• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C-LiFePO4/聚三苯胺復(fù)合鋰離子電池正極材料的制備與性能

    2014-10-18 05:27:38黃啟飛徐立環(huán)
    物理化學(xué)學(xué)報(bào) 2014年1期
    關(guān)鍵詞:浙江工業(yè)大學(xué)光耀苯胺

    蘇 暢 黃啟飛 徐立環(huán) 張 誠,*

    (1浙江工業(yè)大學(xué)綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地,杭州 310014;2沈陽化工大學(xué)化學(xué)工程學(xué)院,沈陽 110142)

    1 Introduction

    Olivine-structured lithium iron phosphate(LiFePO4)is becoming a focus of research in developing the low cost and high performance cathode materials for lithium-ion batteries.However,the low lithium-ion diffusivity(~10-18cm2·s-1)1and the electronic conductivity(~10-9S·cm-1)2of bare LiFePO4cause low rate capacity and low utilization of lithium in the host structure,which become the obstacles for its large-scale application in high power fields.Over the past few years,tremendous attempts have been devoted to overcome those limitations by improvement of purity,control of morphology and size,optimization of particles,adding conductive agent(typically carbon,metals,or polymers,etc.),3-9and doping the foreign atoms/ions(Cr3+,V5+,MO2+,Zn2+).10-13Among various endeavors,nanoarchitecture provided one of the desirable approaches to develop high-performance electrode materials for lithium store due to the high active surface area and shortened pathway for lithium insertion/deinsertion.14-16The solvothermal synthetic approach,17-20which is based on the use of high organic boiling point solvent instead of water as solvent,appears quite attractive for constructing the nanoarchitecture LiFePO4.Like water,organic high boiling point solvent has excellent solvent properties,as well as high thermal stability and negligible volatility,so that the use of autoclave is not mandatory.When alcohol analogues(ethylene glycol,glycerin,and tetraethylene glycol,etc.)are used as solvents to synthesize LiFePO4,the oxidation of the Fe2+ions to Fe3+ions,which often occurs during the hydrothermal synthesis process,21-23can be much avoided due to reduction nature of alcohol analogues,resulting in the improved electrochemical performances of LiFePO4.

    Meanwhile,conductive carbon coating was a conventional way to conquer the limited rate capacity because the dispersed carbon conductive agent provides pathway of electron transfer,which results in improvement of the conductivity and electrochemical properties.Recently,application of electrically conductive polymers,such as polythiophene(PTh),polyaniline(PAn),polypyrrole(PPy),and their derivatives,as conductive agents to modify inorganic electrode materials has attracted much attention.Those conducting polymer layers on the surface of inorganic electrode materials should play a role of plastic protecting shell and the collapse of inorganic electrode materials because volume expansion during the charge-discharge process can be prevented effectively.And the investigations on LiFePO4/poly(3,4-ethylenedioxythiophene)(PEDOT),24LiFe-PO4/PAn,25LiFePO4/PPy,26V2O5/PPy,27and LiV3O8/PPy28have also been reported,which exhibited the improved electrochemical properties as the cathode for lithium-ion battery.

    Compared with other conducting polymers,polytriphenylamine(PTPAn)and its derivatives,which contain triphenylamine radical units and a highly conductive polyparaphenylene(PPP)back-bone combined with high energy density of electroactive polyaniline unit,belong to family of radical polymer.It exhibited a reversible,rapid,and stable radical redox reaction during charge-discharge processes,29which makes the triphenylamine-based polymer materials be explored recently as the electrode active material applied in the energy storage field,such as super capacitors and lithium-ion battery.Moreover,PTPAn as a cathode material for lithium-ion batteries has relatively smooth charging and discharging voltage platform in 3.5 V place,which is similar to that of LiFePO4.Therefore,we expected to construct a new composite cathode material,which consists of LiFePO4and PTPAn conducting coatings,to improve the electrochemical properties of the LiFePO4-based cathode materials.

    In this investigation,we firstly synthesized nano-size carboncoated LiFePO4(C-LiFePO4)by solvothermal method to improve Li+diffusivity in LiFePO4bulk and then C-LiFePO4/PTPAn composites were prepared by coating the PTPAn on the surface of C-LiFePO4particles by solution mixing method.The electrochemical properties of the series of C-LiFePO4/PTPAn as cathode materials were investigated systematically.

    2 Experimental

    2.1 Material preparation

    C-LiFePO4powder was prepared by a low-temperature solvothermal method,and the detail procedure was described as following:LiOH·H2O(95.0%,Aladdin)was firstly dissolved in ethylene glycol,FeSO4·7H2O(99.0%,Aladdin)and H3PO4(85.0%,Aladdin)were dissolved in a small amount of distilled water,and then the above solutions were mixed at ambient temperature in a three-necked round-bottomed flask to realize a Li:Fe:P molar ratio of 3:1:1.The homogeneous and green mixed solution was kept reacting at 220°C for 20 h under magnetic stirring,and the whole course was protected by N2atmosphere with a tube blowing.After the reaction solution being cooled naturally to room temperature,the resultant solution was separated by centrifugation with distilled water several times,and the finally obtained light green-grayish product was dried in vacuum drying oven(DZF-6053,Yiheng Technology Co.)at 80°C for 12 h,then the C-LiFePO4was prepared by using LiFePO4powders as precursor to mix with a certain amount of sucrose(AR,Guangdong Guanghua Chemical Co.)as carbon source,where the sucrose was weighed in stoichiometric amount according to the LiFePO4to carbon mass ratio of 100 to 8,and the as-obtained mixture was dried,followed calcination at 650 °C with pure N2at a flow rate of 60 mL·min-1for 5 h.

    The polymer of PTPAn was prepared by chemical oxidative method.The polymerization reaction was carried out in 20 mL chloroform(AR,Tianjin Yongda Chemical Co.)using ferric chloride(96%,Junze Chemical Co.)as oxidant.The solution was stirred over night at room temperature under N2.After completion of the solution polymerization reaction,the reaction mixture was poured into methanol to deposit the polymer product,which was then filtered and washed with methanol several times.Finally,the polymer product was filtered and dried in vacuum at 60°C for 12 h.

    In order to prepare the C-LiFePO4/PTPAn composites,the PTPAn was dispersed in chloroform to form a colloidal solution.Then the C-LiFePO4nanocrystals were mixed with the above colloidal solution by ultrasonic dispersion for 20-30 min at ambient temperature to get the organic-inorganic nano hybrid,which was then dried in a vacuum oven at 60°C.The samples with 3%,10%,and 20%(w)PTPAn were prepared,respectively.

    2.2 Structural characterization and electrochemical measurement

    The crystalline phase of the resulting materials was analyzed by powder X-ray diffraction(XRD)(X1PertPRO,PNAlytical,Holand),which was carried out using a X1PertMPD diffractometer equipped with a X1Celerator detector and Cu Kαradiation(λ=0.1542 nm)operated at 40 kV and 40 mA.The sample morphology was characterized by a field emission scanning electron microscopy(FE-SEM)(S-4700,Hitachi,Japan)and a transmission electron microscopy(TEM)(Tecnai G2 F30 STwin,Philips-FEI,Holand).

    The electrochemical performance of the C-LiFePO4/PTPAn composite as cathode was evaluated using a CR2032 coin-type cell.The C-LiFePO4/PTPAn composite electrode and PTPAn electrode were produced by dispersing active materials(70%(w)),carbon black(20%(w)),and poly(tetrafluoroethylene)binder(10%(w))in N-methylpyrrolidone(NMP)solvent to form a homogeneous slurry,respectively.The slurry was then deposited on a current collector consisting of Al foil by blade and then dried at 60°C for 10 h in an oven.The coin-type cell was assembled in a glove box filled with pure Ar.The electuolyte used was 1 mol·L-1LiPF6dissolved in a mixture of ethylene carbonate(EC)and dimethyl carbonate(DMC)(VEC/VDMC=1:1).A Li-foil and a polypropylene micro-porous film(Celgard 2300)were used as the counter electrode and separator,respectively.

    The cells were charged and discharged in the range of 2.5-4.2 V at different rates.Electrochemical impedance spectroscopy(EIS)was measured over a frequency range of 100 kHz to 10 mHz at a discharged stage with an applied amplitude of 5 mV on an electrochemical workstation(CHI 660C,Shanghai Chenhua Co.).

    3 Results and discussion

    3.1 Material characterizations

    XRD patterns of the C-LiFePO4and C-LiFePO4/PTPAn are shown in Fig.1(a,b).As can been seen in Fig.1a,the diffraction peaks of C-LiFePO4can be well indexed to pure LiFePO4with an orthorhombic olivine structure(JCPDS card No.83-2092).No impurities such as Li3PO4and others,which often appear in the LiFePO4product synthesized by traditional solid reaction route,are observed.All diffraction peaks are the same as the following standard peaks and all peaks are strong and narrow,indicating that the high crystallinity of the LiFePO4samples can be synthesized by low-temperature solvothermal method and then heat-treatment process.In addition,the diffraction peaks on carbon were not detected because the residual carbon on the surface of LiFePO4is amorphous.With increasing the PTPAn coatings on the C-LiFePO4,we found that the similar characteristic diffraction peaks for LiFePO4are presented(as shown in Fig.1(b-d)),indicating that PTPAn does not affect the crystal structure of the C-LiFePO4.

    Fig.1 XRD patterns of(a)C-LiFePO4,(b)C-LiFePO4/3%PTPAn,(c)C-LiFePO4/10%PTPAn,and(d)C-LiFePO4/20%PTPAn

    Fig.2 SEM images of(a)C-LiFePO4,(b)C-LiFePO4/3%PTPAn,(c)C-LiFePO4/10%PTPAn,and(d)C-LiFePO4/20%PTPAn;(e)TEM images of C-LiFePO4/10%PTPAn;(f)HRTEM images of C-LiFePO4/10%PTPAn

    Fig.2 shows the typical SEM and/or TEM images of pure CLiFePO4and the series of C-LiFePO4/PTPAn samples obtained by blending of C-LiFePO4in chloroform solution with the PTPAn contents of 3%,10%,and 20%(w),respectively.From Fig.2a,we can see that the pure C-LiFePO4particles prepared by low-temperature solvothermal method display a spindleshape with a uniform size of about 100 nm in width diameter.The uniform and moderate particle size about C-LiFePO4is expected to benefit to lithium-ion migration in LiFePO4bulk and to enhancement of the electrochemical performance.For the CLiFePO4/PTPAn composites,we can see that the PTPAn polymer is well coated on the surface of the C-LiFePO4particles,which makes the surface of C-LiFePO4particles coarse.With increasing the amount of the PTPAn in the C-LiFePO4/PTPAn composites,most of the particles still keep their good dispersity,and a few of sticky PTPAn polymers among the CLiFePO4particles can benefit to decrease of the particle-to-particle contact resistance and thus to enhancement of the electrical conductivity of the composites.When the PTPAn content is 20%(w),the particles become seriously agglomerated and form larger aggregation(Fig.2d).TEM image(as shown in Fig.2e)further reveals that C-LiFePO4particles are spindleshape with well defined diffraction pattern of olivine phase(as shown in Fig.2e and the SAED pattern of top inset).HRTEM image(Fig.2f)shows that the carbon and both PTPAn coatings have been successfully coated onto the surface of the LiFePO4particles by our solution blending tactics and the thickness of carbon layer and PTPAn coating are about 1-5 nm and 1-3 nm,respectively.Because the LiFePO4particles are firstly coated with carbon and then are covered with the polymer,it is obvious that PTPAn coating is tightly covered on the surface of carbon.

    3.2 Charge-discharge performance

    The electrochemical properties of pure LiFePO4,C-LiFePO4,and the C-LiFePO4/PTPAn composites with different PTPAn contents are compared.Fig.3 shows cell voltage versus specific capacity for pure LiFePO4,C-LiFePO4,and various C-LiFePO4/PTPAn samples.Therein,the specific capacity is defined as the capacity per gram of the total active cathode material in the electrodes.And the theory discharge specific capacity of CLiFePO4/PTPAn(C0)can be calculated by following relation(Eq.(1)):

    where,C1is the theory discharge specific capacity of LiFePO4(170.0 mAh·g-1),C2is the theory discharge specific capacity of PTPAn(109.0 mAh·g-1),w is the mass fraction of PTPAn in the C-LiFePO4/PTPAn composite.Compared to the pure LiFePO4,C-LiFePO4exhibits an increasing initial discharge specific capacity of 146.4 mAh·g-1,indicating that the carbon conductive coating on the surface of LiFePO4can effectively improve the utilization rate of LiFePO4.For the C-LiFePO4/PTPAn composites,according to the theoretical calculation,the theory discharge specific capacities of the C-LiFePO4/PTPAn composites are 168.2,163.9,and 157.8 mAh·g-1when the PTPAn contents are 3%,10%,and 20%(w),respectively.Usually,PTPAn has much lower theoretically specific capacity than that of the CLiFePO4,so an increase of PTPAn content in the C-LiFePO4/PTPAn composite is generally considered to reduce the specific capacity of the composite electrode,as compared with the parent C-LiFePO4cathode.However,as for the PTPAn in which modified C-LiFePO4is applied as the composite,we can clearly see the positively electrochemical contribution from PTPAn,and the measured discharge capacities of the C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn at 0.1C are about 146.4,149.6,154.5,and 142.1 mAh·g-1,respectively.And specially,the C-LiFePO4/10%PTPAn composite cathode delivered the highest specific chargedischarge capacity of 154.5 mAh·g-1.In those four electrodes,the utilization rates of LiFePO4are 86.12%,88.96%,94.26%,and 90.05%,respectively,based on Eq.(1),where supporting that the theory discharge specific capacity of PTPAn is 109.0 mAh·g-1.The enhanced capacity of C-LiFePO4by PTPAn coatings can be explained as follows:the imperfect carbon layer coating30on the surface of LiFePO4can result in the fact that the surface of the LiFePO4is partly exposed and naked,which induces the ineffectively electron/ion transformation on the naked surface part and the poor utilization of LiFePO4during the charge-discharge process.As compared with the conductive PTPAn in solution,a tightly electroactive PTPAn film can form a supplementary conductive coating on the surface of C-LiFe-PO4particles or among the particles,resulting in an improved electrical/ionic conductivity and full utilization of the active materials of C-LiFePO4.Therefore,both the redox behavior of PTPAn and the synergistic effect provided by PTPAn and carbon layer attribute to the improvement of the specific capacity of the cathode.Specially,the degradation specific capacity for C-LiFePO4/20%PTPAn can be attributed to an excess of PTPAn and the serious agglomerated morphology.

    Fig.3 Initial charge and discharge curves of PTPAn,LFP,C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn at 0.1C rate

    The cycling performances at 0.1C for C-LiFePO4and various C-LiFePO4/PTPAn composites with different PTPAn contents are examined by cycling testing and the results are shown in Fig.4.It is found that C-LiFePO4,C-LiFePO4/3%PTPAn,and C-LiFePO4/10%PTPAn composite cathodes display the higher specific discharge capacities than C-LiFePO4/20%PTPAn,as well as the improved cycling stability during 50 cycles.This result demonstrates that the structure of the composite is relatively stable and the electrochemical lithium-ion insertion/extraction process is quite reversible at the lower PTPAn content of the composites.However,at high PTPAn content(CLiFePO4/20%PTPAn composite cathode),since the much more PTPAn exists among the C-LiFePO4/PTPAn composites,which connect C-LiFePO4particles,resulting in the serious agglomeration of the C-LiFePO4(as shown in Fig.2d),which tends to cause the seriously re-aggregation of C-LiFePO4particles during the initial charge-discharge process,as well the unstable cycling performance of the composite electrode.

    Fig.4 Cycling performances(herein refers to discharge capacities)of C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn at 0.1C rate

    Fig.5 Reversible capacities of C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn during continuous cycling at various discharge rates from 0.1C to 10C

    We further investigate the discharge properties for the CLiFePO4and C-LiFePO4/PTPAn composites at various rates and the results are illustrated in Fig.5 and Fig.6.Compared with parent C-LiFePO4,the C-LiFePO4/PTPAn composites with different PTPAn contents generally display an improved rate capability and the flat plateaus curve of charge-discharge.As shown in Fig.5,C-LiFePO4/3%PTPAn composite shows slightly improvement of rate capability compared to the parent C-LiFe-PO4,indicating that incorporation of 3%(w)PTPAn is not enough to improve the performance.Further increasing the content of PTPAn to 10%(w),the specific rate capacity of the obtained C-LiFePO4/10%PTPAn composite exhibits the best rate capability,and the discharged capacity can even reach up to 114.2 mAh·g-1at 10C,compared to the 85.5 mAh·g-1of the C-LiFePO4at the same high rate.As the content of PTPAn increases to 20%(w),the discharged rate capacity decreases slightly,but still higher than that of the parent C-LiFePO4at high rate(10C).The improved rate capability can be ascribed to the addition of PTPAn coating on the surface of C-LiFePO4,which possesses the advanced charge migration nature during the charge-discharge process to make it be able to serve as a host for lithium-ion intercalation/extraction.31In addition,the PTPAn coating can form a perfect conducting carbon layer coating on the surface of C-LiFePO4and provides good electronic contact between the particles and the current collector which decreases the internal resistance of the electrode.The electrodes with better lithium-ion charge migration and lower electric resistance should display better capacity retention at the higher discharge rate.

    3.3 Electrochemical impedance analysis

    Fig.7 further shows electrochemical impedance spectra of cycled cells with C-LiFePO4and C-LiFePO4/PTPAn composites with different PTPAn contents.The impedance spectra can be explained on the basis of an equivalent circuit with the electrolyte resistance(Re),charge transfer resistance(Rct),double layer capacitance(Cd),and Warburg impedance(Zw).31,32In these impedance plots,the initial intercept of the spectrum at the Z?axis in high frequency corresponds to the resistance of the electrolyte(Re).The semicircle at medium frequencies represents the charge-transfer reaction resistance,while the straight lines at low frequencies indicate the Warburg impedance,which displays the diffusion-controlled process.As can be seen in Fig.7,the resistance of the electrolyte is similar for the parent C-LiFePO4and C-LiFePO4/PTPAn electrodes.However,Rctvaries with different cathodes:348.9 Ω for C-LiFePO4electrode,160.9 Ω for C-LiFePO4/3%PTPAn electrode,and 191.1 Ω for C-LiFePO4/20%PTPAn electrode.Specially,the Rctof C-LiFePO4/10%PTPAn is only 140.7 Ω,which is the lowest among the four electrodes.Those results further indicate that the PTPAn coating significantly increases the electrical conductivity between C-LiFePO4particles,resulting in the improved rate performance.

    Fig.6 Discharge curves of(a)C-LiFePO4,(b)C-LiFePO4/3%PTPAn,(c)C-LiFePO4/10%PTPAn,and(d)C-LiFePO4/20%PTPAn at various rates from 0.1C to 10C

    Fig.7 Electrochemical impedance spectra of C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn

    4 Conclusions

    The olivine C-LiFePO4was prepared by a low-temperature solvothermal method and a subsequent high temperature postannealing processes.Then,the C-LiFePO4/PTPAn composites with PTPAn as electroactive coatings were prepared by the method of solution blending.The enhancement of the capacity and rate capability of the composite electrode materials can be attributed to both the nano-size effect of LiFePO4particles and the superior electric/ionic and electrochemical characteristics of PTPAn coatings.Specially,the C-LiFePO4/10%PTPAn composite electrode demonstrated the improved initial discharge capacity and the best high-rate capability,which displayed the discharge specific capacity from 0.1C to 10C were 154.5,148.6,143.1,139,136.7,125.4,114.8 mAh·g-1,respectively.The measurements on the electrochemical impedance spectra also demonstrated that PTPAn coating significantly decreased the charge-transfer resistance of C-LiFePO4electrodes.The perfect performances of the C-LiFePO4/PTPAn composites made it a good candidate for the potential applications in lithium-ion batteries.

    (1)Srinivasan,V.;Newman,J.J.Electrochem.Soc.2004,151,1517.doi:10.1149/1.1785012

    (2)Chung,S.Y.;Chiang,Y.M.Electrochem.Solid State Lett.2003,6,278.doi:10.1149/1.1621289

    (3)Xie,H.M.;Wang,R.S.;Ying,J.R.;Zhang,L.Y.;Jalbout,A.F.;Yu,H.Y.;Yang,G.L.;Pan,X.M.;Su,Z.M.Adv.Mater.2006,18,2609.

    (4)Kim,D.K.;Park,H.M.;Jung,S.J.;Jeong,Y.U.;Lee,J.H.;Kim,J.J.J.Power Sources 2006,159,237.doi:10.1016/j.jpowsour.2006.04.086

    (5)Bewlay,S.L.;Konstantinov,K.;Wang,G.X.;Dou,S.X.;Liu,H.K.Mater.Lett.2004,58,1788.doi:10.1016/j.matlet.2003.11.008

    (6)Wu,S.H.;Hsiao,K.M.;Liu,W.R.J.Power Sources 2005,146,550.doi:10.1016/j.jpowsour.2005.03.128

    (7)Alvaro,C.;Manuel,C.Y.;Julian,M.;Jesus,S.P.;Enrique,R.C.Eur.J.Inorg.Chem.2006,2006,1758.

    (8)Wang,G.X.;Bewlay,S.L.;Konstantinov,K.;Liu,H.K.;Dou,S.X.;Ahn,J.H.Electrochem.Acta 2004,50,443.doi:10.1016/j.electacta.2004.04.047

    (9)Barker,J.;Saidi,M.Y.;Swoyer,J.L.Electrochem.Solid State Lett.2003,6,252.doi:10.1149/1.1621288

    (10)Ni,J.F.;Zhou,H.H.;Chen,J.T.;Su,G.Y.Acta Phys.-Chim.Sin.2004,20,582.[倪江鋒,周恒輝,陳繼濤,蘇光耀.物理化學(xué)學(xué)報(bào),2004,20,582.]doi:10.3866/PKU.WHXB20040606

    (11)Sun,C.S.;Zhou,Z.;Xu,Z.G.;Wei,J.P.;Bian,X.K.;Yan,J.J.Power Sources 2009,193,841.doi:10.1016/j.jpowsour.2009.03.061

    (12)Yu,C.Y.;Wang,Z.L.;Chen,Y.;Xia,D.G.;Chu,W.S.;Wu,Z.Y.Rare Metals 2009,28,317.doi:10.1007/s12598-009-0062-y

    (13)Liu,H.;Cao,Q.;Fu,L.J.;Wu,Y.P.;Wu,Q.H.Electrochem.Commun.2006,8,1553.doi:10.1016/j.elecom.2006.07.014

    (14)Sun,G.;Jin,B.;Sun,G.P.;Jin,E.;Gu,H.B.;Jiang,Q.J.Appl.Electrochem.2011,41,99.doi:10.1007/s10800-010-0213-8

    (15)Saravanan,K.;Balaya,P.;Reddy,M.V.;Chowdari,B.V.R.;Vittal,J.J.Energy Environ.Sci.2010,3,457.doi:10.1039/b923576k

    (16)Malik,R.;Burch,D.;Bazant,M.;Ceder,G.Nano Lett.2010,10,4123.doi:10.1021/nl1023595

    (17)Recham,N.;Dupont,L.;Courty,M.;Djellab,K.;Larcher,D.;Armand,M.;Tarascon,J.M.Chem.Mater.2009,21,1096.doi:10.1021/cm803259x

    (18)Yang,H.;Wu,X.L.;Cao,M.H.;Guo,Y.G.J.Phys.Chem.C 2009,113,3345.doi:10.1021/jp808080t

    (19)Tarascon,J.M.;Recham,N.;Armand,M.;Chotard,J.N.;Barpanda,P.;Walker,W.;Dupont,L.Chem.Mater.2010,22,724.doi:10.1021/cm9030478

    (20)Murugan,A.V.;Muraliganth,T.;Manthiram,A.J.Phys.Chem.C 2008,112,14665.doi:10.1021/jp8053058

    (21)Ellis,B.;Kan,W.H.;Makahnouk,W.R.M.;Nazar,L.F.J.Mater.Chem.2007,17,3248.doi:10.1039/b705443m

    (22)Dokko,K.;Koizumi,S.;Kanamura,K.Chem.Lett.2006,35,338.doi:10.1246/cl.2006.338

    (23)Dokko,K.;Koizumi,S.;Nakano,H.;Kanamura,K.J.Mater.Chem.2007,17,4803.doi:10.1039/b711521k

    (24)Murugan,A.V.;Muraliganth,T.;Manthiram,A.Electrochem.Commun.2008,10,903.doi:10.1016/j.elecom.2008.04.004

    (25)Lei,G.T.;Yi,X.H.;Wang,L.;Li,Z.H.;Zhou,J.Polym.Adv.Technol.2009,20,576.doi:10.1002/pat.v20:6

    (26)Huang,Y.H.;Goodenough,J.B.Chem.Mater.2008,20,7237.doi:10.1021/cm8012304

    (27)Zhao,H.B.;Yuan,A.B.;Liu,B.D.;Xing,S.Y.;Wu,X.Y.;Xu,J.Q.J.Appl.Electrochem.2012,42,139.doi:10.1007/s10800-012-0380-x

    (28)Liu,L.L.;Wang,X.J.;Zhu,Y.S.;Hu,C.L.;Wu,Y.P.;Holze,R.J.Power Sources 2013,224,290.doi:10.1016/j.jpowsour.2012.09.100

    (29)Feng,J.K.;Cao,Y.L.;Ai,X.P.;Yang,H.X.J.Power Sources 2008,177,199.doi:10.1016/j.jpowsour.2007.10.086

    (30)Wang,Y.;Wang,Y.;Hosono,E.;Wang,K.;Zhou,H.Angew.Chem.Int.Edit.2008,47,7461.doi:10.1002/anie.v47:39

    (31)Nobili,F.;Croce,F.;Scrosat,I.B.;Marassi,R.Chem.Mater.2001,13,1642.doi:10.1021/cm000600x

    (32)Rodrigues,S.;Munichandraiah,N.;Shukla,A.K.J.Solid State Electrochem.1999,3,397.doi:10.1007/s100080050173

    猜你喜歡
    浙江工業(yè)大學(xué)光耀苯胺
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    一種有效回收苯胺廢水中苯胺的裝置
    能源化工(2021年6期)2021-12-30 15:41:26
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    光耀千年的藝術(shù)國寶
    幼兒100(2018年34期)2018-12-29 12:31:42
    歡樂春節(jié)讓陜西文化光耀海外
    光為光耀中國為夢啟航 中國夢系列產(chǎn)品全新推廣
    中國照明(2016年5期)2016-06-15 20:30:11
    抗氧劑壬基二苯胺的合成及其熱穩(wěn)定性
    光耀扶輪
    社會與公益(2015年8期)2015-05-30 08:11:19
    欧美av亚洲av综合av国产av| 久久久久久久午夜电影| 19禁男女啪啪无遮挡网站| 免费观看人在逋| a在线观看视频网站| 亚洲国产色片| 十八禁人妻一区二区| 日日夜夜操网爽| 国产v大片淫在线免费观看| 国产亚洲av嫩草精品影院| 亚洲精品粉嫩美女一区| 琪琪午夜伦伦电影理论片6080| 91在线精品国自产拍蜜月 | 免费人成视频x8x8入口观看| 国产精华一区二区三区| 免费搜索国产男女视频| 国产一区二区亚洲精品在线观看| 久久久久久久久大av| 久久久国产精品麻豆| 俺也久久电影网| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 国产一区二区三区视频了| 国产不卡一卡二| 男女之事视频高清在线观看| 首页视频小说图片口味搜索| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 久久精品国产亚洲av香蕉五月| av在线天堂中文字幕| 99在线视频只有这里精品首页| 蜜桃久久精品国产亚洲av| 亚洲午夜理论影院| 久久精品人妻少妇| 亚洲美女黄片视频| 最近最新中文字幕大全电影3| 婷婷精品国产亚洲av在线| 国产亚洲精品av在线| xxx96com| 日韩欧美在线乱码| 国产在线精品亚洲第一网站| 亚洲av不卡在线观看| 亚洲欧美激情综合另类| 久久九九热精品免费| 亚洲国产欧美人成| 国产高清激情床上av| 美女免费视频网站| 国产一区二区在线观看日韩 | 欧美午夜高清在线| 欧美一区二区国产精品久久精品| 毛片女人毛片| 免费人成在线观看视频色| 国产老妇女一区| 日韩欧美一区二区三区在线观看| 夜夜爽天天搞| 欧美大码av| 熟女电影av网| 岛国视频午夜一区免费看| 久久亚洲真实| 黄色丝袜av网址大全| 欧美日韩精品网址| 99热只有精品国产| 高清毛片免费观看视频网站| 日本在线视频免费播放| 制服人妻中文乱码| 国产精品久久电影中文字幕| 丝袜美腿在线中文| 亚洲无线在线观看| 国产精品女同一区二区软件 | 18美女黄网站色大片免费观看| 长腿黑丝高跟| 18禁黄网站禁片免费观看直播| 国产一区二区三区视频了| 亚洲 国产 在线| 婷婷六月久久综合丁香| 香蕉av资源在线| 黄色视频,在线免费观看| 日韩av在线大香蕉| 国产色爽女视频免费观看| 黄色女人牲交| 床上黄色一级片| 日韩av在线大香蕉| 非洲黑人性xxxx精品又粗又长| 亚洲久久久久久中文字幕| 人人妻人人看人人澡| 少妇高潮的动态图| 男女午夜视频在线观看| 亚洲国产欧美人成| 久久性视频一级片| 色av中文字幕| 国产色婷婷99| 久久精品91蜜桃| 免费看a级黄色片| 欧美黑人欧美精品刺激| 偷拍熟女少妇极品色| 国产av不卡久久| 深爱激情五月婷婷| 国产亚洲精品久久久com| 亚洲国产色片| xxx96com| 色老头精品视频在线观看| 国产精品一区二区三区四区免费观看 | 成人特级黄色片久久久久久久| 在线观看66精品国产| 人妻夜夜爽99麻豆av| 一级a爱片免费观看的视频| 亚洲内射少妇av| 一本久久中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 美女大奶头视频| 国产国拍精品亚洲av在线观看 | 国产黄色小视频在线观看| 母亲3免费完整高清在线观看| 91在线精品国自产拍蜜月 | 国产精品99久久99久久久不卡| 亚洲精品在线美女| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 一区二区三区高清视频在线| 深爱激情五月婷婷| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜福利高清视频| 乱人视频在线观看| 最近最新中文字幕大全电影3| 亚洲国产高清在线一区二区三| 高清日韩中文字幕在线| 俺也久久电影网| 日日夜夜操网爽| 日本与韩国留学比较| 18禁在线播放成人免费| 亚洲国产中文字幕在线视频| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 国产精品嫩草影院av在线观看 | 国产成人aa在线观看| 日日摸夜夜添夜夜添小说| 午夜福利高清视频| 18禁美女被吸乳视频| 99热这里只有精品一区| 欧美三级亚洲精品| 免费av毛片视频| 国产成人系列免费观看| 国产成人aa在线观看| 嫩草影院精品99| 草草在线视频免费看| av欧美777| 色噜噜av男人的天堂激情| 在线免费观看的www视频| 亚洲性夜色夜夜综合| 久久天躁狠狠躁夜夜2o2o| 午夜激情欧美在线| 在线a可以看的网站| 高清日韩中文字幕在线| 很黄的视频免费| 亚洲最大成人中文| 国产三级黄色录像| svipshipincom国产片| 在线a可以看的网站| 88av欧美| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久电影中文字幕| 亚洲中文字幕一区二区三区有码在线看| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 亚洲成人免费电影在线观看| 亚洲精品粉嫩美女一区| 成人亚洲精品av一区二区| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 国产97色在线日韩免费| 免费无遮挡裸体视频| 精品国产美女av久久久久小说| 桃红色精品国产亚洲av| 香蕉久久夜色| 十八禁网站免费在线| 一级黄片播放器| 岛国在线观看网站| 久久久久久国产a免费观看| 99久久精品国产亚洲精品| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 欧美一级毛片孕妇| 大型黄色视频在线免费观看| 69av精品久久久久久| 中文在线观看免费www的网站| 12—13女人毛片做爰片一| 国产精品精品国产色婷婷| 91麻豆av在线| 波多野结衣高清无吗| 一个人免费在线观看电影| 亚洲国产精品久久男人天堂| 伊人久久大香线蕉亚洲五| 在线观看美女被高潮喷水网站 | 午夜免费男女啪啪视频观看 | 老司机福利观看| av在线蜜桃| 91麻豆精品激情在线观看国产| 麻豆成人午夜福利视频| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 免费在线观看亚洲国产| 亚洲最大成人中文| 中文字幕熟女人妻在线| 国产aⅴ精品一区二区三区波| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久 | 一级a爱片免费观看的视频| 性色avwww在线观看| 国内精品久久久久精免费| 91久久精品电影网| 99久久精品热视频| 人妻丰满熟妇av一区二区三区| 精品久久久久久成人av| 欧美最黄视频在线播放免费| 757午夜福利合集在线观看| 日本成人三级电影网站| 午夜福利欧美成人| 成年女人永久免费观看视频| 国产av不卡久久| 性色avwww在线观看| 99久国产av精品| 网址你懂的国产日韩在线| 国产高清视频在线播放一区| 男人舔女人下体高潮全视频| 久久香蕉国产精品| 黄色视频,在线免费观看| 精品免费久久久久久久清纯| 好男人在线观看高清免费视频| 国产aⅴ精品一区二区三区波| 国产乱人伦免费视频| 97碰自拍视频| 在线观看一区二区三区| www.色视频.com| 亚洲国产欧美人成| а√天堂www在线а√下载| 久久6这里有精品| 熟女人妻精品中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| av中文乱码字幕在线| 国产精品三级大全| 日本撒尿小便嘘嘘汇集6| 免费av观看视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜久久久久精精品| 99热6这里只有精品| 国产精品 国内视频| 哪里可以看免费的av片| 一级a爱片免费观看的视频| 动漫黄色视频在线观看| 99久久99久久久精品蜜桃| 亚洲久久久久久中文字幕| 精品一区二区三区视频在线 | 美女免费视频网站| 看黄色毛片网站| 九色国产91popny在线| 亚洲人成伊人成综合网2020| 亚洲精华国产精华精| 欧美日韩中文字幕国产精品一区二区三区| 婷婷六月久久综合丁香| 精品人妻偷拍中文字幕| 国语自产精品视频在线第100页| 天堂网av新在线| 亚洲人成网站在线播| 欧美日韩福利视频一区二区| 观看美女的网站| 99在线人妻在线中文字幕| 在线视频色国产色| 大型黄色视频在线免费观看| 亚洲av二区三区四区| a级一级毛片免费在线观看| 日韩欧美在线二视频| 黄色片一级片一级黄色片| 久久久久久久精品吃奶| 琪琪午夜伦伦电影理论片6080| 亚洲片人在线观看| 成人三级黄色视频| 人人妻,人人澡人人爽秒播| 波野结衣二区三区在线 | 婷婷亚洲欧美| 一个人看视频在线观看www免费 | 精品久久久久久,| 一进一出抽搐gif免费好疼| 国产毛片a区久久久久| 免费看a级黄色片| 嫩草影视91久久| 1000部很黄的大片| 夜夜看夜夜爽夜夜摸| 国内精品一区二区在线观看| 99精品在免费线老司机午夜| 午夜福利免费观看在线| 最后的刺客免费高清国语| 日本a在线网址| 噜噜噜噜噜久久久久久91| 18禁国产床啪视频网站| 色在线成人网| 色在线成人网| 欧美日本亚洲视频在线播放| 麻豆久久精品国产亚洲av| 免费无遮挡裸体视频| 久久久久免费精品人妻一区二区| svipshipincom国产片| 欧美中文日本在线观看视频| 日韩欧美在线二视频| 在线a可以看的网站| 免费看光身美女| 亚洲va日本ⅴa欧美va伊人久久| a级一级毛片免费在线观看| 国产综合懂色| 真实男女啪啪啪动态图| 99久国产av精品| 精品午夜福利视频在线观看一区| 免费在线观看亚洲国产| 亚洲国产色片| 操出白浆在线播放| 女警被强在线播放| 午夜精品久久久久久毛片777| 最后的刺客免费高清国语| 日韩av在线大香蕉| 亚洲精品影视一区二区三区av| 我要搜黄色片| 国产伦人伦偷精品视频| 亚洲av电影在线进入| 老汉色av国产亚洲站长工具| 久久精品国产清高在天天线| 一区福利在线观看| www.色视频.com| 99热只有精品国产| 亚洲精品色激情综合| 宅男免费午夜| 深夜精品福利| 天堂动漫精品| 成年女人永久免费观看视频| 国产国拍精品亚洲av在线观看 | 一个人免费在线观看的高清视频| 哪里可以看免费的av片| 国产高清视频在线观看网站| 国产私拍福利视频在线观看| 男女做爰动态图高潮gif福利片| 3wmmmm亚洲av在线观看| av国产免费在线观看| 亚洲精品日韩av片在线观看 | 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| 国产在视频线在精品| www日本在线高清视频| 伊人久久大香线蕉亚洲五| 99热只有精品国产| 国产成人影院久久av| 人妻久久中文字幕网| 在线国产一区二区在线| 欧美精品啪啪一区二区三区| 亚洲av五月六月丁香网| av天堂中文字幕网| 亚洲专区中文字幕在线| 99国产极品粉嫩在线观看| av中文乱码字幕在线| 日韩精品中文字幕看吧| 国产熟女xx| 老熟妇乱子伦视频在线观看| 国内久久婷婷六月综合欲色啪| 久久久久性生活片| 日韩欧美精品免费久久 | 欧美一区二区国产精品久久精品| 黄色片一级片一级黄色片| 国产伦一二天堂av在线观看| 久久人人精品亚洲av| 99在线人妻在线中文字幕| www.www免费av| 高清在线国产一区| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 免费观看人在逋| 特大巨黑吊av在线直播| 欧美区成人在线视频| 大型黄色视频在线免费观看| 村上凉子中文字幕在线| 男人舔女人下体高潮全视频| 午夜免费观看网址| 99在线人妻在线中文字幕| 90打野战视频偷拍视频| 乱人视频在线观看| 日韩欧美精品免费久久 | 18禁美女被吸乳视频| 午夜福利在线观看吧| 精品欧美国产一区二区三| x7x7x7水蜜桃| 国产av一区在线观看免费| 国产高清三级在线| 国产免费男女视频| 啦啦啦免费观看视频1| 精品国产三级普通话版| 国产精品一及| 国产精品自产拍在线观看55亚洲| 国产高清有码在线观看视频| 男女视频在线观看网站免费| 男插女下体视频免费在线播放| 麻豆成人午夜福利视频| 国产97色在线日韩免费| 亚洲国产精品久久男人天堂| 高潮久久久久久久久久久不卡| 免费av观看视频| 中文亚洲av片在线观看爽| 国产乱人视频| 高清日韩中文字幕在线| 亚洲av日韩精品久久久久久密| 18禁美女被吸乳视频| 亚洲五月婷婷丁香| 成人鲁丝片一二三区免费| 内地一区二区视频在线| 国产探花在线观看一区二区| 搡老熟女国产l中国老女人| 久久国产精品影院| 女人高潮潮喷娇喘18禁视频| 精品国产三级普通话版| 变态另类丝袜制服| 亚洲精华国产精华精| 成人性生交大片免费视频hd| 亚洲一区高清亚洲精品| 狂野欧美激情性xxxx| 级片在线观看| 99国产精品一区二区三区| 一区二区三区激情视频| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品999在线| 男女床上黄色一级片免费看| 日韩欧美免费精品| 麻豆国产av国片精品| 国产精品亚洲av一区麻豆| av黄色大香蕉| 天天一区二区日本电影三级| 亚洲电影在线观看av| 久久国产乱子伦精品免费另类| 久久中文看片网| 99久久无色码亚洲精品果冻| 欧美日韩福利视频一区二区| 色av中文字幕| 久久精品亚洲精品国产色婷小说| 成人特级黄色片久久久久久久| 国产午夜精品久久久久久一区二区三区 | 他把我摸到了高潮在线观看| 90打野战视频偷拍视频| 亚洲精品久久国产高清桃花| 很黄的视频免费| 窝窝影院91人妻| 成年女人看的毛片在线观看| 叶爱在线成人免费视频播放| 制服丝袜大香蕉在线| 午夜免费激情av| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产97在线/欧美| 俺也久久电影网| 成人18禁在线播放| 亚洲国产精品合色在线| 97碰自拍视频| 久久香蕉国产精品| 1024手机看黄色片| 国产精品一区二区免费欧美| www日本在线高清视频| 欧美+亚洲+日韩+国产| 色吧在线观看| 中国美女看黄片| 国产精品 欧美亚洲| 我的老师免费观看完整版| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 久久精品影院6| 亚洲人成电影免费在线| 欧美大码av| 国产视频一区二区在线看| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩高清专用| 国产激情偷乱视频一区二区| 中文亚洲av片在线观看爽| 久久精品国产自在天天线| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 99热精品在线国产| 一a级毛片在线观看| aaaaa片日本免费| 欧美+亚洲+日韩+国产| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 女人十人毛片免费观看3o分钟| 欧美日本视频| 国产精品久久久久久精品电影| 日韩av在线大香蕉| 国产久久久一区二区三区| 特级一级黄色大片| 日韩 欧美 亚洲 中文字幕| 久久久精品欧美日韩精品| 最新美女视频免费是黄的| 好男人电影高清在线观看| 变态另类丝袜制服| 非洲黑人性xxxx精品又粗又长| 国产激情欧美一区二区| 三级国产精品欧美在线观看| 日韩精品青青久久久久久| 哪里可以看免费的av片| 黄片大片在线免费观看| 中文在线观看免费www的网站| h日本视频在线播放| 成人特级av手机在线观看| 亚洲在线自拍视频| 国产不卡一卡二| 一进一出抽搐动态| av天堂中文字幕网| 亚洲av一区综合| 国产精品一区二区免费欧美| 国产av在哪里看| 真人一进一出gif抽搐免费| 免费看光身美女| 亚洲激情在线av| 日韩有码中文字幕| 国产探花极品一区二区| 日韩 欧美 亚洲 中文字幕| 99国产精品一区二区蜜桃av| 亚洲久久久久久中文字幕| 波野结衣二区三区在线 | 国产蜜桃级精品一区二区三区| 久久久久国内视频| 中文字幕久久专区| 亚洲自拍偷在线| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 国产一区二区在线av高清观看| 操出白浆在线播放| 国产探花极品一区二区| 最新中文字幕久久久久| 天天躁日日操中文字幕| 午夜久久久久精精品| 成人三级黄色视频| 女人被狂操c到高潮| 精品人妻1区二区| 免费在线观看亚洲国产| 日本黄色视频三级网站网址| 在线观看美女被高潮喷水网站 | 99热6这里只有精品| 女同久久另类99精品国产91| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 操出白浆在线播放| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 美女 人体艺术 gogo| 99国产精品一区二区三区| 久久久成人免费电影| 亚洲最大成人手机在线| 少妇的逼水好多| 国产精品久久久久久精品电影| 日韩亚洲欧美综合| 757午夜福利合集在线观看| 国产精品久久久久久精品电影| 国产精品嫩草影院av在线观看 | 亚洲国产欧美网| 亚洲激情在线av| 日本黄色片子视频| 成年女人看的毛片在线观看| 一个人免费在线观看的高清视频| 特大巨黑吊av在线直播| 在线天堂最新版资源| 九九热线精品视视频播放| 91麻豆av在线| 久久久久久九九精品二区国产| 制服丝袜大香蕉在线| 天堂影院成人在线观看| 亚洲专区中文字幕在线| 日本a在线网址| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看 | 国产中年淑女户外野战色| 欧美日韩瑟瑟在线播放| 深夜精品福利| 人妻久久中文字幕网| 身体一侧抽搐| 欧美成人a在线观看| 国产av麻豆久久久久久久| 欧美在线黄色| 精品无人区乱码1区二区| 国产精品1区2区在线观看.| 少妇的逼好多水| 国产又黄又爽又无遮挡在线| 日本五十路高清| 国产亚洲av嫩草精品影院| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 99热6这里只有精品| 国产精品亚洲一级av第二区| 精品久久久久久久毛片微露脸| 内地一区二区视频在线| 日韩人妻高清精品专区| 久久久久久久精品吃奶| 日韩大尺度精品在线看网址| 村上凉子中文字幕在线| 叶爱在线成人免费视频播放| 免费看日本二区| 精品人妻1区二区| 熟女人妻精品中文字幕| 免费av不卡在线播放| 18禁在线播放成人免费| 久久久久久久亚洲中文字幕 | 在线天堂最新版资源| 日本免费a在线| 欧美日本视频| 综合色av麻豆| 国产激情偷乱视频一区二区| 国产精品久久久人人做人人爽| 国产亚洲欧美98| 人人妻,人人澡人人爽秒播| 国产亚洲精品久久久com| 欧美日韩瑟瑟在线播放|