• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    2014-10-14 03:45:12WANGKunPengWANGChangSheng
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:激發(fā)態(tài)吡唑國家自然科學(xué)基金

    WANG Kun-Peng WANG Chang-Sheng

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    WANG Kun-Peng WANG Chang-Sheng*

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Abstract: The ground state(S0)structures of 3(5)-(9-anthryl)pyrazole and its derivatives were obtained using the density functional theory(DFT)B3LYP/6-31G(d)method.The first singlet excited state(S1)structures were optimized using the singlet-excitation configuration interaction(CIS)/6-31G(d)method.The absorption and emission spectra were then evaluated using the time-dependent density functional theory(TD-DFT)B3LYP method with the 6-311++G(d,p)basis set.Our calculation results reveal that for all the derivatives(electron-withdrawing groups or electron-donating groups)the calculated absorption and fluorescence emission wavelength values all show red shifts compared with the parent 3(5)-(9-anthryl)pyrazole.We also find that compared with the parent 3(5)-(9-anthryl)pyrazole,the derivatives with―R=―BH2,―CCl3,―CHO,―NH2are good candidates for longer absorption wavelength materials and for longer fluorescence emission wavelength materials.

    Key Words:Absorption spectrum;Fluorescence emission spectrum;3(5)-(9-Anthryl)pyrazole;Excited state

    1 Introduction

    The design and synthesis of organic optical materials have attracted intensive attention because of their potential applications in organic light-emitting diodes(OLEDs).Much effort has been made on the multicolor patterning of organic luminescent molecules with ordered micro-and nano-scopic features as a result of their applications in full-color display and other related areas.1-19Mizukamiet al.1found that a helical 3,3′-di-tert-butylsalen-zinc(II)complex,[Zn2],has a red-shifted fluorescence as compared to that of[Zn],a half-structured mononuclear complex of[Zn2].Baderet al.2reported the syntheses and electrochemical properties of four oligothiophene derivativeswith the tricyanovinyl group and suggested that these materials might be suitable for n-type,and possibly for ambipolar,transport.Yamaguchi et al.3designed and synthesized a series of B,B′,B″-trianthryl-N,N′,N″-triarylborazine derivatives bearing various p-substituted phenyl groups and observed significant bundle effects in the photophysical and electrochemical properties of these compounds.Murata et al.4reported efficient molecular organic light-emitting diodes composed of novel silols derivatives as an electron transporting layer and an emissive layer.Tang et al.5prepared a series of 2,3,4,5-tetraphenylsiloles with different 1,1-substituents and observed that with an increase in the electronegativity of 1,1-substituents of the silols,the absorption and emission wavelengths of the silols bathochromically shifted.Sapochak et al.6carried out theoretical and experimental investigations on the molecular and electronic structure of the 8-hydroxyquinoline chelate of zinc(II)and related the results to OLED performance.Brinkmann et al.7investigated the structures and the correlation between intermolecular interactions and optical properties in various metaloquinolate tris(8-hydroxyquinoline)aluminum(Alq3)systems,including solution,amorphous thin films,and different crystalline forms,and showed that the length of interligand contacts between neighboring Alq3molecules as well as the molecular density of the packing plays an important role in influencing the spectral position of fluorescence.The molecular orbital study of the first excited state of the OLED material Alq3was carried out by Schlegel et al.8Based on the structure of the excited state,they predicted an emission wavelength of 538 nm,which is comparable to 514 nm observed experimentally for solution phase photoluminescence.Geng et al.9investigated the electronic structure and transport properties of a p-stacking molecular chain using the first-principles density functional theory approach combined with Green′s function method.Su et al.10carried out a DFT/TD-DFT study on the electronic structures and optoelectronic properties of several blue-emitting iridium(III)complexes and found that the properties of the ligands had great influence on the photophysical properties,such as energy gap,absorption spectra,emission spectra,etc.Zhang et al.11investigated the optical properties of the phosphorescent trinuclear copper(I)complexes of pyrazolates theoretically and found that the short intermolecular Cu…Cu distance played an important role in the emission spectra of the verticaland tilting-movement dimers.An theoretical study on symmetric and asymmetric spirosilabifluorene derivatives was also carried out and an excellent agreement with the experiment data on their optical properties was obtained.12Wang et al.13-14reported the emission properties of the polymorphs and pseudopolymorphs of N,N-di(n-butyl)quinacridone and N,N-di(n-cetyl)quinacridone and found that the crystal phases with stronger π-π interactions showed the emission maximum at a longer wavelength region while that with relatively weaker π-π interactions exhibited an emission maximum at a shorter wavelength region.Although considerable progress has been made in organic luminescent materials with different structures,it is still essential to achieve a molecular-level understanding of the relationship between the electronic structures and the resulting optical properties.

    The organic molecule 3(5)-(9-anthryl)pyrazole has been used as building blocks to construct different luminescent single crystal.20-22In order to understand the optical properties of 3(5)-(9-anthryl)pyrazole,we here reported our research on the geometrical structure,the gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),and the absorption/emission spectra of 3(5)-(9-anthryl)pyrazole at the ground and excited states with the DFT and CIS methods.We displayed the relationship between the optical properties and electronic structures of the frontier molecular orbitals(FMOs),explored the influence of the substitutions on the absorption and emission wavelengths.We hope that the result obtained would be helpful for understanding connection between the fluorescence characters and electronic structures and helpful for the find of new fluorescence materials.

    2 Calculation methods

    ANP possesses two possible structures ANP-1 and ANP-2(Fig.1).The ground state S0structures of ANP-1 and ANP-2 were obtained by using the density functional theory23B3LYP/6-31G(d)method.B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)calculation showed that ANP-1 was a little more stable than ANP-2.The singlet excited state S1structures of ANP-1 and ANP-2 were optimized by using the CIS method24with 6-31G(d)basis set.Based on the structures obtained,their absorption and emission spectra were calculated by the TD-DFT B3LYP method with 6-311++G(d,p)basis sets.In order to examine the effect of substituents on the absorption and emission spectra,several derivatives of ANP-1 were designed by replacing the hydrogen atom on the C7 of ANP-1 with several electron-withdrawing or electron-donating groups.The ground state S0structures and the singlet excited state S1structures of these derivatives were optimized by using B3LYP/6-31G(d)and CIS/6-31G(d)methods,respectively.Based on the structures obtained,the absorption and emission spectra of these derivatives were then obtained by using TD-DFT B3LYP method with 6-311++G(d,p)basis sets.The solvent affect was considered by using PCM model25in TD-DFT B3LYP calculations.

    3 Results and discussion

    3.1 Geometric structures and electronic structures of ANP-1 and ANP-2

    The selected structure parameters of ANP-1 and ANP-2 are listed in Table 1.Compared with the ground state S0,some bond lengths in the excited state S1are lengthened,some others are shortened.The bond lengths of C1―C6,C2―C3,and C4―C5 are all shortened from the ground state S0to the excited state S1for both ANP-1 and ANP-2,while the bond lengthsof C1―C2,C5―C6,C3―C7,and C4―C11 are all lengthened.The bond lengths between the adjacent atoms except H in the pyrazole ring of ANP-1 and ANP-2 are all shortened with the exception of the bond length C12―C19 in ANP-2 which is lengthened slightly from 0.1423 to 0.1424 nm.The dihedral anglesDN15C12C11C10become smaller for both ANP-1 and ANP-2 from the ground stateS0to the excited stateS1,indicating a better planar nature of the excited stateS1.What is more,their bond lengths C11―C12 are within the range from 0.1485 to 0.1472 nm,which are longer than the standard double bond(C=C,0.134 nm)and shorter than the standard single bond(C―C,0.154 nm),indicating a certain double bond nature.Thus conclusion could be drawn that a larger conjugation system has formed fromS0toS1,which will facilitate the free movement of electron cloud and electron transfer from the pyrazole fragment to the anthracene fragment.

    The electron density contours of HOMO-1,HOMO,LUMO,LUMO+1 of ANP-1 and ANP-2(Fig.2)show that HOMO is mainly distributed on the anthracene ring part with a small quantity of distribution on the pyrazole fragment,LUMO is mainly distributed on the anthracene ring part and much less distributed on the pyrazole fragment.Based on the fact that the lowest lying excited state usually corresponds to an excitation from HOMO to LUMO,we can make a good explanation of the ANP bond length variation by analyzing the FMOs.The bonds C1―C6,C2―C3,and C4―C5 are antibonding on the HOMO for both ANP-1 and ANP-2,while on the LUMO,they are bonding in these regions.Therefore,these bonds are shortened on the excited stateS1.The bonds C1―C2,C5―C6,C3―C7,and C4―C11 are antibonding on the LUMO,while they are bonding on the HOMO.These bonds hence become longer on the excited stateS1.

    Table 1 Optimized structural parameters ofANP-1 andANP-2

    3.2 Effect of substituents on the optical properties

    3.2.1 The frontier molecular orbital(FMO)analysis

    The HOMO and LUMO energies of ANP-1 and its derivatives are listed in Table 2.As seen from Table 2,both HOMO and LUMO energies are obviously changed by replacing the hydrogen atom on the C7 of ANP-1 with an electron-withdrawing or electron-donating group.Table 2 shows that compared with the parent molecule ANP-1(―R=―H),replacing the hydrogen atom with an electron-withdrawing group(―R=―BH2,―CHO,―SO3H,―COMe,―COOH,―CONH2,―CCl3,―CF3,―CN)lowers both the HOMO energy(EHOMO)and the LUMO energy(ELUMO),andELUMOis lowered more thanEHOMO,resulting in a smaller energy gapsEgcompared with the energy gap(3.472 eV)of ANP-1,suggesting a red-shift absorption wavelength.However,substituting the hydrogen atom with an electron-donating group(―R=―Me,―OH,―OMe,―NH2,―NHMe)raises bothEHOMOandELUMO,butEHOMOis raised more,resulting in a smaller energy gap compared with that of ANP-1,also suggesting a red-shift absorption wavelength.

    3.2.2 Absorption spectra

    Table 3 displays the calculated absorption wavelength(λ),the oscillator strength(f),transition assignment,and the main CI expansion coefficients of ANP-1 and its derivatives.It has been known that a large oscillator strengthfusually corresponds to a large experimental absorption coefficient or a strong fluorescence.It can be seen from Table 3 that,for all thederivatives,whatever the substituent is an electron-withdrawing group or an electron-donating group,the calculated absorption wavelength values all show a red shift as compared with ANP-1,consistent with the FMO analysis above.Table 3 shows that the derivative with―R=―NH2possesses a relatively longer absorption wavelength(442 nm)than the derivative with―R=―NHMe(428 nm),the derivative with―R=―OH possesses a relatively longer absorption wavelength(424 nm)than the derivative with―R=―OMe(413 nm),the derivative with―R=―CHO possesses a relatively longer absorption wavelength(447 nm)than the derivative with―R=―COMe(410 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer absorption wavelength.Table 3 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br exists the longest absorption wavelength(415 nm)whereas the derivative with―R=―F shows the shortest absorption wavelength(409 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter absorption wavelength,or,in another word,a more electropositive group may result in a longer absorption wavelength.This conclusion is further confirmed by the fact that the derivative with―R=―CCl3has a longer absorption wavelength than the one with―R=―CF3.Among the substituents considered,we find that the derivatives with―R=―BH2,―CCl3,―CHO,and―NH2have relatively long absorption wavelength,three of them belong to the electron-withdrawing group,suggesting that if one want to design and synthesize an optical material possessing a longer wavelength,one can substitute the hydrogen atom of the parent molecule with electron-withdrawing group,especially with ―BH2,―CCl3,―CHO.

    The data in the third column of Table 3 are the absorption wavelength in CHCl3solvent.The data in the fifth column of Table 3 are the oscillator strengths in CHCl3solvent.These data show that the solvent CHCl3leads to a further red shift for the absorption wavelength values with the red-shifted extent 3-13 nm except the derivative with―R=―O-.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterparts in gas phase.

    Table 2 Frontier molecular orbital energies(in eV)and their differences(Egin eV)obtained at the B3LYP/6-31G(d)level

    3.2.3 Emission spectra

    The calculated emission parameters are listed in Table 4.It can be seen from Table 4 that the fluorescence emission spectra of the derivatives are all red shifted compared with the parent molecule ANP-1,whatever the substituent is an electronwithdrawing group or an electron-donating group,consistent again with the FMO analysis above.Furthermore,the redshifted wavelength is predicted in the increasing order―Me<― OMe<― OH<― NHMe<—NH2for the electron-donating group,and ―CONH2<―COOH≈—CF3≈―CN≈―COMe<―SO3H<―CHO<―BH2<―CCl3for the electron-withdrawing group.Table 4 shows that the derivative with―R=―NH2possesses a relatively longer fluorescence emission wavelength(514 nm)than the derivative with―R=―NHMe(490 nm),the derivative with―R=―OH possesses a relatively longer emission wavelength(486 nm)than the derivative with―R=―OMe(472 nm),the derivative with―R=―CHO possesses a relatively longer emission wavelength(498 nm)than the derivative with―R=―COMe(478 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer fluorescence emission wavelength.Table 4 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br shows the longest fluores-cence emission wavelength(471 nm)whereas the derivative with―R=―F shows a shortest fluorescence emission wavelength(468 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter emission wavelength,or,in another word,a more electropositive group may result in a longer emission wavelength.This is further confirmed by the fact that the derivative with―R=―CCl3has a longer fluorescence emission wavelength(531 nm)than the one with―R=―CF3(475 nm).Among the substituents considered in this work,we find that the derivatives with ―R=―O-,―BH2,―CCl3,―CHO,―NH2have relatively the longest fluorescence emission wavelength,suggesting that if one wants to design and synthesize an optical material possessing a longer fluorescence emission wavelength,one can substitute the hydrogen atom of the parent molecule with these groups.

    Table 3 Absorption wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    The data in the third column of Table 4 are the fluorescence emission wavelength in CHCl3solvent.These data show that the solvent leads to a further red shift for the fluorescence emission wavelengths with the red-shifted extent 4-17 nm.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterpart ones in gas phase,displaying that the fluores-cent emitting spectrum is strengthened in CHCl3solvent.

    Table 4 Fluorescence emission wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    4 Conclusions

    Based on the theoretical calculations we have demonstrated that,for all the derivatives of ANP considered in this paper,whatever the substituent is an electron-withdrawing group or an electron-donating group,the absorption and fluorescence emission wavelength values all show red shifts as compared with ANP.We have also shown that,compared with ANP,the derivatives of ANP-1 with ―R=―BH2,―CCl3,―CHO,and―NH2are good candidates both for the optical materials possessing longer absorption wavelength and for the optical materials possessing longer fluorescence emission wavelength.Furthermore,we found that the derivative with―R=―Br has both a longer absorption wavelength and a longer fluorescence emission wavelength than the derivative with―R=―F,and the derivative with―R=―CCl3has a longer wavelength than the one with―R=―CF3,showing that a more electropositive group may result in a longer absorption or emission wavelength.

    (1)Mizukami,S.;Houjou,H.;Sugaya,K.;Koyama,E.;Tokuhisa,H.;Sasaki,T.;Kanesato,M.Chem.Mater.2005,17,50.

    (2)Bader,M.M.;Custelcean,R.;Ward,M.D.Chem.Mater.2003,15,616.

    (3)Wakamiya,A.;Ide,T.;Yamaguchi,S.J.Am.Chem.Soc.2005,127,14859.

    (4) Murata,H.;Kafafi,Z.H.;Uchida,M.Appl.Phys.Lett.2002,80,189.

    (5)Chen,J.;Law,C.C.W.;Lam,J.W.Y.;Dong,Y.;Lo,S.M.F.;Williams,I.D.;Zhu,D.;Tang,B.Z.Chem.Mater.2003,15,1535.

    (6) Sapochak,L.S.;Benincasa,F.E.;Schofield,R.S.;Baker,J.L.;Riccio,K.K.C.;Fogarty,D.;Kohlmann,H.;Ferris,K.F.;Burrows,P.E.J.Am.Chem.Soc.2002,124,6119.

    (7) Brinkmann,M.;Gadret,G.;Muccini,M.;Taliani,C.;Masciocchi,N.;Sironi.A.J.Am.Chem.Soc.2000,122,5147.

    (8) Halls,M.D.;Schlegel,H.B.Chem.Mater.2001,13,2632.

    (9)Geng,W.T.;Oda,M.;Nara,J.;Kondo,H.;Ohno,T.J.Phys.Chem.B 2008,112,2795.

    (10)Shi,L.;Hong,B.;Guan,W.;Wu,Z.;Su,Z.J.Phys.Chem.A 2010,114,6559.

    (11) Hu,B.;Gahungu,G.;Zhang,J.J.Phys.Chem.A 2007,111,4965.

    (12) Sun,M.;Niu,B.;Zhang,J.Theor.Chem.Acc.2008,119,489.

    (13)Fan,Y.;Zhao,Y.;Ye,L.;Li,B.;Yang,G.;Wang,Y.Crystal Growth&Design 2009,9,1421.

    (14)Fan,Y.;Song,W.;Yu,D.;Ye,K.;Zhang,J.;Wang,Y.CrystEngComm 2009,11,1716.

    (15) Gaal,M.;Gadermaier,C.;Plank,H.;Moderegger,E.;Pogantsch,A.;Leising,G.;List,E.J.W.Adv.Mater.2003,15,1165.

    (16)Zhao,Y.;Gao,H.;Fan,Y.;Zhuo,T.;Su,Z.;Liu,Y.;Wang,Y.Adv.Mater.2009,21,3165.

    (17) Gustafsson,G.;Cao,Y.;Treacy,G.M.;Klavetter,F.;Colaneri,N.;Heeger,A.J.Nature 1992,357,477.

    (18) Chen,Y.;Au,J.;Kazlas,P.;Ritenour,A.;Gates,H.;McCreary,M.Nature 2003,423,136.

    (19)Rakow,N.A;Suslick,K.S.Nature 2000,406,710.

    (20) Zhang,H.;Zhang,Z.;Ye,K.;Zhang,J.;Wang,Y.Adv.Mater.2006,18,2369.

    (21)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Wang,W.;Wu,Y.;Wang,Y.;Chi,L.Langmuir 2008,24,12745.

    (22)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Shi,G.;Wang,Y.;Chi,L.Langmuir 2009,25,3894.

    (23) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.

    (24) Foresman,J.B.;Head-Gordon,M.;Pople,J.A.;Frisch,M.J.J.Phys.Chem.1992,96,135.

    (25)Cancès,E.;Mennucci,B.;Tomasi,J.J.Chem.Phys.1997,107,3032.

    取代基對3(5)-(9-蒽基)吡唑光學(xué)性質(zhì)的影響

    王昆鵬 王長生*

    (遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    使用密度泛函理論(DFT)B3LYP/6-31G(d)方法優(yōu)化得到了3(5)-(9-蒽基)吡唑及其衍生物的基態(tài)(S0)分子結(jié)構(gòu),使用單激發(fā)組態(tài)相互作用(CIS)/6-31G(d)方法優(yōu)化得到這些分子的第一單重激發(fā)態(tài)(S1)的幾何結(jié)構(gòu),并使用含時密度泛函理論(TD-DFT)B3LYP/6-311++G(d,p)方法計算了它們的吸收和發(fā)射光譜.計算結(jié)果表明,與3(5)-(9-蒽基)吡唑相比,無論取代基是吸電子基團(tuán)還是供電子基團(tuán),衍生物的吸收和發(fā)射峰均發(fā)生紅移,并且當(dāng)取代基―R=―BH2,―CCl3,―CHO,―NH2時衍生物有較長的吸收波長和發(fā)射波長.

    吸收光譜; 熒光發(fā)射光譜;3(5)-(9-蒽基)吡唑; 激發(fā)態(tài)

    O641

    Received:October 29,2010;Revised:December 27,2010;Published on Web:January 18,2011.

    ?Corresponding author.Email:chwangcs@lnnu.edu.cn;Tel:+86-411-82159391.

    The project was supported by the National Natural Science Foundation of China(20973088)and Research Fund of the Educational Department of Liaoning Province,China(2007T091,2008T106).

    國家自然科學(xué)基金(20973088)和遼寧省高校創(chuàng)新團(tuán)隊基金(2007T091,2008T106)資助項目

    猜你喜歡
    激發(fā)態(tài)吡唑國家自然科學(xué)基金
    常見基金項目的英文名稱(一)
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    國家自然科學(xué)基金項目簡介
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    成人国产一区最新在线观看| 亚洲成av人片免费观看| 日本与韩国留学比较| 日日摸夜夜添夜夜添av毛片 | 亚洲av免费在线观看| 欧美日韩黄片免| 麻豆一二三区av精品| 国产久久久一区二区三区| 国产麻豆成人av免费视频| 丝袜美腿在线中文| 精品久久久久久久久亚洲 | 国产精品一区二区三区四区免费观看 | 欧美潮喷喷水| 午夜福利成人在线免费观看| 热99re8久久精品国产| 久久天躁狠狠躁夜夜2o2o| a级毛片免费高清观看在线播放| www日本黄色视频网| 91久久精品电影网| 精品不卡国产一区二区三区| 欧美精品啪啪一区二区三区| 真实男女啪啪啪动态图| 亚洲第一欧美日韩一区二区三区| 国产淫片久久久久久久久 | 国产中年淑女户外野战色| 欧美黑人巨大hd| 在线观看美女被高潮喷水网站 | 午夜亚洲福利在线播放| www.999成人在线观看| 亚洲精品一区av在线观看| 国产精品1区2区在线观看.| 欧洲精品卡2卡3卡4卡5卡区| 好男人在线观看高清免费视频| а√天堂www在线а√下载| 哪里可以看免费的av片| 亚州av有码| 午夜福利高清视频| 国产探花极品一区二区| 99久久成人亚洲精品观看| 国产单亲对白刺激| 性色avwww在线观看| 美女xxoo啪啪120秒动态图 | 精品99又大又爽又粗少妇毛片 | 在现免费观看毛片| 久久午夜福利片| 啪啪无遮挡十八禁网站| 俄罗斯特黄特色一大片| 亚洲熟妇中文字幕五十中出| www日本黄色视频网| 成人国产一区最新在线观看| 亚洲 欧美 日韩 在线 免费| 黄色配什么色好看| 在线a可以看的网站| 人妻制服诱惑在线中文字幕| 在线观看舔阴道视频| 啦啦啦韩国在线观看视频| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 简卡轻食公司| 18禁裸乳无遮挡免费网站照片| 日本a在线网址| 男女做爰动态图高潮gif福利片| av中文乱码字幕在线| 伦理电影大哥的女人| 国产在视频线在精品| 亚洲黑人精品在线| 亚洲狠狠婷婷综合久久图片| 十八禁网站免费在线| 美女大奶头视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人精品中文字幕电影| 国产三级中文精品| 99久久久亚洲精品蜜臀av| 免费在线观看影片大全网站| 国产亚洲精品久久久久久毛片| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人av在线观看| 99国产精品一区二区三区| 国产成+人综合+亚洲专区| 免费av观看视频| 亚洲欧美日韩东京热| 在线观看舔阴道视频| 赤兔流量卡办理| 亚洲av五月六月丁香网| 两个人的视频大全免费| eeuss影院久久| 不卡一级毛片| 久久国产乱子免费精品| 99在线人妻在线中文字幕| 精品免费久久久久久久清纯| 亚洲av第一区精品v没综合| 日本一二三区视频观看| aaaaa片日本免费| 日韩欧美在线二视频| 无人区码免费观看不卡| 欧美极品一区二区三区四区| 夜夜躁狠狠躁天天躁| 国产伦精品一区二区三区四那| 免费av观看视频| 久久久久国产精品人妻aⅴ院| 亚洲精品亚洲一区二区| 久久精品国产清高在天天线| 国产蜜桃级精品一区二区三区| 婷婷六月久久综合丁香| 国产精品自产拍在线观看55亚洲| 一区二区三区免费毛片| 精品无人区乱码1区二区| 日韩欧美国产在线观看| 18+在线观看网站| 一区二区三区激情视频| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 国产精品三级大全| 久久九九热精品免费| 亚洲欧美激情综合另类| 国产av一区在线观看免费| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 精品久久久久久久人妻蜜臀av| 亚洲午夜理论影院| 99热精品在线国产| 亚洲三级黄色毛片| netflix在线观看网站| 国内精品一区二区在线观看| 日韩国内少妇激情av| 国产精品98久久久久久宅男小说| 欧美日韩黄片免| 五月伊人婷婷丁香| 舔av片在线| 精品欧美国产一区二区三| 怎么达到女性高潮| 在线播放无遮挡| 好看av亚洲va欧美ⅴa在| 大型黄色视频在线免费观看| 亚洲,欧美精品.| a在线观看视频网站| 女人被狂操c到高潮| 韩国av一区二区三区四区| 麻豆久久精品国产亚洲av| avwww免费| 淫秽高清视频在线观看| 亚洲av免费高清在线观看| 少妇人妻精品综合一区二区 | xxxwww97欧美| 久久久久精品国产欧美久久久| 国产aⅴ精品一区二区三区波| 脱女人内裤的视频| 国产熟女xx| 国产精品99久久久久久久久| 成人美女网站在线观看视频| 久久久久久久久久成人| 黄色一级大片看看| 嫩草影视91久久| 免费电影在线观看免费观看| 又爽又黄a免费视频| 午夜精品一区二区三区免费看| 757午夜福利合集在线观看| 欧美日韩国产亚洲二区| 在线天堂最新版资源| 免费在线观看影片大全网站| 宅男免费午夜| 亚洲,欧美精品.| 欧美zozozo另类| 午夜精品久久久久久毛片777| 别揉我奶头 嗯啊视频| 欧美+日韩+精品| 又粗又爽又猛毛片免费看| 丰满人妻一区二区三区视频av| 天堂√8在线中文| 亚洲av一区综合| 色播亚洲综合网| 99国产精品一区二区蜜桃av| 非洲黑人性xxxx精品又粗又长| 九色国产91popny在线| 免费看光身美女| 亚洲电影在线观看av| 久久国产乱子免费精品| 亚洲国产欧美人成| 国产亚洲精品久久久com| 在线播放国产精品三级| 久久久久久久久久成人| 日韩精品青青久久久久久| 久久久久久久久久黄片| 免费搜索国产男女视频| 免费看日本二区| 午夜日韩欧美国产| 老熟妇仑乱视频hdxx| 色吧在线观看| 啪啪无遮挡十八禁网站| 蜜桃亚洲精品一区二区三区| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 欧美乱妇无乱码| 在线播放无遮挡| 草草在线视频免费看| 国产淫片久久久久久久久 | 色在线成人网| 1024手机看黄色片| 国产精品不卡视频一区二区 | 麻豆国产av国片精品| 简卡轻食公司| 久久精品国产99精品国产亚洲性色| 真实男女啪啪啪动态图| 国产黄片美女视频| 日韩中字成人| 少妇裸体淫交视频免费看高清| 免费在线观看亚洲国产| 亚洲中文日韩欧美视频| 日本黄大片高清| 深夜精品福利| 最后的刺客免费高清国语| 在线播放国产精品三级| 网址你懂的国产日韩在线| www日本黄色视频网| 狠狠狠狠99中文字幕| 欧美极品一区二区三区四区| 又黄又爽又免费观看的视频| www.色视频.com| 成人无遮挡网站| 90打野战视频偷拍视频| 俄罗斯特黄特色一大片| 97热精品久久久久久| 99久国产av精品| 中文资源天堂在线| 欧美在线黄色| 夜夜爽天天搞| 校园春色视频在线观看| 国产探花极品一区二区| 亚洲精品日韩av片在线观看| 两个人视频免费观看高清| 一级黄片播放器| 色综合婷婷激情| 精品人妻视频免费看| 中文字幕熟女人妻在线| 精品熟女少妇八av免费久了| 亚洲成av人片在线播放无| 久久国产乱子免费精品| 国产伦人伦偷精品视频| 日本黄色片子视频| 在线免费观看的www视频| 在线免费观看的www视频| 免费搜索国产男女视频| 一级黄片播放器| 日日摸夜夜添夜夜添av毛片 | 伊人久久精品亚洲午夜| 亚洲欧美日韩无卡精品| 国产av不卡久久| 国产精华一区二区三区| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 少妇的逼好多水| 俄罗斯特黄特色一大片| 国产人妻一区二区三区在| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 国产蜜桃级精品一区二区三区| 99国产精品一区二区蜜桃av| 国产视频内射| 国产激情偷乱视频一区二区| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 久久九九热精品免费| 成人一区二区视频在线观看| ponron亚洲| 精品久久国产蜜桃| 国产单亲对白刺激| 国语自产精品视频在线第100页| 我的女老师完整版在线观看| 国产精品嫩草影院av在线观看 | 非洲黑人性xxxx精品又粗又长| 国产伦一二天堂av在线观看| 国产真实伦视频高清在线观看 | 男人和女人高潮做爰伦理| 亚洲中文日韩欧美视频| 亚洲成人中文字幕在线播放| 中亚洲国语对白在线视频| 国产亚洲精品综合一区在线观看| 国产亚洲欧美在线一区二区| 国内精品久久久久精免费| 九九久久精品国产亚洲av麻豆| 国产精品亚洲av一区麻豆| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看| 婷婷亚洲欧美| 亚洲欧美日韩卡通动漫| 99国产精品一区二区三区| 丰满乱子伦码专区| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 搡老妇女老女人老熟妇| 国产日本99.免费观看| 久久久久久久精品吃奶| 99久久成人亚洲精品观看| 国产乱人伦免费视频| 十八禁网站免费在线| 日韩有码中文字幕| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 一边摸一边抽搐一进一小说| 国产高清三级在线| 午夜福利在线观看免费完整高清在 | 国产真实伦视频高清在线观看 | 亚洲熟妇熟女久久| 51午夜福利影视在线观看| www.熟女人妻精品国产| 欧美激情国产日韩精品一区| 国产精品1区2区在线观看.| 日韩欧美精品v在线| 综合色av麻豆| 欧美中文日本在线观看视频| 国产探花在线观看一区二区| 国产精品乱码一区二三区的特点| 国产午夜福利久久久久久| 18禁黄网站禁片免费观看直播| 国产精品一区二区性色av| 在线观看av片永久免费下载| 美女高潮喷水抽搐中文字幕| 久久久久九九精品影院| 蜜桃久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 欧美不卡视频在线免费观看| av中文乱码字幕在线| 国内揄拍国产精品人妻在线| 久久久久久久午夜电影| 日本 欧美在线| 欧美成人a在线观看| 色av中文字幕| 波多野结衣巨乳人妻| 在线天堂最新版资源| 深夜精品福利| 国产精华一区二区三区| 免费在线观看亚洲国产| 天堂影院成人在线观看| 伦理电影大哥的女人| 好男人电影高清在线观看| 3wmmmm亚洲av在线观看| 性色av乱码一区二区三区2| 国产亚洲精品久久久com| 91麻豆av在线| 美女被艹到高潮喷水动态| 日本成人三级电影网站| 一级a爱片免费观看的视频| 美女xxoo啪啪120秒动态图 | 91在线精品国自产拍蜜月| 美女cb高潮喷水在线观看| 日韩欧美国产在线观看| 亚洲国产精品合色在线| 日本黄色视频三级网站网址| 精品人妻视频免费看| 有码 亚洲区| 免费人成视频x8x8入口观看| 免费观看的影片在线观看| bbb黄色大片| 最近视频中文字幕2019在线8| 乱人视频在线观看| 国产精品久久久久久人妻精品电影| 久久久色成人| 可以在线观看的亚洲视频| av在线老鸭窝| 18+在线观看网站| 在线观看66精品国产| 99国产极品粉嫩在线观看| 亚洲av美国av| 亚洲欧美日韩卡通动漫| 国产人妻一区二区三区在| 亚洲欧美激情综合另类| 国产成人a区在线观看| 日本一本二区三区精品| 麻豆一二三区av精品| 免费看光身美女| 男女下面进入的视频免费午夜| 国产精品一及| 国产精品三级大全| 国产精品嫩草影院av在线观看 | 男女床上黄色一级片免费看| 精品免费久久久久久久清纯| 岛国在线免费视频观看| 亚洲av熟女| 午夜精品久久久久久毛片777| 国产精品久久电影中文字幕| 欧美日本视频| 亚洲无线观看免费| 国产毛片a区久久久久| 精品久久久久久,| 国产一区二区亚洲精品在线观看| 精品熟女少妇八av免费久了| 可以在线观看毛片的网站| 亚洲成人免费电影在线观看| 少妇被粗大猛烈的视频| av国产免费在线观看| 亚洲乱码一区二区免费版| www日本黄色视频网| 午夜免费成人在线视频| 国产三级在线视频| 香蕉av资源在线| 日韩欧美一区二区三区在线观看| 草草在线视频免费看| 欧美一区二区国产精品久久精品| 哪里可以看免费的av片| 黄色视频,在线免费观看| 精品久久久久久久末码| 嫁个100分男人电影在线观看| 国产欧美日韩一区二区精品| 日韩亚洲欧美综合| 能在线免费观看的黄片| 欧美极品一区二区三区四区| 亚洲av不卡在线观看| 天堂影院成人在线观看| 色综合婷婷激情| 日韩欧美在线乱码| 亚洲午夜理论影院| 女同久久另类99精品国产91| 亚洲一区二区三区色噜噜| 深夜a级毛片| www.www免费av| 中文在线观看免费www的网站| 又紧又爽又黄一区二区| 色综合亚洲欧美另类图片| 观看美女的网站| 黄色丝袜av网址大全| 久久精品国产亚洲av涩爱 | 亚洲精品久久国产高清桃花| 成人一区二区视频在线观看| 亚洲 国产 在线| 91久久精品国产一区二区成人| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| 亚洲综合色惰| 99riav亚洲国产免费| 免费观看精品视频网站| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片| 国产亚洲av嫩草精品影院| 桃色一区二区三区在线观看| 免费观看精品视频网站| 亚洲乱码一区二区免费版| 搡老妇女老女人老熟妇| 国产亚洲av嫩草精品影院| 国产精品永久免费网站| 午夜老司机福利剧场| 中国美女看黄片| 搞女人的毛片| 免费高清视频大片| 99热6这里只有精品| 婷婷精品国产亚洲av| 精品久久国产蜜桃| 欧美日韩福利视频一区二区| 亚洲av二区三区四区| 91av网一区二区| 高清毛片免费观看视频网站| 国产在线男女| 国内揄拍国产精品人妻在线| 午夜精品久久久久久毛片777| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 欧美激情在线99| 亚洲av成人精品一区久久| 亚洲真实伦在线观看| 国产国拍精品亚洲av在线观看| 热99re8久久精品国产| 国产精品电影一区二区三区| 五月伊人婷婷丁香| 欧美成狂野欧美在线观看| 国产久久久一区二区三区| 日韩国内少妇激情av| av国产免费在线观看| 欧美成人一区二区免费高清观看| 精品久久久久久久久久免费视频| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 成人欧美大片| 97超视频在线观看视频| 成人av在线播放网站| 国产在线男女| 国产私拍福利视频在线观看| 亚洲国产欧洲综合997久久,| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 日韩欧美三级三区| 久久久久九九精品影院| 欧美精品啪啪一区二区三区| 亚洲最大成人av| 天堂网av新在线| 亚洲成人中文字幕在线播放| 日韩 亚洲 欧美在线| 麻豆一二三区av精品| 国产乱人视频| 真人一进一出gif抽搐免费| 国产色婷婷99| 一区福利在线观看| 午夜精品久久久久久毛片777| 国产老妇女一区| 国产精品女同一区二区软件 | 国产av在哪里看| 露出奶头的视频| 美女 人体艺术 gogo| 小说图片视频综合网站| 午夜福利免费观看在线| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 黄片小视频在线播放| 欧美丝袜亚洲另类 | 国产69精品久久久久777片| 内射极品少妇av片p| 国产精品一区二区三区四区久久| 日本撒尿小便嘘嘘汇集6| 国产精品人妻久久久久久| 亚洲av免费在线观看| 精品人妻熟女av久视频| 欧美三级亚洲精品| 午夜福利在线观看吧| 变态另类成人亚洲欧美熟女| 国产精品爽爽va在线观看网站| 少妇的逼水好多| 亚洲内射少妇av| 怎么达到女性高潮| 日韩欧美三级三区| 中文字幕久久专区| 欧美黑人欧美精品刺激| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 精品久久久久久成人av| av国产免费在线观看| 成人亚洲精品av一区二区| 亚洲成人精品中文字幕电影| 99热这里只有精品一区| 亚洲精品成人久久久久久| 午夜激情福利司机影院| 欧美又色又爽又黄视频| 久久久久国内视频| 日本成人三级电影网站| 性插视频无遮挡在线免费观看| 老司机深夜福利视频在线观看| 婷婷六月久久综合丁香| 欧美3d第一页| 3wmmmm亚洲av在线观看| 能在线免费观看的黄片| 亚洲第一区二区三区不卡| 男女视频在线观看网站免费| 中文字幕久久专区| 国产欧美日韩一区二区三| 九色国产91popny在线| 少妇被粗大猛烈的视频| 婷婷丁香在线五月| 久久国产乱子伦精品免费另类| 两人在一起打扑克的视频| av中文乱码字幕在线| 精品无人区乱码1区二区| 波多野结衣高清无吗| 一进一出抽搐动态| 精品一区二区三区人妻视频| 久久久国产成人免费| 欧美一区二区精品小视频在线| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 午夜老司机福利剧场| 不卡一级毛片| 欧美成狂野欧美在线观看| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 成人av一区二区三区在线看| 床上黄色一级片| 国产av麻豆久久久久久久| 黄片小视频在线播放| av黄色大香蕉| 国产高清激情床上av| 日本在线视频免费播放| 日韩中字成人| 国产久久久一区二区三区| 国产av在哪里看| 国产成人欧美在线观看| 91午夜精品亚洲一区二区三区 | 午夜影院日韩av| 99在线视频只有这里精品首页| 午夜两性在线视频| 我要搜黄色片| 国产毛片a区久久久久| 久久精品综合一区二区三区| av专区在线播放| 宅男免费午夜| 免费在线观看日本一区| 亚洲熟妇中文字幕五十中出| 国产欧美日韩精品一区二区| 精品久久国产蜜桃| 特级一级黄色大片| 听说在线观看完整版免费高清| 国产精品电影一区二区三区| 综合色av麻豆| 国产探花在线观看一区二区| 欧美性猛交黑人性爽| 小蜜桃在线观看免费完整版高清| 噜噜噜噜噜久久久久久91| 国产成人a区在线观看| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 91麻豆精品激情在线观看国产| 在现免费观看毛片| 亚洲专区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产精品1区2区在线观看.| 一级毛片久久久久久久久女| 中文字幕av在线有码专区| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| 熟妇人妻久久中文字幕3abv| 听说在线观看完整版免费高清| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 三级男女做爰猛烈吃奶摸视频| 久久久色成人| 动漫黄色视频在线观看| 美女 人体艺术 gogo|