• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    2014-10-14 03:45:12WANGKunPengWANGChangSheng
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:激發(fā)態(tài)吡唑國家自然科學(xué)基金

    WANG Kun-Peng WANG Chang-Sheng

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Effect of Substituents on the Optical Properties of 3(5)-(9-Anthryl)Pyrazole

    WANG Kun-Peng WANG Chang-Sheng*

    (School of Chemistry and Chemical Engineering,Liaoning Normal University,Dalian 116029,Liaoning Province,P.R.China)

    Abstract: The ground state(S0)structures of 3(5)-(9-anthryl)pyrazole and its derivatives were obtained using the density functional theory(DFT)B3LYP/6-31G(d)method.The first singlet excited state(S1)structures were optimized using the singlet-excitation configuration interaction(CIS)/6-31G(d)method.The absorption and emission spectra were then evaluated using the time-dependent density functional theory(TD-DFT)B3LYP method with the 6-311++G(d,p)basis set.Our calculation results reveal that for all the derivatives(electron-withdrawing groups or electron-donating groups)the calculated absorption and fluorescence emission wavelength values all show red shifts compared with the parent 3(5)-(9-anthryl)pyrazole.We also find that compared with the parent 3(5)-(9-anthryl)pyrazole,the derivatives with―R=―BH2,―CCl3,―CHO,―NH2are good candidates for longer absorption wavelength materials and for longer fluorescence emission wavelength materials.

    Key Words:Absorption spectrum;Fluorescence emission spectrum;3(5)-(9-Anthryl)pyrazole;Excited state

    1 Introduction

    The design and synthesis of organic optical materials have attracted intensive attention because of their potential applications in organic light-emitting diodes(OLEDs).Much effort has been made on the multicolor patterning of organic luminescent molecules with ordered micro-and nano-scopic features as a result of their applications in full-color display and other related areas.1-19Mizukamiet al.1found that a helical 3,3′-di-tert-butylsalen-zinc(II)complex,[Zn2],has a red-shifted fluorescence as compared to that of[Zn],a half-structured mononuclear complex of[Zn2].Baderet al.2reported the syntheses and electrochemical properties of four oligothiophene derivativeswith the tricyanovinyl group and suggested that these materials might be suitable for n-type,and possibly for ambipolar,transport.Yamaguchi et al.3designed and synthesized a series of B,B′,B″-trianthryl-N,N′,N″-triarylborazine derivatives bearing various p-substituted phenyl groups and observed significant bundle effects in the photophysical and electrochemical properties of these compounds.Murata et al.4reported efficient molecular organic light-emitting diodes composed of novel silols derivatives as an electron transporting layer and an emissive layer.Tang et al.5prepared a series of 2,3,4,5-tetraphenylsiloles with different 1,1-substituents and observed that with an increase in the electronegativity of 1,1-substituents of the silols,the absorption and emission wavelengths of the silols bathochromically shifted.Sapochak et al.6carried out theoretical and experimental investigations on the molecular and electronic structure of the 8-hydroxyquinoline chelate of zinc(II)and related the results to OLED performance.Brinkmann et al.7investigated the structures and the correlation between intermolecular interactions and optical properties in various metaloquinolate tris(8-hydroxyquinoline)aluminum(Alq3)systems,including solution,amorphous thin films,and different crystalline forms,and showed that the length of interligand contacts between neighboring Alq3molecules as well as the molecular density of the packing plays an important role in influencing the spectral position of fluorescence.The molecular orbital study of the first excited state of the OLED material Alq3was carried out by Schlegel et al.8Based on the structure of the excited state,they predicted an emission wavelength of 538 nm,which is comparable to 514 nm observed experimentally for solution phase photoluminescence.Geng et al.9investigated the electronic structure and transport properties of a p-stacking molecular chain using the first-principles density functional theory approach combined with Green′s function method.Su et al.10carried out a DFT/TD-DFT study on the electronic structures and optoelectronic properties of several blue-emitting iridium(III)complexes and found that the properties of the ligands had great influence on the photophysical properties,such as energy gap,absorption spectra,emission spectra,etc.Zhang et al.11investigated the optical properties of the phosphorescent trinuclear copper(I)complexes of pyrazolates theoretically and found that the short intermolecular Cu…Cu distance played an important role in the emission spectra of the verticaland tilting-movement dimers.An theoretical study on symmetric and asymmetric spirosilabifluorene derivatives was also carried out and an excellent agreement with the experiment data on their optical properties was obtained.12Wang et al.13-14reported the emission properties of the polymorphs and pseudopolymorphs of N,N-di(n-butyl)quinacridone and N,N-di(n-cetyl)quinacridone and found that the crystal phases with stronger π-π interactions showed the emission maximum at a longer wavelength region while that with relatively weaker π-π interactions exhibited an emission maximum at a shorter wavelength region.Although considerable progress has been made in organic luminescent materials with different structures,it is still essential to achieve a molecular-level understanding of the relationship between the electronic structures and the resulting optical properties.

    The organic molecule 3(5)-(9-anthryl)pyrazole has been used as building blocks to construct different luminescent single crystal.20-22In order to understand the optical properties of 3(5)-(9-anthryl)pyrazole,we here reported our research on the geometrical structure,the gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO),and the absorption/emission spectra of 3(5)-(9-anthryl)pyrazole at the ground and excited states with the DFT and CIS methods.We displayed the relationship between the optical properties and electronic structures of the frontier molecular orbitals(FMOs),explored the influence of the substitutions on the absorption and emission wavelengths.We hope that the result obtained would be helpful for understanding connection between the fluorescence characters and electronic structures and helpful for the find of new fluorescence materials.

    2 Calculation methods

    ANP possesses two possible structures ANP-1 and ANP-2(Fig.1).The ground state S0structures of ANP-1 and ANP-2 were obtained by using the density functional theory23B3LYP/6-31G(d)method.B3LYP/6-311++G(d,p)//B3LYP/6-31G(d)calculation showed that ANP-1 was a little more stable than ANP-2.The singlet excited state S1structures of ANP-1 and ANP-2 were optimized by using the CIS method24with 6-31G(d)basis set.Based on the structures obtained,their absorption and emission spectra were calculated by the TD-DFT B3LYP method with 6-311++G(d,p)basis sets.In order to examine the effect of substituents on the absorption and emission spectra,several derivatives of ANP-1 were designed by replacing the hydrogen atom on the C7 of ANP-1 with several electron-withdrawing or electron-donating groups.The ground state S0structures and the singlet excited state S1structures of these derivatives were optimized by using B3LYP/6-31G(d)and CIS/6-31G(d)methods,respectively.Based on the structures obtained,the absorption and emission spectra of these derivatives were then obtained by using TD-DFT B3LYP method with 6-311++G(d,p)basis sets.The solvent affect was considered by using PCM model25in TD-DFT B3LYP calculations.

    3 Results and discussion

    3.1 Geometric structures and electronic structures of ANP-1 and ANP-2

    The selected structure parameters of ANP-1 and ANP-2 are listed in Table 1.Compared with the ground state S0,some bond lengths in the excited state S1are lengthened,some others are shortened.The bond lengths of C1―C6,C2―C3,and C4―C5 are all shortened from the ground state S0to the excited state S1for both ANP-1 and ANP-2,while the bond lengthsof C1―C2,C5―C6,C3―C7,and C4―C11 are all lengthened.The bond lengths between the adjacent atoms except H in the pyrazole ring of ANP-1 and ANP-2 are all shortened with the exception of the bond length C12―C19 in ANP-2 which is lengthened slightly from 0.1423 to 0.1424 nm.The dihedral anglesDN15C12C11C10become smaller for both ANP-1 and ANP-2 from the ground stateS0to the excited stateS1,indicating a better planar nature of the excited stateS1.What is more,their bond lengths C11―C12 are within the range from 0.1485 to 0.1472 nm,which are longer than the standard double bond(C=C,0.134 nm)and shorter than the standard single bond(C―C,0.154 nm),indicating a certain double bond nature.Thus conclusion could be drawn that a larger conjugation system has formed fromS0toS1,which will facilitate the free movement of electron cloud and electron transfer from the pyrazole fragment to the anthracene fragment.

    The electron density contours of HOMO-1,HOMO,LUMO,LUMO+1 of ANP-1 and ANP-2(Fig.2)show that HOMO is mainly distributed on the anthracene ring part with a small quantity of distribution on the pyrazole fragment,LUMO is mainly distributed on the anthracene ring part and much less distributed on the pyrazole fragment.Based on the fact that the lowest lying excited state usually corresponds to an excitation from HOMO to LUMO,we can make a good explanation of the ANP bond length variation by analyzing the FMOs.The bonds C1―C6,C2―C3,and C4―C5 are antibonding on the HOMO for both ANP-1 and ANP-2,while on the LUMO,they are bonding in these regions.Therefore,these bonds are shortened on the excited stateS1.The bonds C1―C2,C5―C6,C3―C7,and C4―C11 are antibonding on the LUMO,while they are bonding on the HOMO.These bonds hence become longer on the excited stateS1.

    Table 1 Optimized structural parameters ofANP-1 andANP-2

    3.2 Effect of substituents on the optical properties

    3.2.1 The frontier molecular orbital(FMO)analysis

    The HOMO and LUMO energies of ANP-1 and its derivatives are listed in Table 2.As seen from Table 2,both HOMO and LUMO energies are obviously changed by replacing the hydrogen atom on the C7 of ANP-1 with an electron-withdrawing or electron-donating group.Table 2 shows that compared with the parent molecule ANP-1(―R=―H),replacing the hydrogen atom with an electron-withdrawing group(―R=―BH2,―CHO,―SO3H,―COMe,―COOH,―CONH2,―CCl3,―CF3,―CN)lowers both the HOMO energy(EHOMO)and the LUMO energy(ELUMO),andELUMOis lowered more thanEHOMO,resulting in a smaller energy gapsEgcompared with the energy gap(3.472 eV)of ANP-1,suggesting a red-shift absorption wavelength.However,substituting the hydrogen atom with an electron-donating group(―R=―Me,―OH,―OMe,―NH2,―NHMe)raises bothEHOMOandELUMO,butEHOMOis raised more,resulting in a smaller energy gap compared with that of ANP-1,also suggesting a red-shift absorption wavelength.

    3.2.2 Absorption spectra

    Table 3 displays the calculated absorption wavelength(λ),the oscillator strength(f),transition assignment,and the main CI expansion coefficients of ANP-1 and its derivatives.It has been known that a large oscillator strengthfusually corresponds to a large experimental absorption coefficient or a strong fluorescence.It can be seen from Table 3 that,for all thederivatives,whatever the substituent is an electron-withdrawing group or an electron-donating group,the calculated absorption wavelength values all show a red shift as compared with ANP-1,consistent with the FMO analysis above.Table 3 shows that the derivative with―R=―NH2possesses a relatively longer absorption wavelength(442 nm)than the derivative with―R=―NHMe(428 nm),the derivative with―R=―OH possesses a relatively longer absorption wavelength(424 nm)than the derivative with―R=―OMe(413 nm),the derivative with―R=―CHO possesses a relatively longer absorption wavelength(447 nm)than the derivative with―R=―COMe(410 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer absorption wavelength.Table 3 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br exists the longest absorption wavelength(415 nm)whereas the derivative with―R=―F shows the shortest absorption wavelength(409 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter absorption wavelength,or,in another word,a more electropositive group may result in a longer absorption wavelength.This conclusion is further confirmed by the fact that the derivative with―R=―CCl3has a longer absorption wavelength than the one with―R=―CF3.Among the substituents considered,we find that the derivatives with―R=―BH2,―CCl3,―CHO,and―NH2have relatively long absorption wavelength,three of them belong to the electron-withdrawing group,suggesting that if one want to design and synthesize an optical material possessing a longer wavelength,one can substitute the hydrogen atom of the parent molecule with electron-withdrawing group,especially with ―BH2,―CCl3,―CHO.

    The data in the third column of Table 3 are the absorption wavelength in CHCl3solvent.The data in the fifth column of Table 3 are the oscillator strengths in CHCl3solvent.These data show that the solvent CHCl3leads to a further red shift for the absorption wavelength values with the red-shifted extent 3-13 nm except the derivative with―R=―O-.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterparts in gas phase.

    Table 2 Frontier molecular orbital energies(in eV)and their differences(Egin eV)obtained at the B3LYP/6-31G(d)level

    3.2.3 Emission spectra

    The calculated emission parameters are listed in Table 4.It can be seen from Table 4 that the fluorescence emission spectra of the derivatives are all red shifted compared with the parent molecule ANP-1,whatever the substituent is an electronwithdrawing group or an electron-donating group,consistent again with the FMO analysis above.Furthermore,the redshifted wavelength is predicted in the increasing order―Me<― OMe<― OH<― NHMe<—NH2for the electron-donating group,and ―CONH2<―COOH≈—CF3≈―CN≈―COMe<―SO3H<―CHO<―BH2<―CCl3for the electron-withdrawing group.Table 4 shows that the derivative with―R=―NH2possesses a relatively longer fluorescence emission wavelength(514 nm)than the derivative with―R=―NHMe(490 nm),the derivative with―R=―OH possesses a relatively longer emission wavelength(486 nm)than the derivative with―R=―OMe(472 nm),the derivative with―R=―CHO possesses a relatively longer emission wavelength(498 nm)than the derivative with―R=―COMe(478 nm),showing that the methyl group is not a good candidate for designing an optical material possessing a longer fluorescence emission wavelength.Table 4 also shows that among the derivatives with―R=―F,―Cl,―Br,the derivative with―R=―Br shows the longest fluores-cence emission wavelength(471 nm)whereas the derivative with―R=―F shows a shortest fluorescence emission wavelength(468 nm),suggesting that the electronegativity may play a role:a more electronegative group may result in a shorter emission wavelength,or,in another word,a more electropositive group may result in a longer emission wavelength.This is further confirmed by the fact that the derivative with―R=―CCl3has a longer fluorescence emission wavelength(531 nm)than the one with―R=―CF3(475 nm).Among the substituents considered in this work,we find that the derivatives with ―R=―O-,―BH2,―CCl3,―CHO,―NH2have relatively the longest fluorescence emission wavelength,suggesting that if one wants to design and synthesize an optical material possessing a longer fluorescence emission wavelength,one can substitute the hydrogen atom of the parent molecule with these groups.

    Table 3 Absorption wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    The data in the third column of Table 4 are the fluorescence emission wavelength in CHCl3solvent.These data show that the solvent leads to a further red shift for the fluorescence emission wavelengths with the red-shifted extent 4-17 nm.Moreover,oscillator strengthsfin CHCl3solvent are all larger than the counterpart ones in gas phase,displaying that the fluores-cent emitting spectrum is strengthened in CHCl3solvent.

    Table 4 Fluorescence emission wavelengths(λin nm),oscillator strengths(f),transition assignment and main CI expansion coefficients ofANP-1 and its derivatives

    4 Conclusions

    Based on the theoretical calculations we have demonstrated that,for all the derivatives of ANP considered in this paper,whatever the substituent is an electron-withdrawing group or an electron-donating group,the absorption and fluorescence emission wavelength values all show red shifts as compared with ANP.We have also shown that,compared with ANP,the derivatives of ANP-1 with ―R=―BH2,―CCl3,―CHO,and―NH2are good candidates both for the optical materials possessing longer absorption wavelength and for the optical materials possessing longer fluorescence emission wavelength.Furthermore,we found that the derivative with―R=―Br has both a longer absorption wavelength and a longer fluorescence emission wavelength than the derivative with―R=―F,and the derivative with―R=―CCl3has a longer wavelength than the one with―R=―CF3,showing that a more electropositive group may result in a longer absorption or emission wavelength.

    (1)Mizukami,S.;Houjou,H.;Sugaya,K.;Koyama,E.;Tokuhisa,H.;Sasaki,T.;Kanesato,M.Chem.Mater.2005,17,50.

    (2)Bader,M.M.;Custelcean,R.;Ward,M.D.Chem.Mater.2003,15,616.

    (3)Wakamiya,A.;Ide,T.;Yamaguchi,S.J.Am.Chem.Soc.2005,127,14859.

    (4) Murata,H.;Kafafi,Z.H.;Uchida,M.Appl.Phys.Lett.2002,80,189.

    (5)Chen,J.;Law,C.C.W.;Lam,J.W.Y.;Dong,Y.;Lo,S.M.F.;Williams,I.D.;Zhu,D.;Tang,B.Z.Chem.Mater.2003,15,1535.

    (6) Sapochak,L.S.;Benincasa,F.E.;Schofield,R.S.;Baker,J.L.;Riccio,K.K.C.;Fogarty,D.;Kohlmann,H.;Ferris,K.F.;Burrows,P.E.J.Am.Chem.Soc.2002,124,6119.

    (7) Brinkmann,M.;Gadret,G.;Muccini,M.;Taliani,C.;Masciocchi,N.;Sironi.A.J.Am.Chem.Soc.2000,122,5147.

    (8) Halls,M.D.;Schlegel,H.B.Chem.Mater.2001,13,2632.

    (9)Geng,W.T.;Oda,M.;Nara,J.;Kondo,H.;Ohno,T.J.Phys.Chem.B 2008,112,2795.

    (10)Shi,L.;Hong,B.;Guan,W.;Wu,Z.;Su,Z.J.Phys.Chem.A 2010,114,6559.

    (11) Hu,B.;Gahungu,G.;Zhang,J.J.Phys.Chem.A 2007,111,4965.

    (12) Sun,M.;Niu,B.;Zhang,J.Theor.Chem.Acc.2008,119,489.

    (13)Fan,Y.;Zhao,Y.;Ye,L.;Li,B.;Yang,G.;Wang,Y.Crystal Growth&Design 2009,9,1421.

    (14)Fan,Y.;Song,W.;Yu,D.;Ye,K.;Zhang,J.;Wang,Y.CrystEngComm 2009,11,1716.

    (15) Gaal,M.;Gadermaier,C.;Plank,H.;Moderegger,E.;Pogantsch,A.;Leising,G.;List,E.J.W.Adv.Mater.2003,15,1165.

    (16)Zhao,Y.;Gao,H.;Fan,Y.;Zhuo,T.;Su,Z.;Liu,Y.;Wang,Y.Adv.Mater.2009,21,3165.

    (17) Gustafsson,G.;Cao,Y.;Treacy,G.M.;Klavetter,F.;Colaneri,N.;Heeger,A.J.Nature 1992,357,477.

    (18) Chen,Y.;Au,J.;Kazlas,P.;Ritenour,A.;Gates,H.;McCreary,M.Nature 2003,423,136.

    (19)Rakow,N.A;Suslick,K.S.Nature 2000,406,710.

    (20) Zhang,H.;Zhang,Z.;Ye,K.;Zhang,J.;Wang,Y.Adv.Mater.2006,18,2369.

    (21)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Wang,W.;Wu,Y.;Wang,Y.;Chi,L.Langmuir 2008,24,12745.

    (22)Gao,L.;Lu,N.;Hao,J.;Hu,W.;Shi,G.;Wang,Y.;Chi,L.Langmuir 2009,25,3894.

    (23) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.

    (24) Foresman,J.B.;Head-Gordon,M.;Pople,J.A.;Frisch,M.J.J.Phys.Chem.1992,96,135.

    (25)Cancès,E.;Mennucci,B.;Tomasi,J.J.Chem.Phys.1997,107,3032.

    取代基對3(5)-(9-蒽基)吡唑光學(xué)性質(zhì)的影響

    王昆鵬 王長生*

    (遼寧師范大學(xué)化學(xué)化工學(xué)院,遼寧大連116029)

    使用密度泛函理論(DFT)B3LYP/6-31G(d)方法優(yōu)化得到了3(5)-(9-蒽基)吡唑及其衍生物的基態(tài)(S0)分子結(jié)構(gòu),使用單激發(fā)組態(tài)相互作用(CIS)/6-31G(d)方法優(yōu)化得到這些分子的第一單重激發(fā)態(tài)(S1)的幾何結(jié)構(gòu),并使用含時密度泛函理論(TD-DFT)B3LYP/6-311++G(d,p)方法計算了它們的吸收和發(fā)射光譜.計算結(jié)果表明,與3(5)-(9-蒽基)吡唑相比,無論取代基是吸電子基團(tuán)還是供電子基團(tuán),衍生物的吸收和發(fā)射峰均發(fā)生紅移,并且當(dāng)取代基―R=―BH2,―CCl3,―CHO,―NH2時衍生物有較長的吸收波長和發(fā)射波長.

    吸收光譜; 熒光發(fā)射光譜;3(5)-(9-蒽基)吡唑; 激發(fā)態(tài)

    O641

    Received:October 29,2010;Revised:December 27,2010;Published on Web:January 18,2011.

    ?Corresponding author.Email:chwangcs@lnnu.edu.cn;Tel:+86-411-82159391.

    The project was supported by the National Natural Science Foundation of China(20973088)and Research Fund of the Educational Department of Liaoning Province,China(2007T091,2008T106).

    國家自然科學(xué)基金(20973088)和遼寧省高校創(chuàng)新團(tuán)隊基金(2007T091,2008T106)資助項目

    猜你喜歡
    激發(fā)態(tài)吡唑國家自然科學(xué)基金
    常見基金項目的英文名稱(一)
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    激發(fā)態(tài)和瞬態(tài)中間體的光譜探測與調(diào)控
    我校喜獲五項2018年度國家自然科學(xué)基金項目立項
    2017 年新項目
    國家自然科學(xué)基金項目簡介
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    莧菜紅分子基態(tài)和激發(fā)態(tài)結(jié)構(gòu)與光譜性質(zhì)的量子化學(xué)研究
    單鏡面附近激發(fā)態(tài)極化原子的自發(fā)輻射
    亚洲全国av大片| 2021天堂中文幕一二区在线观| 日韩成人在线观看一区二区三区| 在线免费观看的www视频| 我要搜黄色片| 国产亚洲欧美98| 国产片内射在线| 欧美成人午夜精品| 欧美日韩黄片免| 巨乳人妻的诱惑在线观看| 在线免费观看的www视频| 国产精品爽爽va在线观看网站| 亚洲成人国产一区在线观看| 他把我摸到了高潮在线观看| 亚洲片人在线观看| 国产又色又爽无遮挡免费看| 日韩 欧美 亚洲 中文字幕| 久久久久久九九精品二区国产 | 日韩三级视频一区二区三区| 岛国视频午夜一区免费看| 婷婷六月久久综合丁香| 搡老岳熟女国产| 国产精品综合久久久久久久免费| 午夜视频精品福利| 在线观看免费视频日本深夜| 女人爽到高潮嗷嗷叫在线视频| 欧美3d第一页| 久久精品91无色码中文字幕| 一级片免费观看大全| 中文字幕熟女人妻在线| 日韩欧美免费精品| a级毛片a级免费在线| 男插女下体视频免费在线播放| 99久久精品国产亚洲精品| 久久久久久久久免费视频了| 美女黄网站色视频| 亚洲国产精品成人综合色| e午夜精品久久久久久久| 精品久久久久久久久久久久久| 真人做人爱边吃奶动态| 久久婷婷成人综合色麻豆| 午夜福利欧美成人| 国产精品精品国产色婷婷| 久9热在线精品视频| 蜜桃久久精品国产亚洲av| 国产亚洲精品一区二区www| 一区二区三区高清视频在线| 19禁男女啪啪无遮挡网站| 国产高清有码在线观看视频 | 久久 成人 亚洲| 亚洲成人免费电影在线观看| 他把我摸到了高潮在线观看| 国产av一区在线观看免费| 高潮久久久久久久久久久不卡| 国产人伦9x9x在线观看| 成人国产综合亚洲| 一区福利在线观看| 亚洲av熟女| 亚洲人成电影免费在线| 日韩大尺度精品在线看网址| 两个人的视频大全免费| 日韩三级视频一区二区三区| 桃红色精品国产亚洲av| 两个人看的免费小视频| 18禁国产床啪视频网站| 免费看美女性在线毛片视频| 国产69精品久久久久777片 | 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 久久精品国产清高在天天线| 日韩欧美免费精品| 三级毛片av免费| 午夜成年电影在线免费观看| 亚洲欧美日韩东京热| 亚洲美女黄片视频| av在线天堂中文字幕| 操出白浆在线播放| 50天的宝宝边吃奶边哭怎么回事| 国产精品98久久久久久宅男小说| 日韩欧美国产一区二区入口| 99在线人妻在线中文字幕| 亚洲五月婷婷丁香| 99热这里只有精品一区 | 亚洲熟妇熟女久久| 18禁裸乳无遮挡免费网站照片| 亚洲欧美精品综合久久99| 亚洲午夜精品一区,二区,三区| 欧美日韩精品网址| www日本黄色视频网| 久久人妻福利社区极品人妻图片| 国产成人av教育| 50天的宝宝边吃奶边哭怎么回事| 日韩中文字幕欧美一区二区| 五月伊人婷婷丁香| 夜夜爽天天搞| 成人国语在线视频| 国产激情偷乱视频一区二区| 我的老师免费观看完整版| 久久中文看片网| 色播亚洲综合网| 精品日产1卡2卡| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添小说| 亚洲 欧美一区二区三区| 夜夜躁狠狠躁天天躁| 观看免费一级毛片| 91在线观看av| 日韩国内少妇激情av| 又紧又爽又黄一区二区| 午夜福利高清视频| 精品国产美女av久久久久小说| 欧美zozozo另类| 大型av网站在线播放| 夜夜爽天天搞| 欧美乱妇无乱码| 女警被强在线播放| 九色国产91popny在线| 妹子高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久九九精品影院| 怎么达到女性高潮| 天天躁夜夜躁狠狠躁躁| 免费看美女性在线毛片视频| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 亚洲全国av大片| 国产av不卡久久| 一级作爱视频免费观看| 黄色a级毛片大全视频| 天堂av国产一区二区熟女人妻 | 久热爱精品视频在线9| 啦啦啦免费观看视频1| 听说在线观看完整版免费高清| 一进一出抽搐动态| 国产男靠女视频免费网站| 巨乳人妻的诱惑在线观看| 久久久国产精品麻豆| 欧美色欧美亚洲另类二区| 搡老熟女国产l中国老女人| 亚洲成人久久性| 欧美日韩中文字幕国产精品一区二区三区| 久9热在线精品视频| 九色国产91popny在线| 999久久久精品免费观看国产| 男人舔女人下体高潮全视频| 亚洲五月天丁香| 国产久久久一区二区三区| 熟女电影av网| 无人区码免费观看不卡| 91大片在线观看| 国产亚洲av高清不卡| 18禁国产床啪视频网站| tocl精华| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 淫秽高清视频在线观看| 日本三级黄在线观看| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 国产成人aa在线观看| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 99久久无色码亚洲精品果冻| 精品久久久久久久久久免费视频| 国产99白浆流出| 美女黄网站色视频| 国内精品久久久久久久电影| 国产精品98久久久久久宅男小说| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 国产精品亚洲一级av第二区| АⅤ资源中文在线天堂| 久久久久久亚洲精品国产蜜桃av| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 麻豆av在线久日| 最新美女视频免费是黄的| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 欧美zozozo另类| 九色国产91popny在线| ponron亚洲| 国产精品日韩av在线免费观看| 精品一区二区三区四区五区乱码| 欧美乱色亚洲激情| 99久久精品热视频| 亚洲成a人片在线一区二区| 亚洲专区字幕在线| 精品国产美女av久久久久小说| 国产午夜精品论理片| 日韩成人在线观看一区二区三区| 国产成人精品无人区| 精品第一国产精品| 国产男靠女视频免费网站| 制服丝袜大香蕉在线| 高清在线国产一区| 身体一侧抽搐| 国产一区二区三区在线臀色熟女| 国产精品亚洲av一区麻豆| 日韩国内少妇激情av| 一进一出好大好爽视频| 日本一区二区免费在线视频| 亚洲国产日韩欧美精品在线观看 | 亚洲欧洲精品一区二区精品久久久| 一本大道久久a久久精品| 免费电影在线观看免费观看| 久久精品国产99精品国产亚洲性色| 亚洲va日本ⅴa欧美va伊人久久| 神马国产精品三级电影在线观看 | 色老头精品视频在线观看| 久久亚洲精品不卡| 午夜精品在线福利| 国模一区二区三区四区视频 | 成人国产综合亚洲| 亚洲欧美日韩无卡精品| 成在线人永久免费视频| 禁无遮挡网站| 亚洲av电影不卡..在线观看| 亚洲成av人片在线播放无| 亚洲精品在线观看二区| 国产精品香港三级国产av潘金莲| 久久天堂一区二区三区四区| 久久中文字幕人妻熟女| av超薄肉色丝袜交足视频| 久久久精品大字幕| 手机成人av网站| 黑人巨大精品欧美一区二区mp4| 97碰自拍视频| 亚洲激情在线av| 亚洲欧美一区二区三区黑人| 操出白浆在线播放| 久久久久精品国产欧美久久久| 韩国av一区二区三区四区| 精品一区二区三区视频在线观看免费| 精华霜和精华液先用哪个| 精品免费久久久久久久清纯| 首页视频小说图片口味搜索| 窝窝影院91人妻| 小说图片视频综合网站| 村上凉子中文字幕在线| 麻豆一二三区av精品| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 久久精品国产综合久久久| 人人妻人人看人人澡| 午夜免费成人在线视频| 又黄又粗又硬又大视频| 男人舔女人下体高潮全视频| www.www免费av| 丁香六月欧美| 熟女电影av网| 在线永久观看黄色视频| 搡老岳熟女国产| 亚洲一码二码三码区别大吗| 欧美另类亚洲清纯唯美| 亚洲中文字幕日韩| 免费高清视频大片| 99久久精品国产亚洲精品| 一本大道久久a久久精品| 一a级毛片在线观看| 一个人观看的视频www高清免费观看 | 国产探花在线观看一区二区| 日韩精品青青久久久久久| 亚洲欧美一区二区三区黑人| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区mp4| 国产又色又爽无遮挡免费看| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 777久久人妻少妇嫩草av网站| 两性午夜刺激爽爽歪歪视频在线观看 | 无限看片的www在线观看| 久久国产乱子伦精品免费另类| 19禁男女啪啪无遮挡网站| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 国产亚洲精品第一综合不卡| 岛国在线免费视频观看| 欧美国产日韩亚洲一区| 亚洲精品中文字幕在线视频| 精品久久久久久久毛片微露脸| 国产97色在线日韩免费| 精品久久久久久久久久免费视频| 国产爱豆传媒在线观看 | 欧美成人免费av一区二区三区| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 国产三级中文精品| 国产精品久久视频播放| 高潮久久久久久久久久久不卡| 成人特级黄色片久久久久久久| 亚洲精品一区av在线观看| 99久久无色码亚洲精品果冻| 欧洲精品卡2卡3卡4卡5卡区| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 亚洲国产高清在线一区二区三| 国产av在哪里看| 色综合站精品国产| 美女 人体艺术 gogo| 亚洲人成网站在线播放欧美日韩| a级毛片在线看网站| 高潮久久久久久久久久久不卡| 欧美高清成人免费视频www| 国产野战对白在线观看| 中文字幕熟女人妻在线| 99久久精品国产亚洲精品| 真人做人爱边吃奶动态| av天堂在线播放| 国产精品久久久久久精品电影| 免费看十八禁软件| 国产1区2区3区精品| 特级一级黄色大片| 久久精品人妻少妇| 一个人免费在线观看的高清视频| 成人手机av| svipshipincom国产片| 日韩精品中文字幕看吧| 日本五十路高清| 亚洲九九香蕉| 狂野欧美白嫩少妇大欣赏| 欧美 亚洲 国产 日韩一| 欧美av亚洲av综合av国产av| 亚洲中文av在线| x7x7x7水蜜桃| 一级毛片女人18水好多| 欧美日本视频| 国产精品综合久久久久久久免费| 精品久久久久久,| 久久精品影院6| 亚洲av成人精品一区久久| 国产精品永久免费网站| 中文字幕精品亚洲无线码一区| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 日韩欧美 国产精品| 一个人免费在线观看的高清视频| 麻豆av在线久日| 人妻久久中文字幕网| 久久久久久久久中文| 天天躁夜夜躁狠狠躁躁| 99在线人妻在线中文字幕| 国产真实乱freesex| xxxwww97欧美| 久久精品亚洲精品国产色婷小说| 中文资源天堂在线| 成人国产一区最新在线观看| 国产精品久久久久久精品电影| 免费人成视频x8x8入口观看| av福利片在线| netflix在线观看网站| 欧美又色又爽又黄视频| 国产午夜精品久久久久久| 黄色毛片三级朝国网站| 嫩草影院精品99| 久久这里只有精品19| 国产精品野战在线观看| 伊人久久大香线蕉亚洲五| 国产高清视频在线播放一区| 啦啦啦免费观看视频1| 宅男免费午夜| 1024视频免费在线观看| www国产在线视频色| 99国产精品一区二区三区| 国内少妇人妻偷人精品xxx网站 | 亚洲av片天天在线观看| 又黄又粗又硬又大视频| 久久精品人妻少妇| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久成人av| 国产亚洲av高清不卡| 亚洲精品一区av在线观看| 亚洲精品美女久久av网站| 禁无遮挡网站| 精品日产1卡2卡| 伦理电影免费视频| 亚洲自偷自拍图片 自拍| 人人妻人人看人人澡| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 久久久国产精品麻豆| 日韩大码丰满熟妇| 午夜福利成人在线免费观看| 成人国语在线视频| 亚洲av成人一区二区三| 久久婷婷成人综合色麻豆| 欧美在线黄色| 19禁男女啪啪无遮挡网站| 最近最新中文字幕大全免费视频| 欧美日韩乱码在线| 夜夜爽天天搞| 久99久视频精品免费| 亚洲第一电影网av| 99久久99久久久精品蜜桃| 又黄又爽又免费观看的视频| 大型黄色视频在线免费观看| 宅男免费午夜| 久久九九热精品免费| 国产激情欧美一区二区| 精品一区二区三区视频在线观看免费| 此物有八面人人有两片| 男女之事视频高清在线观看| 国产成人欧美在线观看| 久热爱精品视频在线9| 久久久久久亚洲精品国产蜜桃av| 操出白浆在线播放| 国产麻豆成人av免费视频| 脱女人内裤的视频| 午夜激情av网站| 啦啦啦免费观看视频1| 免费人成视频x8x8入口观看| 中出人妻视频一区二区| 在线国产一区二区在线| av天堂在线播放| 一夜夜www| 99热这里只有精品一区 | 深夜精品福利| 亚洲男人天堂网一区| av在线天堂中文字幕| 免费在线观看亚洲国产| 日本黄大片高清| 久久天堂一区二区三区四区| 最近在线观看免费完整版| 法律面前人人平等表现在哪些方面| 老熟妇乱子伦视频在线观看| 国产亚洲精品第一综合不卡| 亚洲九九香蕉| 亚洲黑人精品在线| 午夜久久久久精精品| 成人亚洲精品av一区二区| 国产欧美日韩一区二区精品| 亚洲国产精品成人综合色| 精品第一国产精品| 免费观看精品视频网站| 国产免费男女视频| 亚洲美女黄片视频| 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 国产一区二区三区视频了| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 国产亚洲精品久久久久久毛片| 舔av片在线| 久久久久精品国产欧美久久久| 欧美不卡视频在线免费观看 | 99久久精品热视频| 精品电影一区二区在线| 亚洲无线在线观看| 黑人欧美特级aaaaaa片| 欧美成人一区二区免费高清观看 | 国产精品av久久久久免费| 亚洲成av人片免费观看| 欧美高清成人免费视频www| 国产精品av视频在线免费观看| 日本一区二区免费在线视频| 一二三四在线观看免费中文在| 亚洲成人中文字幕在线播放| 神马国产精品三级电影在线观看 | 麻豆久久精品国产亚洲av| 三级国产精品欧美在线观看 | 操出白浆在线播放| 国产高清videossex| 日本黄大片高清| 亚洲国产欧美人成| 天堂影院成人在线观看| 成人国产一区最新在线观看| 亚洲五月天丁香| 日日夜夜操网爽| 人人妻,人人澡人人爽秒播| 禁无遮挡网站| 白带黄色成豆腐渣| 制服丝袜大香蕉在线| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 国产成+人综合+亚洲专区| 色在线成人网| 精品久久久久久久末码| 亚洲av片天天在线观看| 天堂动漫精品| 国产99久久九九免费精品| 国产亚洲精品久久久久5区| 日韩大码丰满熟妇| 丰满人妻一区二区三区视频av | 亚洲精品色激情综合| 在线观看美女被高潮喷水网站 | 日本 欧美在线| 成人国语在线视频| 一级黄色大片毛片| 性色av乱码一区二区三区2| 国产av一区在线观看免费| 久久久国产欧美日韩av| 美女 人体艺术 gogo| 欧美精品亚洲一区二区| 日本a在线网址| 夜夜躁狠狠躁天天躁| 久久这里只有精品中国| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 国产不卡一卡二| 亚洲色图 男人天堂 中文字幕| 精品国产乱子伦一区二区三区| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av高清一级| 精品国内亚洲2022精品成人| 欧美黄色片欧美黄色片| 久久伊人香网站| 国产主播在线观看一区二区| av片东京热男人的天堂| 成人国产一区最新在线观看| 丝袜人妻中文字幕| 超碰成人久久| 老司机在亚洲福利影院| 一区二区三区国产精品乱码| 美女午夜性视频免费| a在线观看视频网站| 中亚洲国语对白在线视频| 无限看片的www在线观看| 中文字幕人成人乱码亚洲影| tocl精华| 看黄色毛片网站| 久久中文看片网| 成熟少妇高潮喷水视频| 久久精品人妻少妇| cao死你这个sao货| 精品国产乱子伦一区二区三区| 亚洲全国av大片| 国产精品 国内视频| 精品高清国产在线一区| 草草在线视频免费看| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 久久婷婷人人爽人人干人人爱| 国产真实乱freesex| 麻豆久久精品国产亚洲av| 免费看美女性在线毛片视频| 久久久久久久久中文| 视频区欧美日本亚洲| 国产日本99.免费观看| 天天躁夜夜躁狠狠躁躁| 黄频高清免费视频| 老司机深夜福利视频在线观看| 草草在线视频免费看| 三级毛片av免费| 久久婷婷成人综合色麻豆| 一个人观看的视频www高清免费观看 | 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 九色成人免费人妻av| e午夜精品久久久久久久| 日韩精品中文字幕看吧| 欧美日韩亚洲综合一区二区三区_| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 亚洲国产欧美人成| 国产精品永久免费网站| 色哟哟哟哟哟哟| 成人手机av| 女同久久另类99精品国产91| 日韩欧美三级三区| 免费在线观看日本一区| 久久久精品国产亚洲av高清涩受| 午夜日韩欧美国产| av中文乱码字幕在线| 日本 欧美在线| 久久久久国产精品人妻aⅴ院| 亚洲,欧美精品.| www.精华液| 波多野结衣高清无吗| 搡老妇女老女人老熟妇| 欧美乱色亚洲激情| videosex国产| 午夜福利18| 亚洲美女黄片视频| 午夜免费观看网址| 久久久久性生活片| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 一边摸一边做爽爽视频免费| av有码第一页| 久久久久久久久免费视频了| 丰满人妻一区二区三区视频av | 成人一区二区视频在线观看| 正在播放国产对白刺激| 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站| 亚洲 欧美一区二区三区| 人人妻人人澡欧美一区二区| 亚洲人成伊人成综合网2020| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 在线播放国产精品三级| 国产真人三级小视频在线观看| 久久婷婷成人综合色麻豆| 九九热线精品视视频播放| 国产成人av激情在线播放| 美女午夜性视频免费| 精品欧美一区二区三区在线| 999久久久国产精品视频| 一夜夜www| 亚洲五月婷婷丁香| 757午夜福利合集在线观看| 国产精品免费一区二区三区在线| 级片在线观看| 久久婷婷人人爽人人干人人爱| 亚洲精品国产一区二区精华液| 又粗又爽又猛毛片免费看| 中文字幕精品亚洲无线码一区| 熟女电影av网| 成人手机av| 757午夜福利合集在线观看| 黑人操中国人逼视频| 伊人久久大香线蕉亚洲五| 亚洲五月婷婷丁香|