• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    2014-10-14 03:45:16DINGXiaoChunCHENXiuZHOUJianHuaWANGTaoSUNDunHEJianPing
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:南京航空航天大學(xué)建平建華

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping*

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Abstract: Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5(carbon replicated from SBA-15 silica)by NaBH4reduction.X-ray diffraction(XRD)suggests alloy formation between Pt and Ni.X-ray photoelectron spectroscopy(XPS)shows that Pt-Ni/CMK-5(5:1)has more detectable oxidized Ni.More metallic Pt is present on Pt-Ni/CMK-5(5:1)(atomic ratio)than on Pt/CMK-5.Oxidized Ni species,such as NiO,Ni(OH)2,and NiOOH,favor the adsorption of methanol and the dissociation of methanol from the surface of Pt.Cyclic voltammetry shows that Pt-Ni/CMK-5(5:1)has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1.It has more resistance to CO poisoning than Pt/CMK-5.

    Key Words:CMK-5;Pt/CMK-5 catalyst;Pt-Ni/CMK-5 catalyst;Methanol;Electrooxidation

    1 Introduction

    Fuel cells are appealing alternative power sources as they offer high energy density with zero or low emission of pollutants.Among the diverse types of fuel cells,the proton exchange membrane fuel cells(PEMFC)and direct methanol fuel cells(DMFC)are the most suitable candidates for transportation applications,portable electronics,and residential power sources due to their relatively low operating temperature(<100°C)and fast starting-up function.However,the commercial viability of PEMFC and DMFC is still hindered by several drawbacks,including the low catalytic activity of electrodes,the high cost of the Pt-based catalysts,and the poor durability and reliability.One of the main obstacles for the application of PEMFC in vehicles is the long-term durability of the cathodecatalysts,especially when the fuel cells are operated under the cycle duty.Up to now,the carbon-supported Pt is still a conventional electro-catalyst for PEMFC and DMFC.The degradation of Pt/C cathode catalysts results from both the reduction of electrochemical active surface area(EAS)of Pt and the corrosion of carbon support.1The overpotential caused by the highly irreversible oxygen reduction reaction(ORR)and the methanol crossed over from anode poisoning cathode is the major performance limitation for cathode catalyst.2So there are two solutions to the above problems,one is to quest for alternative catalyst supports,such as carbon nanotubes,carbon spheres,graphitic carbon nanofibers,3-7which are beneficial to improve the dispersion of Pt and consequently enhance its electro-catalytic activity.The other approach is to prepare Pt-based alloy,such as Pt-Ru,Pt-Ni,Pt-Co.8-10Based upon bifunctional mechanism,CO-poisoned Pt nanoparticles can be regenerated via the reaction of surface CO with O-type species associated with a second metal yielding CO2.11Over the last two decades,various Pt-based alloy catalysts had been widely investigated,among which Pt-Ni bimetallic catalyst had attracted more interest.12-21Ni can decrease the oxidation activation potential of H2O,which can dissociate into active oxygen species at a lower potential.The formed active Ni-(OH)adscan react with CO into CO2.Besides,various oxidized Ni accelerate the reaction of Pt-CO with oxygen-containing species produced by oxidized Ni,and thus decreasing the CO-poisoning of Pt.Therefore,Pt-Ni alloy catalyst shows improved electrocatalytic activity.17

    In order to enhance the catalytic activity of the Pt-Ni alloy catalyst,the choice of the support plays a very important role in obtaining high-performance catalysts.CMK-5,a carbon replicated from SBA-15 silica,is among promising support candidates due to its large pore volume,high structural stability and large surface area.22,23Based on our previous research work,the electrochemical active surface of Pt/CMK-5 approximately equals to that of Pt/C(E-ETK).24

    In the present work,CMK-5 was applied to support catalyst nanoparticles via the NaBH4-reduction method.With the fixed total Pt-Ni loading,more Pt loading can absorb more methanol,however displaying a lower electrocatalytic activity.Because less Ni loading forms less Ni-(OH)ads,unfavorable for the oxidation activation of methanol.However a lower Pt loading provides less active sites for absorbing methanol.The present work is undertaken to determine the optimum nominal Pt-Ni atomic ratio among 1:1,3:1,5:1,and 7:1.The physical and morphological characteristics of these bimetallic catalysts were systematically investigated.And the electro-catalytic properties of the catalysts for hydrogen and methanol oxidation were evaluated by cyclic voltammetry.Furthermore,the relationship between the structure and the electrochemical performance and the mechanism interpretation for catalysts were investigated in detail.

    2 Experimental

    2.1 Synthesis of catalyst

    Nano-casting carbon of ordered large pore structure was synthesized via a nanocasting process using SBA-15 as a template,furfuryl alcohol(FA)as a carbon precursor.It was denoted as CMK-5,22,23employed as the catalyst support.The catalyst was obtained via the chemical reduction method by NaBH4.40 mg of CMK-5 was impregnated with 0.038 mol·L-1H2PtCl6in the mixture of water and isopropanol.Then the suspension was constantly stirred to obtain a homogenously dispersed solution,adjusting pH to 9 with NaOH,and subsequently the temperature was increased to 60°C.Afterwards,excessive 0.1 mol·L-1NaBH4solution(31.8 mg NaBH4added into 80 mL of 2 g·L-1NaOH solution)were added dropwise into the suspension under vigorous stirring,followed by 3 h of continuous stirring for the complete reduction of Pt(and Ni).Finally,the resulting material was washed with distilled water several times and dried in a vacuum oven at 80°C,labeled as Pt/CMK-5.The mixture of 0.038 mol·L-1H2PtCl6and 0.01 mol·L-1Ni(NO3)2solution with Pt-Ni atomic ratios of respective 1:1,3:1,5:1,7:1 was used as the Pt-Ni alloy catalyst precursor solution,the following experimental steps were the same as above.And the final samples were signified as Pt-Ni/CMK-5(1:1),Pt-Ni/CMK-5(3:1),Pt-Ni/CMK-5(5:1),and Pt-Ni/CMK-5(7:1),respectively.The metal loading(mass fraction)of all catalysts was 20%.

    2.2 Characterization

    The porous structure of the carbon support was measured by N2adsorption isotherm using Micromeritics ASAP 2010 at 77 K.X-ray diffraction(XRD)patterns of the catalysts were recorded by a Bruker D8 ADVANCE diffractometer using Cu Kαradiation(λ=0.154056 nm).Transmission electron microscopy(TEM,FEI Tecnai G2)operating at 200 kV was applied to characterize the morphology and the particle size distribution of all catalysts.The samples for TEM measurement were prepared by ultrasonically suspending the powder in ethanol and placing a drop of the suspension on a carbon film supported by Cu grids.X-ray photoelectron spectroscopy(XPS)analysis was carried out on an ESCALAB 250(Thermo Electron Co.,America)spectrometer with monochromatic Al Kαradiation(150 W,15 kV).The compositions of the samples were analyzed by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Jarrell-Ash 1100).

    An electrochemical interface(Solartron 1287)and a conventional three-electrode system were employed to conduct the cyclic voltammetry of catalysts in 0.5 mol·L-1H2SO4and 1 mol·L-1H2SO4+2 mol·L-1CH3OH solutions.The working electrode was prepared as follows:5 mg of the catalyst was mixed with 1 mL of ethanol and 50 μL of 5%(mass fraction)Nafion solution(Du Pont).The mixture was sonicated for 30 min to obtain inky slurry.Approximately 25 μL of the slurry was applied onto the surface of the glassy carbon electrode to form a thin layer of ca 0.1256 cm2in geometrical area.A saturated calomel electrode(SCE)and a platinum foil were used as the referenceelectrode and the counter electrode,respectively.The cyclic voltammograms were collected between-0.22 and 0.98 V in H2SO4system(or between 0 and 1 V in methanol system)versusSCE with a scan rate of 20 mV·s?1at room temperature.From the cyclic voltammetry curve,we can calculate the electrochemical active surface area(EASA)of Pt,which are based on Eq.(1).25,26

    where,QHis the total charge of hydrogen atoms electro-absorpted on the Pt surface,mPtis the mass of Pt andQHrefis assumed to be 0.21 mC·cm-2corresponding to a Pt surface density of 1.3×1015cm-2.

    3 Results and discussion

    3.1 Structural analysis

    Wide-angle XRD,presented in Fig.1,is utilized to characterize the crystalline structure of the catalysts.The wide peak observed at about 24°is associated with C(002)-plane diffraction.27Four diffraction peaks observed at 2θof 39°,46°,67°,and 81°are indexed to(111),(200),(220),and(311)reflections,suggesting the face-centered-cubic(fcc)structure for Pt.Furthermore,compared with pure Pt supported catalyst,there emerges a slight shift of Pt(111)-plane peak toward the higher diffraction angle in Pt-Ni alloy catalysts,indicative of the alloy formation between Pt and Ni.28As can be noted from the diffractograms,no characteristic lines of Ni fcc structure are observed.The absence of lines corresponding to metallic Ni fcc structure(along with Pt lattice)may be due to the metallic grains that are intermixed with amorphous Ni oxides such as NiO,Ni(OH)2,and NiOOH.17

    According to the wide-angle XRD patterns,Table 1 lists the corresponding parameters,including the displacement angle of Pt(111)-plane peak(DA),the mean particle size(D),and the lattice constant values(afcc),wherein,Dis evaluated by the parameters of the Pt(220)peak according to Scherrer′s equation,andafccis calculated on the assumption that the alloy particles are completely homogeneously-dispersed.29,30In Table 1,as the content of Ni in binary catalysts increases,the crystalline structure of Pt changes,showing that the adding of a foreign metal influences the crystalline structure.31It was noted that with the proportion of Ni in the Pt-Ni alloys decreasing,all diffraction peaks were shifted synchronously to lower 2θvalues.The shift is an indication of the reduction in lattice constant.According to Vegard′s law,lattice constant can be used to measure the extent of alloying.afccfor Pt-Ni/CMK-5 presents a decrease monotonically with the Ni content.The reduction ofafccin Pt-Ni/CMK-5 arose primarily from the substitution of platinum at-oms by Ni atoms,which led to the contraction of the fcc lattice,an indication of the formation of Pt-Ni alloys.17

    Table 1 Lattice parameters,particle sizes of catalysts calculated based upon XRD patterns

    X-ray photoelectron spectroscopy(XPS)analysis is performed to investigate the oxidation states of Pt and Ni.As shown in Fig.2(a),there emerges a doublet at 71.2 eV/74.6 eV indicative of metallic Pt.In Fig.2(b),Pt 4fregion of the spectrum can be deconvoluted into three pairs of doublets,which are signature of Pt(0),Pt(II)and Pt(IV),respectively.The Ni 2p3/2spectrum shows a corresponding complex structure and different nickel species,including Ni,NiO,Ni(OH)2,and NiOOH with the binding energies located at 852.6,853.78,855.5 and 857.3 eV,respectively.28Furthermore,the relative quantitative analysis can be measured by the integrated intensities of the deconvoluted XPS signals.As shown in Table 2,the Pt-Ni alloy presents a much enhanced enrichment of metallic Pt on the surface as compared with pure Pt catalyst,probably because of the electron transfer from a lower electronegativity of Ni(1.19)to a higher electronegativity of Pt(2.28),which is consistent with the abundant amorphous Ni oxides detectable in Fig.2(c).32

    The micrometric morphology of supported catalysts is generally characterized by the TEM images.In Fig.3(b),the Pt-Ni catalyst with the atomic ratio of 5:1 is small-sized and uniformly anchored onto CMK-5.Comparatively,in Fig.3(c),pure Pt catalyst presents a slight agglomeration,with some relatively large-sized nanoparticles in several regions of carbon support.Besides,as for Pt-Ni(1:1)catalyst,there appears large-area agglomeration phenomenon for alloy nanoparticles,showing the most severe agglomeration among such three alloy nanoparticles.It is known that,given a similar size,the metal having a lower sublimation tends to surface segregate in binary alloys.The heats of vaporization of Pt and Ni are 509.6 and 370.3 kJ·mol-1,respectively.28Therefore,Ni is enriched on the surface,resulting in the most severe alloy catalyst segregation among such three catalysts.Conclusively,appropriate Ni in Pt-Ni alloy catalyst facilitates dispersing nanoparticles on the support.

    Table 2 Valance states,binding energy(EB),and atomic ratios(AR)of integrated intensity of pure Pt in Pt/CMK-5,as well as Pt-Ni and Ni in Pt-Ni/CMK-5(5:1)

    3.2 Electro-catalytic performances

    To evaluate the electro-catalytic properties of supported Pt,CV curves are generally referred to as a means of electrocatalytic characterization.25,26The CV curves for different catalysts in 0.5 mol·L-1H2SO4solution are shown in Fig.4.The reversible hydrogen adsorption/desorption and preoxidation/reduction doublet peaks of Pt are clearly seen for all catalysts except for Pt-Ni/CMK-5(1:1),suggesting that excessive alloy metal is unfavorable to the formation of uniformly-dispersed catalyst particles,and thus resulting in the relative poor electro-catalytic property.

    The electrochemical active surface area(EASA)of metal nanoparticles is one most important parameter in the evaluation of hydrogen electro-oxidation properties.25,26As listed in Table 3,among the as-prepared catalysts,the EASA of Pt-Ni/CMK-5(5:1)reaches a peak value of 63.9 m2·g?1,higher than that reported in literatures(56 m2·g-1).27Compared with Pt/CMK-5,the adding of appropriate Ni can significantly increase the EASA.

    Table 3 Electrochemical active surface area of different catalysts

    Methanol electro-oxidation of all catalysts is showed in Fig.5.The Pt-Ni/CMK-5(5:1)catalyst exhibits better performance than Pt/CMK-5.As the generally accepted interpretation of bifunctional mechanism explained,33metallic Pt facilitates the adsorption/dissociation process of methanol anchored on the surface of Pt.More oxidative Ni can remove the intermediary products derived from the oxidation of methanol,and release more active sites provided by metallic Pt,28as is confirmed by the above XPS analysis.Moreover,the enhanced activity of Pt-Ni/CMK-5(5:1)catalyst can be attributed to optimized electronic properties in Pt 4fwhen it is alloyed with Ni.Electron transfer from Ni to Pt can be explained by the electronegativities of Ni(1.91)and Pt(2.28).The shift indelectron density from Ni to Pt would be expected to lower the density of states(DOS)at the Fermi level and to reduce the bond energy of Pt and CO as a byproduct of methanol electrooxidation.It has already been pointed out that Ni(hydro)oxides on the Pt/Ni nanoparticles could promote methanol oxidationviaa surface redox process.These two contributions to enhancing methanol electrooxidation would exist in the Pt/Ni based electrodes.34

    The ratio of the forward anodic peak current(If)to the backward anodic peak current(Ib)is commonly used to determine the tolerance of catalysts to carbonaceous species accumulation.35Ordinarily,a higherIf/Ibvalue implies more tolerant toward CO-poisoning.In our experiments,the ratio(listed in Table 3)was estimated to be higher for bimetallic catalyst(except Pt-Ni/CMK-5(1:1))than the pure Pt catalyst.A highIf/Ibindicates that most of the intermediate carbonaceous species were oxidized to CO2in the forward scan,further suggesting that the presence of Ni oxides(detectable in XPS)in the catalyst provides an oxygen source for CO oxidation at lower potential.9,18Therefore,Pt-Ni alloy catalyst exhibits an improved resistance to CO poisoning.TheIf/Ibvalue of Pt-Ni/CMK-5(1:1)catalyst is lowest,probably due to the poorly-dispersed Pt nanoparticles.

    4 Conclusions

    In this paper,pure Pt and Pt-Ni alloy catalysts are supported on CMK-5 by chemical reduction method.Based on XRD and XPS results,it is hypothesized that Ni is present in an oxide/hydroxid amorphous form,as confirmed by the XPS.The physical characterization shows that Pt-Ni with the atomic ratio of 5:1 possesses the best dispersity,and provides far more metallic Pt.Due to the favorable structural property,Pt-Ni/CMK-5(5:1)offers the best electro-chemical performance amongst all the as-prepared catalysts.Conclusively,the research work of doping Ni into the lattice of Pt,undoubtedly,is meaningful in solving the problems encountered by fuel cells.

    (1) Liu,X.;Chen,J.;Liu,G.;Zhang,L.;Zhang,H.M.;Yi,B.L.J.Power Sources2010,195,4098.

    (2)Li,W.Z.;Zhou,W.J.;Li,H.Q.;Zhou,Z.H.;Zhou,B.;Sun,G.Q.;Xin,Q.Electrochim.Acta2004,49,1045.

    (3)Yang,C.W.;Wang,D.L.;Hu,X.G.;Dai,C.S.;Liang,Z.J.Alloy.Compd.2008,448,109.

    (4) Wang,X.M.;Li,N.;Pfefferle,L.D.;Haller,G.L.J.Phys.Chem.,C2010,114,16996.

    (5)Tang,H.;Chen,J.H.;Nie,L.H.;Liu,D.Y.;Deng,W.;Kuang,Y.F.;Yao,S.Z.J.Colloid Interface Sci.2004,269,26.

    (6) Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Nanosci.Nanotechnol.2003,3,247.

    (7)Yen,C.H.;Shimizu,K.;Lin,Y.Y.;Bailey,F.;Cheng,I.F.;Wai,C.M.Energy Fuels2007,21,2268.

    (8)Shimazaki,Y.;Hayasaka,S.;Koyama,T.;Nagao,D.;Kobayashi,Y.;Konno,M.J.Colloid Interface Sci.2010,350,580.

    (9) Zhao,Y.;E,Y.F.;Fan,L.Z.;Qiu,Y.F.;Yang,S.H.Electrochim.Acta2007,52,5873.

    (10) Do,J.S.;Chen,Y.T.;Lee,M.H.J.Power Sources2007,172,623.

    (11) Choi,J.H.;Park,K.W.;Kwon,B.K.;Sung,Y.E.J.Electrochem.Soc.2003,150,773.

    (12) Liu,F.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B2004,108,17959.

    (13) Jeon,T.Y.;Yoo,S.J.;Cho,Y.H.;Lee,K.S.;Kang,S.H.;Sung,Y.E.J.Phys.Chem.C2009,113,19732.

    (14)Jiang,S.J.;Ma,Y.W.;Tao,H.S.;Jian,G.Q.;Wang,X.Z.;Fan,Y.N.;Zhu,J.M.;Hu,Z.J.Nanosci.Nanotechnol.2010,10,3895.

    (15)Yano,H.;Kataoka,M.;Yamashita,H.;Uchida,H.;Watanabe,M.Langmuir2007,23,6438.

    (16) He,C.Z.;Kunz,H.R.;Fenton,J.M.J.Electrochem.Soc.2003,150,A1071.

    (17)Mathiyarasu,J.;Remona,A.M.;Mani,A.;Phani,K.L.N.;Yegnaraman,V.J.Solid State Electrochem.2004,8,968.

    (18)Liu,Z.L.;Ling,X.Y.;Su,X.D.;Lee,J.Y.J.Phys.Chem.B 2004,108,8234.

    (19) Wang,Z.B.;Yin,G.P.;Shi,P.F.J.Electrochem.Soc.2005,153,A2406.

    (20) Park,K.W.;Choi,J.H.;Ahn,K.S.;Sung,Y.E.J.Phys.Chem.B 2004,108,5989.

    (21) Sun,D.;He,J.P.;Zhou,J.H.;Wang,T.;Di,Z.Y.;Ding,X.C.Acta Phys.-Chim.Sin.2010,26,1219.[孫 盾,何建平,周建華,王 濤,狄志勇,丁曉春.物理化學(xué)學(xué)報,2010,26,1219.]

    (22)Lu,A.H.;Li,W.C.;Schmidt,W.G.;Schuth,F.Microporous Mesoporous Mat.2005,80,117.

    (23) Antolini,E.;Salgado,J.R.C.;Gonzalez,E.R.J.Electroanal.Chem.2005,580,145.

    (24)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.;Mei,T.Q.Electrochem.Solid-State Lett.2007,10,B191.

    (25) Pozio,A.;Francesco,D.M.;Cemmi,A.J.Power Sources 2002,105,13.

    (26)Yang,R.Z.;Liu,X.P.;Zhang,H.R.Carbon 2005,43,11.

    (27)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.Electrochem.Solid-State Lett.2007,10,B191.

    (28)Park,K.W.;Choi,J.H.;Kwon,B.K.;Lee,S.A.;Sung,Y.E.J.Phys.Chem.B 2002,106,1869.

    (29) Gojkovic,S.L.;Vidakovic,T.R.;Durovic,D.R.Electrochim.Acta 2003,48,3607.

    (30) Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154,98.

    (31)Geng,D.S.;Lu,G.X.J.Phys.Chem.C 2007,111,11897.

    (32) Liu,F.;Lee,J.Y.;Zhou,W.J.Small 2006,2,121.

    (33)Watanabe,M.;Uchida,M.;Motoo,S.J.Electroanal.Chem.1987,229,395.

    (34) Park,K.W.;Choi,J.H.;Sung,Y.E.J.Phys.Chem.B 2003,107,5851.

    (35)Lin,Y.;Cui,X.;Yen,C.;Wai,C.M.J.Phys.Chem.B 2005,109,14410.

    CMK-5負載Pt-Ni合金催化劑及其甲醇電化學(xué)氧化性能

    丁曉春 陳 秀 周建華 王 濤 孫 盾 何建平*

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京210016)

    采用NaBH4還原法將不同原子比的鉑鎳負載于CMK-5(由SBA-15模板所得的碳載體)表面.X射線衍射(XRD)和X射線光電子能譜(XPS)測試結(jié)果表明,所得催化劑是以鉑鎳合金的形式存在,相對于Pt/CMK-5而言,這種合金化的催化劑中Pt表現(xiàn)出更多的金屬態(tài).電化學(xué)測試結(jié)果顯示,在催化劑中主要以化合態(tài)存在的鎳(包括NiO、Ni(OH)2和NiOOH)可能更有利于甲醇的吸附和氧化產(chǎn)物從催化劑表面的脫附.另外,從循環(huán)伏安測試結(jié)果可知,Pt-Ni/CMK-5(5:1)(原子比)具有較大的比表面活性,其電化學(xué)活性面積高達63.9 m2·g-1,且與Pt/CMK-5相比抗CO中毒能力有明顯改善.

    CMK-5;Pt/CMK-5催化劑;Pt-Ni/CMK-5催化劑; 甲醇; 電化學(xué)氧化

    O646

    Received:October 27,2010;Revised:January 10,2011;Published on Web:February 16,2011.

    ?Corresponding author.Email:jianph@nuaa.edu.cn;Tel:+86-25-52112900;Fax:+86-25-52112626.The project was supported by the National Natural Science Foundation of China(50871053).

    國家自然科學(xué)基金(50871053)資助項目

    猜你喜歡
    南京航空航天大學(xué)建平建華
    Her dream came true她的夢想成真了
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    国产成年人精品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 男女那种视频在线观看| 免费黄网站久久成人精品| 亚洲美女搞黄在线观看 | 99热只有精品国产| 国产精品三级大全| 校园人妻丝袜中文字幕| 亚洲av熟女| 毛片女人毛片| 99久久无色码亚洲精品果冻| 欧美一区二区国产精品久久精品| 国产精品爽爽va在线观看网站| 久久天躁狠狠躁夜夜2o2o| 亚洲五月天丁香| av女优亚洲男人天堂| 欧美色视频一区免费| 天堂影院成人在线观看| 欧美日韩一区二区视频在线观看视频在线 | 免费在线观看影片大全网站| 久久人人爽人人爽人人片va| 俺也久久电影网| 欧美成人精品欧美一级黄| 日韩欧美在线乱码| 最好的美女福利视频网| 一个人免费在线观看电影| 精品无人区乱码1区二区| 国产探花在线观看一区二区| 日韩人妻高清精品专区| 亚洲最大成人av| 午夜激情欧美在线| av在线亚洲专区| 蜜臀久久99精品久久宅男| 亚洲精品国产成人久久av| 日韩亚洲欧美综合| 麻豆一二三区av精品| 亚洲成人久久性| 日韩欧美三级三区| 18禁裸乳无遮挡免费网站照片| 内地一区二区视频在线| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 日韩欧美精品免费久久| 亚洲在线自拍视频| ponron亚洲| 国产欧美日韩精品亚洲av| 毛片女人毛片| 看黄色毛片网站| 成人毛片a级毛片在线播放| 国产成年人精品一区二区| 男人的好看免费观看在线视频| 亚洲图色成人| 你懂的网址亚洲精品在线观看 | 美女大奶头视频| 欧美一区二区亚洲| 女的被弄到高潮叫床怎么办| 黄色一级大片看看| 日韩制服骚丝袜av| 99久久精品国产国产毛片| 久久草成人影院| 亚洲人成网站高清观看| 亚洲人成网站在线播放欧美日韩| 欧美精品国产亚洲| 免费在线观看成人毛片| 内射极品少妇av片p| 欧美日本亚洲视频在线播放| 最近中文字幕高清免费大全6| 美女高潮的动态| 尾随美女入室| 亚洲成人精品中文字幕电影| 欧美激情在线99| 国产精品久久电影中文字幕| 熟女电影av网| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 丝袜喷水一区| 久久精品人妻少妇| 岛国在线免费视频观看| 日韩欧美国产在线观看| 22中文网久久字幕| 免费看美女性在线毛片视频| 99热这里只有精品一区| 变态另类成人亚洲欧美熟女| 亚洲熟妇中文字幕五十中出| 国产中年淑女户外野战色| 亚洲人成网站在线观看播放| av在线观看视频网站免费| 国产精品精品国产色婷婷| aaaaa片日本免费| 欧美+日韩+精品| 婷婷精品国产亚洲av在线| 国产一区二区三区在线臀色熟女| 欧美成人精品欧美一级黄| 看十八女毛片水多多多| 97超视频在线观看视频| 国产精品嫩草影院av在线观看| 欧美高清性xxxxhd video| 日韩欧美在线乱码| 亚洲人成网站在线播放欧美日韩| 大型黄色视频在线免费观看| 成人三级黄色视频| 日韩三级伦理在线观看| 一级毛片久久久久久久久女| 午夜福利视频1000在线观看| 男人狂女人下面高潮的视频| 中文字幕久久专区| 欧美不卡视频在线免费观看| 亚洲精品亚洲一区二区| 我的女老师完整版在线观看| 超碰av人人做人人爽久久| 99久久精品国产国产毛片| 色av中文字幕| 国产午夜精品论理片| 我的老师免费观看完整版| 草草在线视频免费看| 亚洲性夜色夜夜综合| 国产亚洲精品久久久com| 国产片特级美女逼逼视频| 美女 人体艺术 gogo| 九九爱精品视频在线观看| 联通29元200g的流量卡| 精品福利观看| 国产av在哪里看| 国产成年人精品一区二区| 亚洲高清免费不卡视频| 成人鲁丝片一二三区免费| 美女被艹到高潮喷水动态| 亚洲精品一卡2卡三卡4卡5卡| 2021天堂中文幕一二区在线观| 亚洲18禁久久av| 国产成人a∨麻豆精品| 51国产日韩欧美| av在线老鸭窝| 99热这里只有是精品50| 成人高潮视频无遮挡免费网站| 久久欧美精品欧美久久欧美| 亚洲精品色激情综合| 69人妻影院| 最近的中文字幕免费完整| 亚洲av成人精品一区久久| 成人高潮视频无遮挡免费网站| 在线天堂最新版资源| 亚洲真实伦在线观看| 日韩欧美一区二区三区在线观看| 偷拍熟女少妇极品色| av女优亚洲男人天堂| 久久久久久久亚洲中文字幕| 一个人看的www免费观看视频| av天堂在线播放| 国产国拍精品亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 国产精品伦人一区二区| 午夜日韩欧美国产| 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| 亚洲av第一区精品v没综合| 国产日本99.免费观看| 国产伦精品一区二区三区四那| 一进一出抽搐gif免费好疼| 国产亚洲91精品色在线| 久99久视频精品免费| 亚洲性久久影院| 草草在线视频免费看| 亚洲国产精品成人久久小说 | 男女啪啪激烈高潮av片| 欧美成人a在线观看| 国产探花在线观看一区二区| 久久亚洲精品不卡| 午夜爱爱视频在线播放| 欧美+日韩+精品| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 精品少妇黑人巨大在线播放 | 国产高清激情床上av| 给我免费播放毛片高清在线观看| 91在线观看av| 草草在线视频免费看| 乱系列少妇在线播放| 国内精品一区二区在线观看| 国产精品三级大全| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美 国产精品| 亚洲av第一区精品v没综合| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 国产精品99久久久久久久久| 色哟哟·www| 婷婷亚洲欧美| 成人特级av手机在线观看| 欧美成人精品欧美一级黄| 不卡一级毛片| 一区二区三区四区激情视频 | 国内精品美女久久久久久| 我要看日韩黄色一级片| 高清毛片免费看| 日韩一本色道免费dvd| 色播亚洲综合网| 啦啦啦韩国在线观看视频| 深夜a级毛片| 午夜精品在线福利| 少妇高潮的动态图| 久久久精品欧美日韩精品| 日本三级黄在线观看| 午夜福利高清视频| 97热精品久久久久久| 小蜜桃在线观看免费完整版高清| 亚州av有码| 国产单亲对白刺激| 国产极品精品免费视频能看的| 超碰av人人做人人爽久久| 国产又黄又爽又无遮挡在线| 美女免费视频网站| 久久精品国产亚洲网站| 免费在线观看影片大全网站| 99riav亚洲国产免费| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| 欧美丝袜亚洲另类| 黄色日韩在线| 免费观看人在逋| 亚洲人成网站高清观看| 91av网一区二区| 精品一区二区三区视频在线| 国产精品亚洲一级av第二区| 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 久久中文看片网| 国产亚洲欧美98| 日本黄色视频三级网站网址| 天天躁日日操中文字幕| 尾随美女入室| 成人特级av手机在线观看| 久久精品国产鲁丝片午夜精品| 人人妻,人人澡人人爽秒播| 日本一二三区视频观看| 久久鲁丝午夜福利片| 国产黄a三级三级三级人| 欧洲精品卡2卡3卡4卡5卡区| 国产 一区精品| 麻豆成人午夜福利视频| 少妇高潮的动态图| 一个人免费在线观看电影| 99热精品在线国产| 久久精品久久久久久噜噜老黄 | 国产亚洲精品久久久com| 亚洲无线观看免费| 国产不卡一卡二| av卡一久久| 高清毛片免费看| 一级黄色大片毛片| or卡值多少钱| av专区在线播放| 男女做爰动态图高潮gif福利片| 国产美女午夜福利| 国产一级毛片七仙女欲春2| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人| 国产精品一及| 欧美成人精品欧美一级黄| 97碰自拍视频| 亚洲国产色片| 欧美三级亚洲精品| 国产精品久久视频播放| 色综合色国产| 日韩成人av中文字幕在线观看 | 男女之事视频高清在线观看| 午夜免费男女啪啪视频观看 | 亚洲欧美成人精品一区二区| 国国产精品蜜臀av免费| 级片在线观看| 精品国产三级普通话版| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 精品一区二区三区视频在线| 国产免费男女视频| 精品一区二区免费观看| 国产亚洲av嫩草精品影院| 亚洲在线自拍视频| 午夜福利高清视频| 美女xxoo啪啪120秒动态图| 欧美3d第一页| 日本熟妇午夜| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 观看免费一级毛片| 精品一区二区三区人妻视频| 久久久精品94久久精品| 国产亚洲欧美98| 国产黄片美女视频| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 伊人久久精品亚洲午夜| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 日韩成人伦理影院| 国产精品av视频在线免费观看| 国产片特级美女逼逼视频| 欧美+日韩+精品| 91麻豆精品激情在线观看国产| 在线免费十八禁| 少妇的逼水好多| 日本-黄色视频高清免费观看| 久久久精品欧美日韩精品| 国产91av在线免费观看| 插逼视频在线观看| 美女黄网站色视频| 午夜激情福利司机影院| 国产精品99久久久久久久久| 国产蜜桃级精品一区二区三区| 麻豆国产av国片精品| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 最近在线观看免费完整版| 日韩成人伦理影院| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 日本熟妇午夜| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 在线观看免费视频日本深夜| 一级毛片电影观看 | 国产高潮美女av| 在线观看美女被高潮喷水网站| 99久久成人亚洲精品观看| 日日啪夜夜撸| 中文字幕精品亚洲无线码一区| 寂寞人妻少妇视频99o| 久久久久九九精品影院| 亚洲国产高清在线一区二区三| 嫩草影院入口| 亚洲精品一卡2卡三卡4卡5卡| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放 | 亚洲av成人av| 美女被艹到高潮喷水动态| 十八禁网站免费在线| 中文在线观看免费www的网站| 午夜a级毛片| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av在线| 狂野欧美白嫩少妇大欣赏| 国产爱豆传媒在线观看| 国产精品免费一区二区三区在线| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 直男gayav资源| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 日韩中字成人| 欧美另类亚洲清纯唯美| 搡女人真爽免费视频火全软件 | 日日啪夜夜撸| 美女高潮的动态| 亚洲精品一区av在线观看| 久久精品夜色国产| 波多野结衣高清无吗| 久99久视频精品免费| 欧美一区二区精品小视频在线| 国产真实乱freesex| 日本黄大片高清| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 高清毛片免费观看视频网站| 日本黄色视频三级网站网址| 99在线视频只有这里精品首页| 永久网站在线| 国产欧美日韩一区二区精品| 日韩人妻高清精品专区| 麻豆精品久久久久久蜜桃| 免费看a级黄色片| 桃色一区二区三区在线观看| 久久国产乱子免费精品| 欧美高清性xxxxhd video| 热99在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| av免费在线看不卡| 免费观看精品视频网站| 欧美性猛交黑人性爽| 真人做人爱边吃奶动态| a级毛片a级免费在线| 日韩在线高清观看一区二区三区| 观看美女的网站| 天天一区二区日本电影三级| 性插视频无遮挡在线免费观看| 白带黄色成豆腐渣| 高清毛片免费观看视频网站| 两个人的视频大全免费| 国产黄色视频一区二区在线观看 | 寂寞人妻少妇视频99o| 1024手机看黄色片| 大型黄色视频在线免费观看| 麻豆av噜噜一区二区三区| 亚洲欧美日韩无卡精品| 午夜福利成人在线免费观看| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 色吧在线观看| 成人欧美大片| 中国国产av一级| 亚洲国产日韩欧美精品在线观看| 在线观看美女被高潮喷水网站| 少妇熟女aⅴ在线视频| 久久精品国产亚洲网站| 精品福利观看| 日本黄色视频三级网站网址| 一级a爱片免费观看的视频| 日日干狠狠操夜夜爽| 成人精品一区二区免费| 国产成人91sexporn| 啦啦啦啦在线视频资源| 两个人的视频大全免费| eeuss影院久久| 午夜激情欧美在线| 免费观看在线日韩| 卡戴珊不雅视频在线播放| 可以在线观看毛片的网站| 男女做爰动态图高潮gif福利片| 99热6这里只有精品| 悠悠久久av| 午夜精品在线福利| 在线天堂最新版资源| 欧美成人一区二区免费高清观看| 成人亚洲欧美一区二区av| 精品久久久久久久末码| 亚洲av五月六月丁香网| 欧美成人a在线观看| 国产白丝娇喘喷水9色精品| av视频在线观看入口| 免费av观看视频| 日韩强制内射视频| 国产在线男女| 亚洲性夜色夜夜综合| 亚洲成av人片在线播放无| 国产成人福利小说| 亚洲人成网站在线观看播放| 激情 狠狠 欧美| 在线播放无遮挡| 听说在线观看完整版免费高清| 在线播放无遮挡| 亚洲av一区综合| 成人永久免费在线观看视频| 69人妻影院| 人妻制服诱惑在线中文字幕| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 国产成人影院久久av| 欧美日韩一区二区视频在线观看视频在线 | 老女人水多毛片| 我的女老师完整版在线观看| 亚洲在线自拍视频| 丰满乱子伦码专区| 尾随美女入室| av在线播放精品| 国产毛片a区久久久久| 狠狠狠狠99中文字幕| 亚洲欧美日韩东京热| 女人十人毛片免费观看3o分钟| 黄色配什么色好看| 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 国产乱人视频| 在线看三级毛片| 午夜福利18| 精品99又大又爽又粗少妇毛片| 在线观看一区二区三区| 精品人妻一区二区三区麻豆 | 久久精品夜色国产| 日日啪夜夜撸| 色5月婷婷丁香| 可以在线观看毛片的网站| 国产伦精品一区二区三区视频9| 在线看三级毛片| 日韩欧美 国产精品| 欧美成人a在线观看| 亚洲av成人精品一区久久| 久久精品91蜜桃| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 在线观看一区二区三区| 亚洲一区高清亚洲精品| 国产极品精品免费视频能看的| 免费大片18禁| 成年女人毛片免费观看观看9| 两个人的视频大全免费| 嫩草影院入口| 亚洲无线观看免费| 亚洲一级一片aⅴ在线观看| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 久久久欧美国产精品| 一区福利在线观看| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久末码| 久久久久久久久久成人| 国产成人福利小说| 一本精品99久久精品77| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| 精品一区二区免费观看| 亚洲国产色片| 看十八女毛片水多多多| 一夜夜www| 国产亚洲精品av在线| 国产高清视频在线观看网站| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 有码 亚洲区| 十八禁国产超污无遮挡网站| 人人妻,人人澡人人爽秒播| 一个人观看的视频www高清免费观看| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区免费观看 | av天堂在线播放| 久久久久国内视频| 午夜视频国产福利| 日本色播在线视频| 国内精品宾馆在线| 联通29元200g的流量卡| 精品一区二区免费观看| 亚洲欧美精品综合久久99| 又粗又爽又猛毛片免费看| 六月丁香七月| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 十八禁国产超污无遮挡网站| 少妇被粗大猛烈的视频| 麻豆乱淫一区二区| 身体一侧抽搐| 中国美女看黄片| 伊人久久精品亚洲午夜| 哪里可以看免费的av片| 免费黄网站久久成人精品| 国产精品无大码| 麻豆乱淫一区二区| 神马国产精品三级电影在线观看| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 我要搜黄色片| 伦精品一区二区三区| 国产精品精品国产色婷婷| av专区在线播放| 少妇人妻一区二区三区视频| 久久人人爽人人片av| 此物有八面人人有两片| 一本一本综合久久| 99久久久亚洲精品蜜臀av| 国产亚洲精品久久久com| 日本成人三级电影网站| 在线观看午夜福利视频| 亚洲经典国产精华液单| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱 | 国产精品日韩av在线免费观看| 中文在线观看免费www的网站| 国产三级在线视频| 能在线免费观看的黄片| 看十八女毛片水多多多| 欧美日韩乱码在线| 成人美女网站在线观看视频| 欧美bdsm另类| 国产精品一二三区在线看| 国内精品一区二区在线观看| 色综合站精品国产| 国产精品野战在线观看| 长腿黑丝高跟| 国产精品一区二区免费欧美| 久久精品国产自在天天线| 男人和女人高潮做爰伦理| 国产伦一二天堂av在线观看| 美女xxoo啪啪120秒动态图| 国产伦一二天堂av在线观看| 国产欧美日韩精品亚洲av| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 老司机影院成人| 三级经典国产精品| 偷拍熟女少妇极品色| 中文字幕久久专区| 天堂√8在线中文| 免费人成在线观看视频色| 九色成人免费人妻av| 国产色爽女视频免费观看| 国产亚洲91精品色在线| 亚洲国产精品国产精品| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 日本与韩国留学比较| 99热全是精品| 深夜a级毛片| 久久久久久久久久久丰满| 日韩制服骚丝袜av| 男女那种视频在线观看| 国产欧美日韩精品亚洲av| 亚洲av中文字字幕乱码综合| 黄色视频,在线免费观看| 国产成人一区二区在线| 日本免费a在线| 久久精品国产亚洲av涩爱 | 久久久久久国产a免费观看| 午夜视频国产福利| 嫩草影院精品99| 可以在线观看毛片的网站| 99热网站在线观看| 一级黄片播放器| 国产老妇女一区| 我要搜黄色片| 中文字幕av在线有码专区| 亚洲美女视频黄频| 国产视频内射|