012.]

    (26)Wang,Y.G.;Wang,Y.R.;Hosono,E.J.;Wang,K.X.;Zhou,H.S.Angew.Chem.Int.Edit.2008,47,7461.doi:10.1002/anie.v47:39

    (27)Lin,Y.B.;Lin,Y.;Zhou,T.;Zhou,T.;Zhao,G.Y.;Huang,Y.D.;Huang,Z.G.J.Power Sources 2013,226,20.doi:10.1016/j.jpowsour.2012.10.074

    (28)Dimesso,L.;Spanheimer,C.;Jacke,S.;Jaegermann,W.J.Power Sources 2011,196,6729.doi:10.1016/j.jpowsour.2010.11.015

    (29)Barsoukov,E.;Kim,J.H.;Yoon,C.O.;Lee,H.J.Electrochem.Soc.1998,145,2711.doi:10.1149/1.1838703

    猜你喜歡
    四川大學(xué)物理化學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    四川大學(xué)西航港實驗小學(xué)
    福建工程學(xué)院
    Chemical Concepts from Density Functional Theory
    福建工程學(xué)院
    百年精誠 譽從信來——走進四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    少妇人妻久久综合中文| 九九在线视频观看精品| 久久毛片免费看一区二区三区| 亚洲国产成人一精品久久久| 国产美女午夜福利| 一级毛片我不卡| 97在线视频观看| 3wmmmm亚洲av在线观看| 国产成人精品久久久久久| 国产精品.久久久| 国产成人午夜福利电影在线观看| videos熟女内射| 人妻系列 视频| 51国产日韩欧美| 老司机亚洲免费影院| 黄色毛片三级朝国网站 | 青春草亚洲视频在线观看| 国产精品国产三级国产av玫瑰| 最近最新中文字幕免费大全7| 女人精品久久久久毛片| 看非洲黑人一级黄片| 看非洲黑人一级黄片| 国产成人91sexporn| 国产一区亚洲一区在线观看| 亚洲美女黄色视频免费看| 伊人久久精品亚洲午夜| 99国产精品免费福利视频| 看十八女毛片水多多多| 欧美区成人在线视频| 国产免费一级a男人的天堂| 精品人妻偷拍中文字幕| 成人毛片60女人毛片免费| 色网站视频免费| 日本免费在线观看一区| 欧美最新免费一区二区三区| 久久久久久久久久人人人人人人| 美女脱内裤让男人舔精品视频| 亚洲av二区三区四区| 国产精品.久久久| 在线天堂最新版资源| 亚洲欧美精品自产自拍| 亚洲国产精品一区二区三区在线| 欧美xxⅹ黑人| 国产永久视频网站| 亚洲av国产av综合av卡| 日本色播在线视频| 少妇人妻 视频| 国产男人的电影天堂91| √禁漫天堂资源中文www| 国产亚洲欧美精品永久| 伦理电影免费视频| 91在线精品国自产拍蜜月| av国产久精品久网站免费入址| 亚洲精品国产av成人精品| 婷婷色综合www| 国产精品一区www在线观看| 日韩一区二区三区影片| 91精品国产九色| 乱人伦中国视频| 精品亚洲乱码少妇综合久久| 在线观看一区二区三区激情| 男人添女人高潮全过程视频| 人人妻人人看人人澡| 中国美白少妇内射xxxbb| 国产成人一区二区在线| 精品人妻熟女毛片av久久网站| 91精品一卡2卡3卡4卡| 两个人免费观看高清视频 | 菩萨蛮人人尽说江南好唐韦庄| av免费在线看不卡| av又黄又爽大尺度在线免费看| 男女国产视频网站| 免费观看性生交大片5| 在线观看免费高清a一片| 最近手机中文字幕大全| 51国产日韩欧美| 青春草国产在线视频| 亚洲av综合色区一区| 日日啪夜夜爽| 新久久久久国产一级毛片| 久久国产精品男人的天堂亚洲 | 亚洲av.av天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 国产亚洲av片在线观看秒播厂| 极品少妇高潮喷水抽搐| 午夜影院在线不卡| 人人妻人人看人人澡| 在线精品无人区一区二区三| 久久久久久久久久久免费av| 久久久国产精品麻豆| 永久网站在线| 这个男人来自地球电影免费观看 | 亚洲四区av| 午夜激情福利司机影院| 国产一级毛片在线| 国产乱人偷精品视频| 国产色婷婷99| 国产欧美日韩精品一区二区| 国产精品不卡视频一区二区| 日本黄色日本黄色录像| 制服丝袜香蕉在线| 制服丝袜香蕉在线| 日韩av在线免费看完整版不卡| 亚洲精品视频女| 精品国产一区二区久久| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 能在线免费看毛片的网站| 国产精品99久久99久久久不卡 | 亚洲国产精品一区二区三区在线| 22中文网久久字幕| 久久99蜜桃精品久久| 一区二区av电影网| 2018国产大陆天天弄谢| av天堂久久9| 性色avwww在线观看| 简卡轻食公司| 婷婷色av中文字幕| 国产深夜福利视频在线观看| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 国产av精品麻豆| 精品熟女少妇av免费看| 国产精品福利在线免费观看| 日韩大片免费观看网站| 久久久久久久精品精品| 中文字幕av电影在线播放| 午夜91福利影院| 水蜜桃什么品种好| 特大巨黑吊av在线直播| 丁香六月天网| 国产精品不卡视频一区二区| 波野结衣二区三区在线| 免费高清在线观看视频在线观看| 久久久国产一区二区| 夜夜骑夜夜射夜夜干| 伊人久久国产一区二区| 国产男女超爽视频在线观看| 亚洲av男天堂| 久久精品国产亚洲网站| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 亚洲精品456在线播放app| 亚洲中文av在线| 精品午夜福利在线看| 午夜激情福利司机影院| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 中文字幕亚洲精品专区| 日韩欧美 国产精品| 美女xxoo啪啪120秒动态图| 久久久久久人妻| 欧美日韩一区二区视频在线观看视频在线| 一级片'在线观看视频| 国产日韩欧美视频二区| 欧美最新免费一区二区三区| 中国国产av一级| 高清毛片免费看| 永久网站在线| 久久6这里有精品| 国产成人精品一,二区| 午夜日本视频在线| 中文字幕精品免费在线观看视频 | 欧美成人精品欧美一级黄| 欧美最新免费一区二区三区| 青春草亚洲视频在线观看| av线在线观看网站| 一级,二级,三级黄色视频| 日本爱情动作片www.在线观看| 在线观看人妻少妇| av在线观看视频网站免费| 王馨瑶露胸无遮挡在线观看| 免费看不卡的av| 国内揄拍国产精品人妻在线| 99热全是精品| 精品熟女少妇av免费看| 日日爽夜夜爽网站| 蜜桃在线观看..| 欧美精品高潮呻吟av久久| 伦精品一区二区三区| 99久久精品热视频| 色视频www国产| 人人妻人人澡人人爽人人夜夜| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 人人妻人人爽人人添夜夜欢视频 | 免费看日本二区| 老司机影院毛片| 丰满乱子伦码专区| 91成人精品电影| 2022亚洲国产成人精品| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 女人精品久久久久毛片| 日本黄色片子视频| 22中文网久久字幕| 亚洲婷婷狠狠爱综合网| 99国产精品免费福利视频| 日韩中文字幕视频在线看片| 纯流量卡能插随身wifi吗| 我的老师免费观看完整版| 在线观看美女被高潮喷水网站| 日本91视频免费播放| freevideosex欧美| 一级毛片我不卡| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 国产av精品麻豆| 9色porny在线观看| 丁香六月天网| 日韩精品有码人妻一区| 国产乱来视频区| 国产高清不卡午夜福利| 丰满乱子伦码专区| 在线观看一区二区三区激情| 久久国产乱子免费精品| 亚洲国产精品成人久久小说| 成人亚洲欧美一区二区av| 久久影院123| 国产日韩欧美亚洲二区| 亚洲真实伦在线观看| 一本大道久久a久久精品| 欧美激情国产日韩精品一区| 男女国产视频网站| 日韩视频在线欧美| 成人国产av品久久久| 99久久精品热视频| 91精品国产九色| 欧美精品一区二区大全| 中文字幕av电影在线播放| av专区在线播放| 亚洲怡红院男人天堂| 少妇人妻精品综合一区二区| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 日本欧美视频一区| 日韩中字成人| 亚洲欧美中文字幕日韩二区| 色5月婷婷丁香| 3wmmmm亚洲av在线观看| 亚洲欧美一区二区三区国产| 人妻一区二区av| 亚洲欧洲国产日韩| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| av不卡在线播放| av有码第一页| av国产精品久久久久影院| 久久久精品免费免费高清| 日本wwww免费看| 免费在线观看成人毛片| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 国产毛片在线视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品一区三区| 亚洲丝袜综合中文字幕| 人妻夜夜爽99麻豆av| 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 中文字幕免费在线视频6| a级毛片在线看网站| 精品久久久精品久久久| 五月开心婷婷网| 伦理电影免费视频| 免费少妇av软件| 日韩伦理黄色片| 青春草国产在线视频| 午夜福利网站1000一区二区三区| av卡一久久| 日日摸夜夜添夜夜添av毛片| 国产亚洲最大av| 久久国产精品男人的天堂亚洲 | 国产黄色免费在线视频| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| 男男h啪啪无遮挡| 色5月婷婷丁香| 国产精品三级大全| 日本欧美视频一区| xxx大片免费视频| 九九爱精品视频在线观看| av在线观看视频网站免费| 中文乱码字字幕精品一区二区三区| 国产精品99久久久久久久久| 少妇丰满av| 亚洲,一卡二卡三卡| 国产在线一区二区三区精| 久久99一区二区三区| 久久 成人 亚洲| 在线精品无人区一区二区三| 久久午夜综合久久蜜桃| 国产成人午夜福利电影在线观看| 国产精品欧美亚洲77777| 欧美精品高潮呻吟av久久| 菩萨蛮人人尽说江南好唐韦庄| 国产精品伦人一区二区| 亚洲av中文av极速乱| 2021少妇久久久久久久久久久| 女性生殖器流出的白浆| 美女福利国产在线| 女人久久www免费人成看片| 人人澡人人妻人| 国产在线男女| 免费久久久久久久精品成人欧美视频 | 一区二区av电影网| 自线自在国产av| 美女主播在线视频| 中文字幕亚洲精品专区| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 国产片特级美女逼逼视频| 大陆偷拍与自拍| 日日爽夜夜爽网站| 国产精品.久久久| 久久精品久久精品一区二区三区| 十八禁网站网址无遮挡 | 亚洲成色77777| 最近中文字幕高清免费大全6| 97超碰精品成人国产| 日本猛色少妇xxxxx猛交久久| 国产高清三级在线| 大码成人一级视频| 美女中出高潮动态图| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品乱码久久久v下载方式| 婷婷色综合大香蕉| 18禁动态无遮挡网站| 日本色播在线视频| 亚洲精品国产av蜜桃| 69精品国产乱码久久久| 中文字幕免费在线视频6| 精华霜和精华液先用哪个| 亚洲成人一二三区av| av在线观看视频网站免费| 在线免费观看不下载黄p国产| 伊人亚洲综合成人网| 老司机亚洲免费影院| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 国产av精品麻豆| videossex国产| 成人免费观看视频高清| 99九九在线精品视频 | 老司机亚洲免费影院| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 亚洲欧美精品自产自拍| 国产淫片久久久久久久久| 久久人妻熟女aⅴ| 99九九在线精品视频 | 精品一区二区三区视频在线| 国产成人精品无人区| 麻豆成人午夜福利视频| 日韩av在线免费看完整版不卡| 国产成人aa在线观看| 国产永久视频网站| 国产成人aa在线观看| 高清黄色对白视频在线免费看 | 在线观看免费日韩欧美大片 | 亚洲人成网站在线观看播放| 国产亚洲最大av| 亚洲精华国产精华液的使用体验| 亚洲av电影在线观看一区二区三区| 亚洲精品一二三| 精品一区在线观看国产| 麻豆成人av视频| 国产精品女同一区二区软件| 国产探花极品一区二区| 91在线精品国自产拍蜜月| 久久久久国产网址| 精品国产国语对白av| 精品国产一区二区三区久久久樱花| 精品久久久精品久久久| 三级国产精品欧美在线观看| 简卡轻食公司| 久久99精品国语久久久| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 蜜桃久久精品国产亚洲av| 国产极品天堂在线| 在现免费观看毛片| 五月开心婷婷网| 亚洲精品久久午夜乱码| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频| 99精国产麻豆久久婷婷| 亚洲精品日本国产第一区| 伊人亚洲综合成人网| 在线免费观看不下载黄p国产| 国产精品国产三级专区第一集| 少妇熟女欧美另类| 亚洲精品日韩av片在线观看| 欧美成人午夜免费资源| 一级毛片 在线播放| 国产成人精品一,二区| 少妇的逼好多水| 两个人免费观看高清视频 | 人人妻人人澡人人爽人人夜夜| 18禁在线无遮挡免费观看视频| 国产精品一区二区在线观看99| 一级毛片我不卡| 亚洲欧美一区二区三区黑人 | 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 国产黄频视频在线观看| 成年av动漫网址| 久久久久久伊人网av| 日本欧美视频一区| 成人影院久久| 国产精品一区二区三区四区免费观看| 一区二区三区乱码不卡18| 国产成人精品久久久久久| 丝袜脚勾引网站| 男女边摸边吃奶| 妹子高潮喷水视频| 成人国产麻豆网| 久久久a久久爽久久v久久| 一级片'在线观看视频| 国产精品国产av在线观看| 99九九线精品视频在线观看视频| 女性生殖器流出的白浆| av不卡在线播放| 男女啪啪激烈高潮av片| 亚洲成人一二三区av| 亚洲欧美成人综合另类久久久| 日日啪夜夜爽| 一级a做视频免费观看| 97超碰精品成人国产| 久久99热这里只频精品6学生| 亚洲经典国产精华液单| 中文乱码字字幕精品一区二区三区| 亚洲精品视频女| 国产一级毛片在线| 我的女老师完整版在线观看| 久久精品熟女亚洲av麻豆精品| 丰满乱子伦码专区| 久久久久国产网址| 精品久久久噜噜| 久久人人爽人人爽人人片va| 尾随美女入室| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 人妻少妇偷人精品九色| 欧美日韩在线观看h| 九九爱精品视频在线观看| 亚州av有码| 国产精品国产av在线观看| 亚洲精品久久午夜乱码| 国产精品久久久久久久电影| 亚洲精品成人av观看孕妇| 新久久久久国产一级毛片| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| 精品久久久久久久久av| 免费看光身美女| 国模一区二区三区四区视频| 男的添女的下面高潮视频| 丰满饥渴人妻一区二区三| 婷婷色综合大香蕉| 一个人免费看片子| 久久影院123| 国产精品一区二区三区四区免费观看| 热99国产精品久久久久久7| 永久免费av网站大全| 人妻系列 视频| 日韩不卡一区二区三区视频在线| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图 | 肉色欧美久久久久久久蜜桃| 国产黄色视频一区二区在线观看| 亚洲精品日韩av片在线观看| 新久久久久国产一级毛片| 亚洲欧洲日产国产| 国产成人精品福利久久| 精品一区二区三区视频在线| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 搡老乐熟女国产| 大香蕉久久网| 亚洲欧美中文字幕日韩二区| 亚洲美女黄色视频免费看| 精品人妻一区二区三区麻豆| 国产亚洲最大av| 久久久久久久久久久免费av| 下体分泌物呈黄色| 看非洲黑人一级黄片| 成人美女网站在线观看视频| 天堂8中文在线网| 欧美区成人在线视频| 免费黄色在线免费观看| 99久久精品热视频| 少妇的逼水好多| 国精品久久久久久国模美| 制服丝袜香蕉在线| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 毛片一级片免费看久久久久| 在线观看av片永久免费下载| 18禁动态无遮挡网站| xxx大片免费视频| 久久久久久久久久成人| 精品久久久精品久久久| 只有这里有精品99| 久久久国产欧美日韩av| 欧美性感艳星| 高清午夜精品一区二区三区| 日本黄色片子视频| 久久久久视频综合| 午夜福利,免费看| 亚洲综合精品二区| 中文欧美无线码| 高清在线视频一区二区三区| 噜噜噜噜噜久久久久久91| 看十八女毛片水多多多| 乱系列少妇在线播放| 国产极品粉嫩免费观看在线 | a级片在线免费高清观看视频| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 亚洲图色成人| 国产精品一区二区在线不卡| 夫妻性生交免费视频一级片| 一级黄片播放器| 少妇人妻久久综合中文| a级片在线免费高清观看视频| 欧美日韩国产mv在线观看视频| 久久久午夜欧美精品| 亚洲av在线观看美女高潮| 精品久久国产蜜桃| 中文资源天堂在线| 日本av手机在线免费观看| 最近中文字幕2019免费版| 三级国产精品片| 精品久久久久久久久亚洲| 99热这里只有精品一区| 国产成人免费观看mmmm| 人人妻人人爽人人添夜夜欢视频 | av有码第一页| 亚洲人与动物交配视频| 极品人妻少妇av视频| 在线播放无遮挡| 婷婷色综合www| 国产精品成人在线| 国产免费又黄又爽又色| 免费观看无遮挡的男女| 日韩av在线免费看完整版不卡| 亚洲精品一区蜜桃| 我要看日韩黄色一级片| 久久人妻熟女aⅴ| 香蕉精品网在线| 色哟哟·www| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性bbbbbb| 菩萨蛮人人尽说江南好唐韦庄| 在线播放无遮挡| 免费观看的影片在线观看| 国产熟女午夜一区二区三区 | 在线看a的网站| 香蕉精品网在线| √禁漫天堂资源中文www| 国产高清不卡午夜福利| 啦啦啦啦在线视频资源| 国产国拍精品亚洲av在线观看| 亚洲中文av在线| 少妇熟女欧美另类| av又黄又爽大尺度在线免费看| 免费大片黄手机在线观看| 精品人妻熟女av久视频| 亚洲综合色惰| 久久精品国产亚洲av涩爱| 久久久久网色| 国内揄拍国产精品人妻在线| 在线播放无遮挡| 国产精品熟女久久久久浪| 99热国产这里只有精品6| 国产精品人妻久久久久久| 99久久精品国产国产毛片| 少妇被粗大猛烈的视频| 18+在线观看网站| 我要看黄色一级片免费的| 少妇被粗大猛烈的视频| 久久毛片免费看一区二区三区| 亚洲精品国产av成人精品| 美女主播在线视频| 18+在线观看网站| 亚洲av免费高清在线观看| 少妇丰满av| 欧美老熟妇乱子伦牲交| 2021少妇久久久久久久久久久| 国产极品粉嫩免费观看在线 | 国产在线一区二区三区精| 久久久国产一区二区| 不卡视频在线观看欧美| 最近2019中文字幕mv第一页| 亚洲一级一片aⅴ在线观看| 国产成人精品福利久久| 青春草国产在线视频| 九色成人免费人妻av| 免费av不卡在线播放| 成人二区视频| 精品一区在线观看国产| 亚洲欧美一区二区三区黑人 | 丰满人妻一区二区三区视频av| 久久鲁丝午夜福利片| 亚洲人与动物交配视频| 久久久久视频综合|