• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controlled Synthesis of Mesoporous MnO2Nanospindles

    2014-10-14 03:45:14HANLingNIJiPengZHANGLiangMiaoYUEBaoHuaSHENShanShanZHANGHaoLUWenCong
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:紡錘體上海大學(xué)水熱法

    HAN Ling NI Ji-Peng ZHANG Liang-Miao YUE Bao-Hua SHEN Shan-Shan ZHANG Hao LU Wen-Cong

    (Department of Chemistry,Shanghai University,Shanghai 200444,P.R.China)

    Controlled Synthesis of Mesoporous MnO2Nanospindles

    HAN Ling NI Ji-Peng ZHANG Liang-Miao YUE Bao-Hua SHEN Shan-Shan ZHANG Hao LU Wen-Cong*

    (Department of Chemistry,Shanghai University,Shanghai 200444,P.R.China)

    Abstract: We synthesized mesoporous MnO2nanospindles by a one-step hydrothermal process in an aqueous solution of KMnO4and glucose.The structure,morphology,purity,and size of the products were characterized by X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM),high resolution transmission electron microscopy(HRTEM),scanning electron microscopy(SEM),and nitrogen adsorption/desorption(BET)measurements.The reaction time and concentrations of glucose influenced the final structures and shapes of the MnO2nanospindles.The length to diameter ratio of the MnCO3precursor nanospindles can be easily tuned from 1.35:1 to 2.89:1.A possible formation mechanism for the mesoporous MnO2nanospindles is proposed and discussed.

    Key Words:Hydrothermal method;Spindle;MnO2;Mesoporous

    1 Introduction

    Recently,much effort has been devoted to the synthesis of mesoporous materials,because of their wonderful structures and wide potential applications in the areas of catalysis,sorption,chemical and biological separation,photonic and electronic devices,and drug delivery.1-5Since the mesoporous silica was reported,6many researchers have devoted to preparing mesoporous-structured oxides,such as ZrO2,TiO2,SnO2,Nd2O5,and V2O5,etc.1-5Thus,mesoporous products with controlled structures and shapes remain a new challenge because of their possible potential functions caused by the combination of the specific-shape and the mesoporous structures.7

    Manganese oxides(MnO2)have been extensively studied as a well-known transition-metal oxide,because of their novel chemical and physical properties and wide applications in catalysis,ion or molecular sieves,molecular adsorption,biosensors,electrode materials in batteries,and energy storage.8-18MnO2exists in many polymorphic forms(such asα,β,γ,andδ),which are different because the basic unit[MnO6]octahedra are linked in different ways.19,20Different MnO2morphologies have been prepared,including rods,wires,tubes,urchin-like microstructures,etc.21-25However,to the best of our knowledge,few works were reported on the synthesis of mesoporous MnO2nanospindles.

    Herein,we report the synthesis of mesoporous MnO2nanospindles using a simple hydrothermal method followed by heat treatment.By changing the experimental conditions,we rationally speculated that,the formation of pores was mainly caused by removing of amorphous carbon nanoparticles,which were produced due to the decomposition of residual glucose at a relatively higher temperature.

    Table 1 Effects of the experimental conditions on the morphologies of the precursors

    2 Experimental

    All chemical reagents were analytical grade and purchased from Shanghai Chemical Reagent Company(P.R.China)without further purification.In a typical synthesis,10 mmol glucose was dissolved in 25 mL deionized water,and 2 mmol potassium permanganate(KMnO4)was dissolved in 15 mL deionized water.After stirring for about 30 min respectively,the two solutions were mixed immediately before it was sealed and placed in a Teflon-lined stainless steel autoclave(50 mL capacity)and heated at 180°C for 20 h.The autoclave was cooled to room temperature naturally.After filtrating and washing with deionized water and ethanol,the solid obtained was dried at 60 °C overnight and calcined at 500 °C for 4 h.The obtained black powder was collected for the following characterization.Effects of the experimental conditions on the morphology of the precursors are showed in Table 1.

    The XRD patterns were recorded on a Japan Rigaku D/Max-RB X-ray diffractometer with CuKαradiation(λ=0.154178 nm).The morphologies of the samples were studied by field emission scanning electron microscopy(JEOL JSM-6700F).The structure of the microspindles was observed through a transmission electron microscopy(JEOL JEM-200CX),and the highresolution transmission electron microscopy(HRTEM)images were taken on a JEOL JEM-2010F with an accelerating voltage of 200 kV.Fourier transform infrared(FTIR)spectra were obtained on an AVATAR370 spectrometer.The nitrogen adsorption and desorption isotherms at 77 K were measured with a Micrometrics ASAP 3000 analyzer.Before measurement,the samples were degassed in vacuum at 200°C for at least 6 h.

    3 Results and discussion

    The XRD pattern of the precursor is shown in Fig.1(a).The peaks can be well indexed to manganese carbonate(MnCO3),in good agreement with the standard value of JCPDS 44-1472.Fig.1(b)shows FTIR spectrum of the precursor.The broad band at about 3370 cm-1can be attributed to O―H group vibrates from the residual hydroxy groups.26The peak at 2924 cm-1is assigned to C―H band,27suggesting the possible incorporation of hydrogen during growth of the product.The peak at 1698 cm-1can be assigned to the C=C stretch,28resulting from the carbonization of residual glucose.The typical peaks for carboxylate are found at ca.1602,1406,860,and 789 cm-1.The first two frequencies correspond to the stretching mode of C=O in a carboxylate group and the last two refer to bending mode.29While the bands observed at 520-700 cm-1should be ascribed to the Mn―O vibrations in MnO6octahedra.30

    Field emission scanning electron microscopy(FESEM)and field emission transmission electron microscopy(FETEM)were employed to investigate the morphologies of the products.Fig.2(a)shows a typical low magnification image of the MnCO3precursor spindles,the obtained products are composed of the nanospindles mixed with a few of sphere-like par-ticles.The magnified SEM image shown in Fig.2(b)displays that the surfaces of the spindles are rough and some nanoparticles are adsorbed on them.Fig.2(c)is a typical TEM image of the MnCO3spindles.The average size of the MnCO3spindles is 2023 nm along its major axis and 950 nm along its minor axis,and the length-to-diameter ratio is about 2.12:1.

    Keeping other experimental conditions fixed,the effect of the reaction temperature was investigated.When the reaction was carried out at 150°C(sample B),the obtained product was also composed of spindle-like structures mixed with few sphere-like particles(Fig.3a).In comparison with the product obtained at 180°C(sample A),the average dimensions of nanospindles(obtained at 150 °C)are 2670 nm×1230 nm and the aspect ratio is increased(2.17:1).However,when the reaction was carried out at a relatively lower temperature of 120°C(sample C),the product was only composed of nanospindles with average dimensions of 2800 nm×1200 nm and the aspect ratio was obviously increased(2.35:1)(Fig.3b).

    In addition,the glucose concentration plays an important role in forming nanostructure.When the concentration of glucose is low(nG=4 mmol),only spindle-like structure with average dimensions of 1350 nm×1000 nm was obtained(sample D,Fig.3c).In comparison with the product obtained at nG=10 mmol(sample A),the aspect ratio of sample D is reduced(1.35:1).When the concentration of glucose is high(nG=16 mmol),thecantaloupe-likestructuresmixed with some sphere-like particles were obtained(Fig.3d).The average size of the cantaloupe-like structures is 1865 nm along its major axis and 643 nm along its minor axis,and the length-to-diameter ratio is obviously increased(2.89:1).

    Based on the above observation,when the reaction was carried out at relatively higher temperatures(150-180°C)and higher glucose concentration(nG:nKMnO4≥5:1),there are some sphere-like structures obtained.It is rationally speculated thatthe spheres were produced due to the decomposition of residual glucose at relatively higher reaction temperatures.

    MnO2nanostructures are expected to be obtained by calcining the precursors at a proper temperature.Fig.4(a)shows the XRD pattern of the samples obtained by calcining the MnCO3precursors at 500°C for 4 h.The diffraction lines are in agreement with the standard value(JCPDS No.44-0141)of MnO2with body-centered structure,indicating the MnCO3precursor completely transforming to MnO2.More characteristics of MnO2are also observed in FTIR spectrum(Fig.4b).The broad band at about 3477 cm-1can be attributed to O―H group vibrates from the residual hydroxy groups.31The 1640 cm-1band is normally due to O―H bending vibrations combined with Mn atoms.32While the intense bands observed at 669,573,and 522 cm-1should be ascribed to Mn―O vibrations in MnO6octahedra.30The FTIR result indicates that some bound water exists in MnO2sample.As compared with the as-prepared compound(Fig.1(b)),the disappeared peaks correspond to C=C,C―H,and C=O confirm the existence of carbon particles in the precursors.

    TEM and SEM images of the MnO2nanostructures are shown in Fig.5 and Fig.6.After heat-treatment,the spindle-like shapes of the precursors were well maintained,no obviously sintered or compressed phenomena were observed(Fig.5a and Fig.5b).Fig.5c shows that most particles are spindle-like.Fig.5d clearly displays the three-dimensional spindle-like morphology with the disappearance of spheres in the precursors and the mesoporous nanospindles which composed of small nanoparticles.The disappearance of the sphere-like structures further indicates that the spheres in sample A,B,E were amorphous carbon spheres produced due to the decomposition of residual glucose at relatively higher reaction temperatures.From the HRTEM results in Fig.6a and Fig.6b,we can see that the MnO2sample exhibits mesoporous structure and that the distribution of the pore structure is regular.

    Fig.7 shows TEM images of MnO2nanospindles obtained by calcining different precursors.After heat-treatment,the spindle-like shapes of the precursors(sample C and D)were well maintained.But there are only few pores along the side of the spindle-like structures for sample C(Fig.7(a,b)),and no pores were observed for sample D(Fig.7(c,d)).It indicates that the reaction temperature,especially glucose concentration plays important roles in the formation of mesoporous nanostructures.When the reaction temperature is below 120°C or the glucose concentration is low(nG:nKMnO4=2:1),the mesoporous structure can not be obtained.It demonstrates that the formation of pore structure,to some extent,is caused by removing amorphous carbon nanoparticles.It is rationally speculated that the precursors of mesoporous MnO2nanospindles are composed of carbon nanoparticles and MnCO3nanoparticles.

    To further investigate the formation process of the nanospindle superstructure as the above conjecture,we have carried out analogous experiments at different reaction durations.For these spindles,when the hydrothermal reaction was conducted for 1/3 h,many amorphous nanoparticles were produced.A few small nanoparticles were loosely aggregated,and these aggregations may act as backbones for the further development of MnCO3spindle structures(Fig.8a).When the reaction time was increased to 10 h,a few nanoparticles(Fig.8b)and many solid spindle particles composed of nanoparticles were produced.As the reaction went on to a longer time(e.g.,20 h),the size of the spindles(sample A)has grown larger in all direc-tions and the size uniformity is greatly improved(Fig.2).

    After heat-treatment,the carbon nanoparticles were disappeared and MnCO3was decomposed to mesoporous MnO2nanospindles.So the possible formation mechanism of MnO2nanospindles structure can be presumed in Fig.9.

    Nitrogen adsorption/desorption measurement was conducted to characterize the Brunauer-Emmett-Teller(BET)surface area and internal pore structure.The recorded adsorption and desorption isotherms for the nanospindle structures show a little hysteresis(Fig.10).The BET specific surface area of the sample is calculated from N2isotherms to be about 26 m2·g-1.Barrett-Joyner-Halenda(BJH)calculations for the pore-size distribution,derived from desorption data,present a sharp band centered at ca 18 nm.The pores presumably arise from the spaces between the nanoparticles within a mesoporous spindle.The results display that the obtained nanospindles have porous properties.

    4 Conclusions

    By adopting a stepwise reaction process,the MnCO3precursor nanospindles have been prepared via a facile solution process,and the dimension and morphology of the MnCO3precursors can be adjusted.Mesoporous MnO2nanospindles obtained by calcining the precursors are considered to arise from the appearance of the carbon nanoparticles.The micro-spindles after heat treatment exhibit porous properties which make them appealing for practical applications such as catalysts,molecular adsorption,biosensors,and energy storage.

    (1)Carreon,M.A.;Guliants,V.V.Chem.Mater.2002,14,2670.

    (2) Schuth,F.Chem.Mater.2001,13,3184.

    (3)Yang,P.D.;Zhao,D.Y.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D.Nature 1998,396,152.

    (4)Yang,P.D.;Zhao,D.Y.;Margolese,D.I.;Chmelka,B.F.;Stucky,G.D.Chem.Mater.1999,11,2813.

    (5) He,X.;Antonelli,D.Angew.Chem.Int.Edit.2001,41,214.

    (6) Kresge,C.;Leonowicz,M.;Roth,W.;Vartuli,J.;Beck,J.Nature 1992,359,710.

    (7) Gu,F.;Li,C.Z.;Wang,S.F.;Lu,M.K.Langmuir 2006,22,1329.

    (8) Espinal,L.;Suib,S.L.;Rusling,J.F.J.Am.Chem.Soc.2004,126,7676.

    (9) Armstrong,A.R.;Bruce,P.G.Nature 1996,381,499.

    (10) Song,X.C.;Zheng,Y.F.;Lin,S.;Wang,Y.Acta Phys.-Chim.Sin.2007,23,258.[宋旭春,鄭遺凡,林 深,王 蕓.物理化學(xué)學(xué)報(bào),2007,23,258.]

    (11)Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (12)Toupin,M.;Brousse,T.;Belanger,D.Chem.Mater.2002,14,3946.

    (13)Wang,T.;Zhou,J.H.;Wang,D.J.;Sun,D.;Di,Z.Y.;He,J.P.Acta Phys.-Chim.Sin.2009,25,2155.[王 濤,周建華,王道軍,孫 盾,狄志勇,何建平.物理化學(xué)學(xué)報(bào),2009,25,2155.]

    (14)Wills,A.S.;Raju,N.P.;Greedan,J.E.Chem.Mater.1999,11,1510.

    (15) Segal,S.R.;Park,S.H.;Suib,S.L.Chem.Mater.1997,9,98.

    (16)Greedan,J.E.;Raju,N.P.;Wills,A.S.;Morin,C.;Shaw,S.M.;Reimers,J.N.Chem.Mater.1998,10,3058.

    (17)Wang,F.;Wang,Y.M.;Wen,Y.X.;Su,H.F.;Li,B.Acta Phys.-Chim.Sin.2010,26,521.[王 凡,王巖敏,文衍宣,粟海峰,李 斌.物理化學(xué)學(xué)報(bào),2010,26,521.]

    (18) Deng,J.G.;Zhang,L.;Dai,H.X.;Xia,Y.S.;Jiang,H.Y.;Zhang,H.;He,H.J.Phys.Chem.C 2010,114,2694.

    (19) Cheng,F.Y.;Zhao,J.Z.;Song,W.;Li,C.S.;Ma,H.;Chen,J.;Shen,P.W.Inorg.Chem.2006,45,2038.

    (20)Wang,X.;Li,Y.D.J.Am.Chem.Soc.2002,124,2880.

    (21)Wang,X.;Li,Y.D.Chem.-Eur.J.2003,9,300.

    (22) Xiong,Y.J.;Xie,Y.;Li,Z.Q.;Wu,C.Z.Chem.-Eur.J.2003,9,1645.

    (23)Wei,M.;Konishi,Y.;Zhou,H.;Sugihara,H.;Arakawa,H.Nanotechnology 2005,16,245.

    (24)Yuan,Z.Y.;Ren,T.Z.;Du,G.H.;Su,B.L.Appl.Phys.AMater.2005,80,743.

    (25) Song,X.C.;Zhao,Y.;Zheng,Y.F.Cryst.Growth.Des.2007,7,159.

    (26) Xiong,Y.J.;Xie,Y.;Li,X.X.;Li,Z.Q.Carbon 2004,42,1447.

    (27)Wong,W.K.;Li,C.P.;Au,F.C.K.;Fung,M.K.;Sun,X.H.;Lee,C.S.;Lee,S.T.;Zhu,W.J.Phys.Chem.B 2003,107,1514.

    (28)Chowdhury,A.K.M.S.;Cameron,D.C.;Hashmi,M.S.J.Thin Solid Films 1998,332,62.

    (29)Ho,C.M.;Yu,J.C.;Kwong,T.;Mak,A.C.;Lai,S.Y.Chem.Mater.2005,17,4514.

    (30)Ananth,M.V.;Pethkar,S.;Dakshinamurthi,K.J.Power Sources 1998,75,278.

    (31) Liu,Z.H.;Yang,X.J.;Makita,Y.;Ooi,K.Chem.Mater.2002,14,4800.

    (32)Wang,X.L.;Yuan,A.B.;Wang,Y.Q.J.Power Sources 2007,172,1007.

    紡錘形介孔納米二氧化錳的控制合成

    韓 玲 倪紀(jì)朋 張良苗 岳寶華 申杉杉 張 浩 陸文聰*

    (上海大學(xué)化學(xué)系,上海200444)

    在KMnO4和葡萄糖水溶液體系中,用一步水熱法控制合成了介孔MnCO3納米紡錘體,通過(guò)焙燒MnCO3前驅(qū)體可以得到介孔納米MnO2,且保持了原有的紡錘體形貌.用X射線衍射(XRD)、傅里葉變換紅外(FTIR)光譜、掃描電鏡(SEM)、透射電鏡(TEM)和N2吸附-脫附(BET)對(duì)制備的樣品進(jìn)行了形貌和結(jié)構(gòu)的表征.并對(duì)反應(yīng)時(shí)間、反應(yīng)物濃度等對(duì)產(chǎn)物形貌的影響進(jìn)行了研究.實(shí)驗(yàn)結(jié)果表明,反應(yīng)時(shí)間和葡萄糖的濃度對(duì)MnCO3前驅(qū)體的尺寸和形貌具有重要影響,MnCO3縱橫比可從1.35:1到2.89:1之間改變.并初步探討了介孔MnO2紡錘體的生長(zhǎng)機(jī)制,MnO2孔的形成是由于焙燒葡萄糖降解形成的納米碳顆粒所致.

    水熱法;紡錘形;MnO2;介孔

    O641

    Received:September 27,2010;Revised:November 15,2010;Published on Web:January 28,2011.

    ?Corresponding author.Email:wclu@shu.edu.cn;Tel:+86-21-66132663;Fax:+86-21-66134080.

    The project was supported by the Shanghai Special Nanotechnology Project,China(0852nm00700)and Innovation Fund of Shanghai University,China(A.10-0101-09-023).

    上海市納米技術(shù)項(xiàng)目(0852nm00700)和上海大學(xué)創(chuàng)新項(xiàng)目(A.10-0101-09-023)資助

    猜你喜歡
    紡錘體上海大學(xué)水熱法
    Aurora激酶A調(diào)控卵母細(xì)胞減數(shù)分裂的分子機(jī)制
    水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    上海大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    微刺激方案中成熟卵母細(xì)胞紡錘體參數(shù)與卵細(xì)胞質(zhì)內(nèi)單精子注射結(jié)局間的關(guān)系
    《上海大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    淺談動(dòng)物細(xì)胞有絲分裂中的有星紡錘體
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    抑癌蛋白CYLD調(diào)控紡錘體定向
    遺傳(2014年3期)2014-02-28 20:59:25
    国产av不卡久久| 亚洲国产精品成人久久小说 | 99久久精品一区二区三区| 久久久久久久亚洲中文字幕| 又爽又黄a免费视频| 国产69精品久久久久777片| 免费看日本二区| 亚洲成a人片在线一区二区| 亚洲一区高清亚洲精品| aaaaa片日本免费| 韩国av在线不卡| 国产真实乱freesex| 乱系列少妇在线播放| 给我免费播放毛片高清在线观看| 国产欧美日韩一区二区精品| 欧美成人a在线观看| 午夜免费激情av| 人妻少妇偷人精品九色| 色视频www国产| 精品99又大又爽又粗少妇毛片| 欧美日韩国产亚洲二区| 97人妻精品一区二区三区麻豆| 亚洲最大成人av| 日韩 亚洲 欧美在线| 黄色欧美视频在线观看| 在线观看av片永久免费下载| or卡值多少钱| 蜜桃亚洲精品一区二区三区| 婷婷亚洲欧美| 亚洲美女视频黄频| 毛片女人毛片| 最近最新中文字幕大全电影3| 久久久久国产精品人妻aⅴ院| 亚洲国产精品sss在线观看| 成人漫画全彩无遮挡| 午夜激情欧美在线| 麻豆一二三区av精品| 一区二区三区高清视频在线| 亚洲精品粉嫩美女一区| 久久久久性生活片| 精品少妇黑人巨大在线播放 | 国产视频一区二区在线看| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 女的被弄到高潮叫床怎么办| 一级黄色大片毛片| 国产一区二区三区av在线 | 亚洲一区高清亚洲精品| 大香蕉久久网| 久久久久久久久大av| 午夜福利在线观看吧| 色av中文字幕| 熟女电影av网| 久久久久久久久久黄片| 国产人妻一区二区三区在| 插逼视频在线观看| 亚洲国产精品sss在线观看| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 中文资源天堂在线| 男人舔女人下体高潮全视频| 日韩三级伦理在线观看| 欧美精品国产亚洲| 久久精品综合一区二区三区| 夜夜爽天天搞| 热99re8久久精品国产| 99精品在免费线老司机午夜| 自拍偷自拍亚洲精品老妇| 俄罗斯特黄特色一大片| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| avwww免费| 亚洲精品影视一区二区三区av| 高清毛片免费看| .国产精品久久| 久久久久久伊人网av| 日韩高清综合在线| 美女被艹到高潮喷水动态| 男女啪啪激烈高潮av片| 69人妻影院| 成年女人毛片免费观看观看9| 亚洲最大成人中文| 99热只有精品国产| 乱系列少妇在线播放| 亚洲人成网站在线观看播放| 亚洲精品成人久久久久久| 天美传媒精品一区二区| 久久精品夜色国产| 亚洲美女搞黄在线观看 | 国产一区亚洲一区在线观看| 国产成人免费无遮挡视频| 午夜激情福利司机影院| 丁香六月天网| 亚洲无线观看免费| 日韩一本色道免费dvd| 成人国产av品久久久| 91成人精品电影| 尾随美女入室| 国产免费一级a男人的天堂| 女人精品久久久久毛片| 欧美性感艳星| 下体分泌物呈黄色| 极品少妇高潮喷水抽搐| a级片在线免费高清观看视频| 成人毛片60女人毛片免费| 亚洲av男天堂| 免费观看无遮挡的男女| 国产69精品久久久久777片| 曰老女人黄片| 久久热精品热| av免费在线看不卡| 国产精品嫩草影院av在线观看| 免费在线观看成人毛片| 精品亚洲成a人片在线观看| 97超碰精品成人国产| 黑丝袜美女国产一区| 在线观看免费日韩欧美大片 | 欧美精品人与动牲交sv欧美| 亚洲av欧美aⅴ国产| 欧美激情国产日韩精品一区| 大陆偷拍与自拍| 亚洲国产精品一区二区三区在线| 九九爱精品视频在线观看| 十八禁高潮呻吟视频 | 少妇被粗大猛烈的视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩视频在线欧美| 91精品一卡2卡3卡4卡| 亚洲精品456在线播放app| 美女主播在线视频| 久久精品国产亚洲av天美| 少妇的逼水好多| 插逼视频在线观看| 国产欧美日韩综合在线一区二区 | 天堂8中文在线网| 国产成人aa在线观看| 久久久a久久爽久久v久久| 亚洲在久久综合| 精品熟女少妇av免费看| 亚洲精品久久久久久婷婷小说| 亚州av有码| 多毛熟女@视频| 天美传媒精品一区二区| 免费黄色在线免费观看| 国产深夜福利视频在线观看| 亚洲国产精品999| 交换朋友夫妻互换小说| 国产欧美日韩综合在线一区二区 | 亚洲人与动物交配视频| 乱码一卡2卡4卡精品| 内射极品少妇av片p| 婷婷色综合大香蕉| av一本久久久久| 亚洲四区av| 国产一区有黄有色的免费视频| 三级经典国产精品| 国产伦精品一区二区三区四那| 日韩亚洲欧美综合| 精品一品国产午夜福利视频| 三级国产精品欧美在线观看| 亚洲成色77777| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 日韩 亚洲 欧美在线| 国产色婷婷99| 精品少妇黑人巨大在线播放| 亚洲av欧美aⅴ国产| 少妇的逼好多水| 51国产日韩欧美| 国产伦精品一区二区三区四那| tube8黄色片| 亚洲丝袜综合中文字幕| 国产又色又爽无遮挡免| 亚洲,欧美,日韩| 人妻制服诱惑在线中文字幕| 三级经典国产精品| 中文字幕人妻丝袜制服| 91久久精品电影网| 草草在线视频免费看| 亚洲一级一片aⅴ在线观看| 哪个播放器可以免费观看大片| 国产一区二区三区av在线| 蜜臀久久99精品久久宅男| 精品熟女少妇av免费看| 国产 一区精品| 26uuu在线亚洲综合色| 国产一区二区三区av在线| 久久免费观看电影| 日本免费在线观看一区| 熟女电影av网| 亚洲电影在线观看av| av视频免费观看在线观看| 成人亚洲欧美一区二区av| av福利片在线观看| 成年美女黄网站色视频大全免费 | 麻豆精品久久久久久蜜桃| 日韩在线高清观看一区二区三区| 91久久精品电影网| 亚洲欧洲日产国产| 午夜91福利影院| 美女中出高潮动态图| 国产熟女欧美一区二区| 极品人妻少妇av视频| 美女福利国产在线| 中文字幕亚洲精品专区| 精品人妻熟女毛片av久久网站| 日本色播在线视频| 欧美性感艳星| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| 亚洲精品日韩av片在线观看| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| .国产精品久久| 美女国产视频在线观看| 91精品伊人久久大香线蕉| 中文字幕亚洲精品专区| 精品人妻熟女毛片av久久网站| 在线播放无遮挡| 久久精品国产自在天天线| 日日摸夜夜添夜夜爱| 亚洲成人一二三区av| 人人妻人人看人人澡| 中文字幕人妻丝袜制服| 国国产精品蜜臀av免费| 我要看黄色一级片免费的| 一级爰片在线观看| 日本黄大片高清| 成人影院久久| 亚洲va在线va天堂va国产| 欧美变态另类bdsm刘玥| 黄色一级大片看看| www.色视频.com| videossex国产| 久久久久久久久久久丰满| 精品人妻熟女毛片av久久网站| 亚洲天堂av无毛| 人人澡人人妻人| 人妻系列 视频| 成年人免费黄色播放视频 | 久久精品久久精品一区二区三区| 热re99久久精品国产66热6| 国产毛片在线视频| 深夜a级毛片| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 国产精品久久久久成人av| 另类亚洲欧美激情| 亚洲欧美成人综合另类久久久| 中文字幕av电影在线播放| 麻豆成人午夜福利视频| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 国产高清国产精品国产三级| 国产精品久久久久久久久免| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 日本欧美国产在线视频| 一级毛片aaaaaa免费看小| 亚洲欧美一区二区三区黑人 | 精品99又大又爽又粗少妇毛片| 嘟嘟电影网在线观看| 中国国产av一级| 97精品久久久久久久久久精品| 亚洲图色成人| 欧美丝袜亚洲另类| 亚洲av综合色区一区| 伊人久久国产一区二区| 亚洲第一av免费看| 精品少妇黑人巨大在线播放| 赤兔流量卡办理| 亚洲成色77777| 天天操日日干夜夜撸| 国产精品无大码| 国内揄拍国产精品人妻在线| 成人影院久久| 美女cb高潮喷水在线观看| 亚洲精品中文字幕在线视频 | 午夜影院在线不卡| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 一级毛片电影观看| 少妇 在线观看| 黄色配什么色好看| 大片电影免费在线观看免费| 香蕉精品网在线| av有码第一页| www.色视频.com| 一本一本综合久久| 狠狠精品人妻久久久久久综合| 黑丝袜美女国产一区| 国产一区二区在线观看日韩| 成人18禁高潮啪啪吃奶动态图 | 99久国产av精品国产电影| 国产精品久久久久久久久免| av天堂中文字幕网| 欧美精品国产亚洲| 我要看黄色一级片免费的| 国产精品国产av在线观看| 成人毛片a级毛片在线播放| 日韩精品有码人妻一区| 亚洲成人手机| 欧美3d第一页| 老司机影院毛片| 成人特级av手机在线观看| 色视频www国产| 大陆偷拍与自拍| 十分钟在线观看高清视频www | 午夜免费男女啪啪视频观看| 少妇被粗大猛烈的视频| 综合色丁香网| 亚洲图色成人| 日韩一本色道免费dvd| 国产亚洲最大av| 国产精品久久久久久久久免| 日本色播在线视频| 青春草亚洲视频在线观看| 亚洲av不卡在线观看| 亚洲国产精品999| 日韩欧美 国产精品| 日韩三级伦理在线观看| 黄色视频在线播放观看不卡| 久久精品熟女亚洲av麻豆精品| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| h视频一区二区三区| 国产精品成人在线| 丰满少妇做爰视频| 国产欧美日韩精品一区二区| 成人黄色视频免费在线看| 啦啦啦视频在线资源免费观看| 美女中出高潮动态图| 99热国产这里只有精品6| 亚洲国产精品成人久久小说| 女人久久www免费人成看片| 精品午夜福利在线看| 一级毛片我不卡| 日韩,欧美,国产一区二区三区| www.色视频.com| 热99国产精品久久久久久7| 日韩精品免费视频一区二区三区 | 免费看av在线观看网站| 日韩熟女老妇一区二区性免费视频| 永久免费av网站大全| 亚洲国产精品专区欧美| 国产亚洲最大av| 我要看黄色一级片免费的| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 久久人人爽av亚洲精品天堂| 成人二区视频| 最近中文字幕2019免费版| 一级二级三级毛片免费看| 国产在线一区二区三区精| 精品人妻偷拍中文字幕| 日本av手机在线免费观看| 丝袜在线中文字幕| 男女免费视频国产| 精品午夜福利在线看| 美女视频免费永久观看网站| 欧美人与善性xxx| 国产国拍精品亚洲av在线观看| 国产欧美日韩一区二区三区在线 | 亚洲精品日韩av片在线观看| 婷婷色综合www| 免费人成在线观看视频色| 大话2 男鬼变身卡| 久久午夜综合久久蜜桃| 成人美女网站在线观看视频| 日本色播在线视频| 丰满少妇做爰视频| 日韩视频在线欧美| 亚洲美女黄色视频免费看| 2021少妇久久久久久久久久久| 大又大粗又爽又黄少妇毛片口| 日本午夜av视频| 日韩亚洲欧美综合| 女人久久www免费人成看片| a级毛片免费高清观看在线播放| 丝瓜视频免费看黄片| 边亲边吃奶的免费视频| 精品少妇内射三级| 久久亚洲国产成人精品v| 国产成人精品婷婷| 国产精品伦人一区二区| 在线天堂最新版资源| 我要看日韩黄色一级片| 精品人妻一区二区三区麻豆| 国产黄色免费在线视频| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 日韩强制内射视频| 少妇精品久久久久久久| 欧美亚洲 丝袜 人妻 在线| 高清不卡的av网站| 赤兔流量卡办理| 我的女老师完整版在线观看| 国产精品一二三区在线看| 中文资源天堂在线| 我的女老师完整版在线观看| 99热这里只有是精品在线观看| 久久国产精品大桥未久av | 国产精品一区二区三区四区免费观看| 男女边吃奶边做爰视频| 自线自在国产av| 久久久久久久久久久久大奶| 国产免费一区二区三区四区乱码| 十八禁网站网址无遮挡 | 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 少妇裸体淫交视频免费看高清| av视频免费观看在线观看| 中国三级夫妇交换| 亚洲精品国产av蜜桃| 亚洲精品自拍成人| 成人无遮挡网站| 久久av网站| 久久影院123| 国产免费又黄又爽又色| 免费播放大片免费观看视频在线观看| 建设人人有责人人尽责人人享有的| 亚洲精华国产精华液的使用体验| 午夜激情久久久久久久| 欧美 日韩 精品 国产| 中文欧美无线码| 久久精品夜色国产| 亚洲第一区二区三区不卡| 久久6这里有精品| 18+在线观看网站| 亚洲av福利一区| 日本91视频免费播放| 美女主播在线视频| 欧美丝袜亚洲另类| 中文天堂在线官网| 久久综合国产亚洲精品| 国产av一区二区精品久久| 99热国产这里只有精品6| 国产69精品久久久久777片| 男女啪啪激烈高潮av片| videossex国产| 免费看光身美女| 成人漫画全彩无遮挡| 久热这里只有精品99| 亚洲精品色激情综合| 国产日韩欧美亚洲二区| 自拍偷自拍亚洲精品老妇| 亚洲精品第二区| 久久鲁丝午夜福利片| 午夜免费鲁丝| 久久久精品免费免费高清| 69精品国产乱码久久久| a 毛片基地| 久久99一区二区三区| 免费观看的影片在线观看| 久久久久久久久久久免费av| 亚洲,一卡二卡三卡| 在线精品无人区一区二区三| 日韩免费高清中文字幕av| 伦理电影大哥的女人| 我要看日韩黄色一级片| 国产午夜精品一二区理论片| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 日韩中字成人| 一级av片app| 大话2 男鬼变身卡| 嫩草影院新地址| 日韩精品免费视频一区二区三区 | 80岁老熟妇乱子伦牲交| 欧美 日韩 精品 国产| 精品少妇久久久久久888优播| 亚洲人成网站在线播| 看非洲黑人一级黄片| 亚洲国产欧美日韩在线播放 | 我要看黄色一级片免费的| 国产av精品麻豆| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 国产综合精华液| 久久精品国产亚洲av涩爱| 多毛熟女@视频| 亚洲国产精品999| 一级二级三级毛片免费看| 精品人妻熟女毛片av久久网站| 亚洲精品久久午夜乱码| 麻豆成人av视频| 亚洲欧美日韩卡通动漫| 十八禁网站网址无遮挡 | 久久婷婷青草| 国产男女内射视频| 亚洲精华国产精华液的使用体验| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 一级片'在线观看视频| 中文字幕久久专区| 国产成人91sexporn| 成年av动漫网址| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 亚洲熟女精品中文字幕| 嘟嘟电影网在线观看| 国产老妇伦熟女老妇高清| 精品熟女少妇av免费看| 日韩免费高清中文字幕av| 六月丁香七月| 深夜a级毛片| 最近2019中文字幕mv第一页| 亚洲欧美日韩另类电影网站| 99精国产麻豆久久婷婷| 热99国产精品久久久久久7| 亚洲欧美日韩东京热| 精品少妇久久久久久888优播| 亚洲,欧美,日韩| 99久久精品热视频| 热re99久久国产66热| 欧美日本中文国产一区发布| 观看美女的网站| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜| 国内揄拍国产精品人妻在线| 久久久久久人妻| 这个男人来自地球电影免费观看 | 久久久a久久爽久久v久久| 亚洲欧美成人综合另类久久久| 中文字幕免费在线视频6| 国产伦精品一区二区三区视频9| 极品少妇高潮喷水抽搐| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 国产欧美日韩综合在线一区二区 | 日本wwww免费看| 麻豆成人午夜福利视频| 久久久国产欧美日韩av| 哪个播放器可以免费观看大片| 成人二区视频| 视频区图区小说| av在线app专区| 在线观看三级黄色| 青春草视频在线免费观看| 又粗又硬又长又爽又黄的视频| 久久毛片免费看一区二区三区| 嫩草影院新地址| 国产av码专区亚洲av| 乱系列少妇在线播放| 国产精品偷伦视频观看了| 三上悠亚av全集在线观看 | 丰满饥渴人妻一区二区三| 美女主播在线视频| 久久精品国产鲁丝片午夜精品| 日韩中文字幕视频在线看片| 一级爰片在线观看| 色哟哟·www| 欧美人与善性xxx| 99九九在线精品视频 | 日韩一区二区三区影片| 日韩伦理黄色片| 国产一区有黄有色的免费视频| 十分钟在线观看高清视频www | 99国产精品免费福利视频| 亚洲精品久久午夜乱码| 国产精品.久久久| 最后的刺客免费高清国语| 亚洲国产精品一区二区三区在线| 国产美女午夜福利| 夜夜爽夜夜爽视频| 最新中文字幕久久久久| 国产日韩欧美亚洲二区| 午夜激情久久久久久久| 国产成人午夜福利电影在线观看| av天堂久久9| 99re6热这里在线精品视频| 男男h啪啪无遮挡| 色网站视频免费| 男人爽女人下面视频在线观看| 亚洲一区二区三区欧美精品| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 欧美性感艳星| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 久久婷婷青草| 亚洲精品久久午夜乱码| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 亚洲激情五月婷婷啪啪| 国产欧美日韩一区二区三区在线 | 我的女老师完整版在线观看| 赤兔流量卡办理| 国产av国产精品国产| 欧美日韩综合久久久久久| 大香蕉97超碰在线| 欧美精品一区二区大全| 亚洲精品中文字幕在线视频 | 插阴视频在线观看视频| 日韩欧美 国产精品| 另类精品久久| 桃花免费在线播放| 久久婷婷青草| 国产综合精华液| 久久久久久久久久人人人人人人| 中文乱码字字幕精品一区二区三区| 自拍偷自拍亚洲精品老妇| 丝瓜视频免费看黄片| 国产亚洲欧美精品永久| 麻豆成人av视频| 成人无遮挡网站| 天天躁夜夜躁狠狠久久av| 狠狠精品人妻久久久久久综合| 国产亚洲91精品色在线| 欧美+日韩+精品| 最后的刺客免费高清国语| 日韩人妻高清精品专区| 亚洲国产欧美日韩在线播放 |