• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    原位合成鈷/還原氧化石墨烯納米粒子催化氨硼烷制氫

    2014-09-17 07:00:00楊宇雯盧章輝陳祥樹
    物理化學(xué)學(xué)報(bào) 2014年6期
    關(guān)鍵詞:江西師范大學(xué)劉建華化工學(xué)院

    楊宇雯 馮 剛 盧章輝,* 胡 娜 張 飛 陳祥樹,*

    (1江西師范大學(xué)化學(xué)化工學(xué)院,南昌330022;2中國石化上海石油化工研究院,上海201208)

    1 Introduction

    Secure storage and effective release of hydrogen are very important in the application of hydrogen energy.1,2Various hydrogen storage approaches are currently being investigated,including metal hydrides,3sorbent materials,4and chemical hydride systems.5Boron-nitrogen containing compounds have attracted much attention recently for using as hydrogen storage materials due to their suitable thermodynamic and kinetic properties of hydrogen release.6Among them,ammonia borane(NH3BH3,AB)appears to be an appropriate hydrogen storage material because of its high hydrogen content,high stability at room temperature,and nontoxicity.7-9With appropriate catalyst,hydrolysis of AB can release as many as 3 mol of hydrogen per mol of AB.10-12So far a lot of catalysts have been tested for hydrogen generation from the hydrolysis of AB,13-30among which Pt shows the highest activity.17,22,23However,concerning the element abundance and related economic issues,it is a desired goal to prepare low-cost catalysts with high catalytic activity for the terminal practical application of this reaction system in the fuel cell.

    Reduced graphene oxide(RGO),a new class two-dimensional carbon nanostructure with one-atom thickness,has many merits such as large theoretical specific surface area,31high intrinsic mobility,32and large density of free electrons,33could be an ideal substrate for growing and anchoring metal NPs.34Up to date,modification of RGO sheets with metallic NPs is mainly synthesized through one-step and two-step methods.35,36The metallic ions and graphene oxide(GO)sheets are reduced at the same time in the former method,while in the latter,GO is firstly reduced and then the metallic ions are deposited on RGO sheets.In the latter way,the complicated reaction steps,long reaction time,and stringent reaction conditions(high temperature,high vacuum,microwave,ultrasound,UV irradiation,etc.)are usually unavoidable.37-39Recently,RGO-supported Ru@Ni,Ag@M(M=Co,Ni,Fe)NPs have been prepared by one-step method under ambient condition and the catalysts exhibit superior catalytic activities.18,21,40However,developing an efficient strategy for one-step in situ synthesis of RGO-supported metal NPs with low-cost and high catalytic activities is still desirable.

    Chemical reduction methods provide much greater control over the size and composition,which are widely applied to synthesize metal NPs in solution phase.41This method involves reduction of metal ions in the presence of capping agent using reductant like NaBH4.42When NPs are employed as a catalyst,the capping agent present on the surface diminishes the activity to some extent by blocking some of the active sites.43However,without capping agent,nanoparticles are difficult to synthesize because growth of in situ generated nuclei cannot be halted.Therefore,it is great practical value to synthesis of NPs without using any external capping agent.

    Herein,RGO-supported Co NPs were synthesized by using a simple and low-cost one-step approach without using any external capping agent and assistance of high energy.We employed AB itself(much milder than NaBH4)as the reductant during the reactions.The as-synthesized Co/RGO nanocatalysts were used as catalysts in the dehydrogenation and hydrolysis ofAB at room tempertature.

    2 Experimental

    2.1 Graphite oxide preparation

    Graphite oxide was made by a modified Hummers method.44,45Briefly,natural graphite powder(325 mesh)was placed into an 80°C solution of concentrated H2SO4(30 mL),K2S2O8(2.5 g),and P2O5(2.5 g).The mixture was carefully diluted with distilled water,and filtered using a 0.2 micron Nylon Millipore filter to remove the residual acid.The product was dried at 80°C under ambient condition overnight.The pre-oxidized graphite was put into cold concentrated H2SO4,then KMnO4was added gradually under stirring and the temperature of the mixture was kept below 20 °C for 2.5 h.The mixture was stirred at 35 °C for 4 h.Afterwards,250 mL of de-ionized water was added and the suspension was stirred at 100°C for another 2 h.Subsequently,additional 300 mL of de-ionized water was added.Shortly after that,7 mL of 30%(w)H2O2was added to the mixture to terminate the reaction.The suspension was then repeatedly centrifuged and washed first with 5%(w)HCl solution and then with water.Exfoliation of graphite oxide to GO was achieved by ultrasonication of the dispersion for 30 min.46

    2.2 In situ synthesis of Co/RGO catalysts and their catalytic studies of hydrolytic dehydrogenation of AB

    8 mL aqueous solution containing CoCl2(24.03 mg)and GO solution(1.07 g,containing 0.412%(w)GO)was kept in a 25 mL two-necked round-bottom flask.One neck was connected to a gas burette,and the other was connected to a pressureequalization funnel to introduce 2 mL of aqueous solution con-taining 34.3 mg(1 mmol)AB.The reactions were started when the aqueous AB solution was added to the flask with vigorously stirring.The evolution of gas was monitored using the gas burette.After the hydrogen generation reaction was completed,34.3 mg(1 mmol)AB was added to the flask,the evolution of gas was monitored.A water bath was used to control the temperature of the reaction solution(the amount of AB in the processes of in situ synthesis of Co/RGO catalyst and hydrolytic dehydrogenation are the same,1 mmol AB was used as reductant in the first process and another 1 mmol AB was used for the hydrolytic dehydrogenation test).

    For comparision,GO and Co NPs were synthesized using AB as reductant,RGO and Co/RGO were synthesized using NaBH4as reductant.The as-synthesized catalysts were used for the hydrolysis ofAB.

    2.3 Kinetic studies of hydrolytic dehydrogenation of AB catalyzed by Co/RGO

    In order to establish the rate law for catalytic hydrolysis of AB using Co/RGO as catalyst,three different sets of experiments were performed in the same way described in Section 2.2.In the first set of experiment,the different concentrations of Co(0.04,0.06,0.08,and 0.10 mmol)were performed at room temperature(25°C)while the AB concentration was kept the same(1 mmol).In the second set of experiment,the different concentrations of AB(1.0,1.5,2.0,and 2.5 mmol)were performed at room temperature(25°C)while the Co concentration was kept the same(0.1 mmol).Finally,temperature was varied at 25,30,35,and 40°C while the molar ratio of metal/AB(0.1 mmol Co and 1 mmol AB)was kept constant of 0.1 to obtain the activation energy(Ea).

    2.4 Stability test

    For stability test,catalytic reactions were repeated 5 times by adding other equivalent of AB(1 mmol)into the mixture after the previous cycle.The molar ratio of metal/AB was kept at 0.1.

    2.5 Catalyst characterization

    Transmission electron microscope(TEM),energy-diepersive X-ray spectroscopy(EDS),and selected area electron diffraction(SAED)were observed using FEI Tecnai G20 U-Twin TEM instrument operating at 200 kV.Powder X-ray diffraction(XRD)studies were performed on a Rigaku RINT-22005 X-ray diffractometer with a Cu Kαsource(40 kV,20 mA).X-ray photoelectron spectroscopy(XPS)measurement was performed with a Thermo ESCALAB 250XI multifunctional imaging electron spectrometer.Fourier transform infrared(FTIR)spectra were collected at room temperature by using a Thermo Nicolet 870 instrument using KBr discs in the 500-4000 cm-1region.Raman spectrometer was carried out using a confocal Raman microscope(LabRAM HR).

    3 Results and discussion

    3.1 Synthesis and characterization

    As well known,the Co(II)cations were difficult to reduce to Co by AB(a mild reducing agent)at room temperature,10,14which is also evidenced in the present experiments(Fig.S1(see Supporting Information)).Interestingly,in the presence of GO,the Co(II)cations could be reduced to Co by using AB as a reductant within a short period(Fig.S1).The decrease of induction period may result from the charge transfer across the graphene oxide-cobalt interface due to the graphene oxide-cobalt spacing and Fermi lever difference.21The RGO-supported Co(Co/RGO)NPs were successfully synthesized by reducing a mixture containing CoCl2and GO with AB as the sole reductant.The microstructures of the samples were characterized by TEM,high-resolution TEM(HRTEM),EDS,and SAED(Fig.1).As shown in Fig.1(a),the GO sheets are transparent and corrugated together.The TEM images of Co/RGO(Fig.1(b,c))show that most of the Co NPs lay flat on the RGO.Moreover,the aggregation of Co NPs was found in Co/RGO,which could be due to the magnetic property of Co NPs.The EDS spectrum of the specimen shows the presence of Co(Fig.S2,which was taken from the specially marked area in the TEM image(Fig.1(c)).A close examination of the catalysts by HRTEM(Fig.1(d)),the d-spacing of the particle lattice is~0.204 nm,which is consistent with the SAED pattern(4.9 nm-1in Fig.1(d)inset)and the(111)plane of cubic Co(JCPDS No.15-0806).Moreover,the corresponding SAED pattern demonstrates the low degree of crystallinity of Co.

    Fig.2 shows the powder XRD patterns of GO and Co/RGO.The diffraction peak at around 44.23°attributed to Co(111)is observed in Co/RGO,which is consistent with the HRTEM result(Fig.1(d)).Furthermore,the most intense peak at around 11.5°corresponding to the(001)reflection of GO disappeared,while a new peak at around 24.58°was observed in Co/RGO,indicating that GO is successfully reduced to the RGO.

    Fig.1 (a)TEM images of GO;(b,c)TEM images of Co/RGO nanocatalysts;(d)HRTEM image of Co/RGO nanocatalysts and SAED pattern(inset)

    Fig.2 XRD patterns of GO and Co/RGO nanocatalyst

    Co/RGO was further characterized by XPS to investigate the surface nature of the Co NPs and RGO(Fig.3).Compared with the peaks of GO(Fig.3(A)),the intensities of oxygen containing functional groups(such as―C―O,―C=O,―COO)in Co/RGO(Fig.3(B))decrease significantly,also revealing the reduction of GO to RGO.Fig.3(C)shows the peaks of Co 2p.The peak at 778.5 eV stands for Co0,the two peaks at 780.6 and 786.7 eV stand for oxidized Co.The formation of the oxidized Co most likely occurs during the sample preparation process for XPS measurements.The presence of carbon-oxygen bonding and oxidized Co are also evident in the O 1s spectrum of Co/RGO(Fig.3(D)).The O 1s spectrum shows peaks at 534.0,533.0,531.6,and 530.4 eV,which could be assigned to―COO,―C―O,―C=O,oxidized Co.

    Fig.3 XPS spectra of C 1s of(A)GO and(B)Co/RGO,(C)Co 2p of Co/RGO,and(D)O 1s of Co/RGO

    As shown in Fig.4(a),two peaks centered at 1316.92 and 1584.57 cm-1appear in the Raman spectra of the GO and Co/RGO,corresponding to the D and G bands of the carbon products,respectively.The D band is an indication of disorder of GO originating from defects associated with vacancies,grain boundaries,and amorphous carbon species,while the G band is ascribed to the E2gphonon of C sp2atoms in a 2-dimensional hexagonal lattice.The peak intensity ratio of the D to G band(ID/IG)is generally accepted to reflect the degree of graphitization of carbonaceous materials and defect density.After loading of Co NPs,the ID/IGof GO is increased from 1.2 to 1.6.The relative changes in the D to G peak intensity ratio also confirm the reduction of GO during the in situ fabrication.

    Fig.4(b)shows the FTIR spectra of GO and Co/RGO.As for the FTIR spectrum of GO,the broad and intense band at 3401.9 cm-1is ascribed to the stretching of O―H.The weak band at 1723.6 cm-1is assigned to C=O stretching vibration in carbonyl or carboxylic groups.The peak at 1621.6 cm-1is pertinent to the vibrations of the absorbed water molecules and the skeletal vibration of unoxidized graphitic domains.The bands at 1399.2 and 1074.4 cm-1are associated with the O―H vibration in carboxyl acid and the deformation of the C―O band,respectively.After the formation of Co/RGO,the disappearance of C=O at 1723.6 cm-1,C―OH peak at 1399.2 cm-1,and the C―O peak at 1074.4 cm-1of GO further indicates that GO was reduced to RGO during the process.

    3.2 Catalytic activities for hydrolysis of AB

    As shown in Fig.5,no hydrogen generation was observed for GO and RGO,suggesting that GO and RGO have no catalytic activity for the hydrolysis of AB.The as-synthesized Co/RGO generates a stoichiometric amount of hydrogen(H2/NH3BH3molar ratio:3.0)in 4.37 min with a turnover frequency(TOF)value of 6.86 mol·mol-1·min-1.The as-synthesized Co/RGO nanocatalysts display much better catalytic activities than pure Co NPs.The enhanced catalytic activity of Co/RGO for AB hydrolysis reaction should result from the cooperative effect between RGO and Co NPs,which is mainly caused by the strongly interfacial interaction between RGO and Co NPs during the catalytic process.27Compared with pre-catalysts reduced by NaBH4(Co/RGO(SB)),the as-synthesized nanocatalysts generated by AB(Co/RGO(AB))exhibit a superior catalytic activity(Fig.5 and Fig.S3),indicating that AB can be used as both a potential hydrogen storage material and an efficient reducing agent.

    Fig.4 (a)Raman and(b)FTIR spectra of the GO and Co/RGO

    Fig.5 Plots of hydrogen productivity vs time for hydrolysis of ammonia borane(0.10 mol·L-1,10 mL)catalyzed by Co/RGO reduced byAB and NaBH4(SB)respectively,Co NPs reduced byAB,GO,and RGO

    Fig.S4(a)shows the plots of hydrogen generation from the hydrolysis of AB solution in the presence of different Co/RGO concentration at 25°C.The initial rate of hydrogen generation was determined from the initial nearly linear portion of each plot.Fig.S4(b)shows the plot of hydrogen generation rate versus Co/RGO concentration in a logarithmic scale.A slope of 1.05 in the inset indicates that the hydrolysis reaction catalyzed by Co/RGO is first-order in catalyst concentration.

    The effect of substrate concentration on the hydrogen generation rate was also studied by performing a series of experiments starting with different initial concentrations of AB while keeping the catalyst concentration at 10 mmol·L-1Co at room temperature(Fig.6).It can be clearly concluded by the slope of the line in Fig.6(b)that the hydrogen generation rate from the catalytic hydrolysis of AB is practically independent from AB concentration.In other words,the hydrolysis of AB catalyzed by Co/RGO is zero order with respect to the substrate concentration.

    Fig.6 Plots of(a)volume of hydrogen generated vs time,(b)hydrogen generation rate versus the concentration ofAB(both in logarithmic scale)

    Fig.7 (a)Plots of volume of hydrogen generated vs time for Co/RGO catalyzed hydrolysis ofAB at different temperatures(nCo/nAB=0.1);(b)Arrhenius plot obtained from the data of Fig.7(a)

    In order to get the activation energy(Ea)of the hydrolysis of AB catalyzed by Co/RGO,the hydrolytic reactions at the temperature range of 298-313 K were carried out.The values of rate constant k at different temperatures were calculated from the slope of the linear part of each plot from Fig.7(a).The Arrhenius plot of lnk vs 1/T for the catalyst is plotted in Fig.7(b),from which the apparent activation energy was determined to be approximately 27.10 kJ·mol-1,being lower than most ofthe reported Eavalues(Table 1),indicating the superior catalytic performance of the as-synthesized Co/RGO nanocatalysts.

    Table 1 Values of activation energy(Ea)for hydrolysis ofAB catalyzed by different catalysts

    Fig.8 Plots of hydrogen productivity vs time for Co/RGO catalyzed hydrolysis ofAB(0.10 mol·L-1,10 mL)from 1st to 5th cycles(nCo/nAB=0.1)

    3.3 Reusability and recycle ability

    The reusability is of great importance for the practical application of catalyst.The recyclability of Co/RGO nanocatalyst up to the fifth run for hydrolysis of AB is shown in Fig.8.The complete release of hydrogen is achieved in each of the subsequent catalytic runs in the hydrolysis of AB catalyzed by Co/RGO nanocatalysts.This indicates that Co/RGO can be repeatedly used as active catalyst in the hydrolysis of AB.The observed decrease in catalytic activity in subsequent runs may be attributed to the passivation of nanocatalyst surface by the precipitation of metaborate products.22Moreover,the in situ synthesized Co/RGO nanocatalysts are magnetic and thus can be separated from the reaction solution by an external magnet(inset in Fig.8),which makes the practical recycling application of nanocatalysts more convenient.

    4 Conclusions

    In summary,we have developed a facial in situ one-step method for the synthesis of magnetic RGO-supported Co NPs using AB as the sole reductant.The as-synthesized nanocatalysts exhibit a high catalytic activity for hydrolytic dehydrogenation of AB with the activation energy Eaof 27.10 kJ·mol-1,which is lower than most of the reported data for the same reaction using non-noble metal catalysts and even some noble metal containing catalysts.Moreover,the Co/RGO nanocatalysts show good durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB due to the magnetic property from Co,which makes the practical recycling application of the catalyst more convenient.This simple synthetic method can be extended to the other RGO-based metallic systems for more application.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/35104634

    (2)Grochala,W.;Edwards,P.P.Chem.Rev.2004,104,1283.doi:10.1021/cr030691s

    (3) Graetz,J.Chem.Soc.Rev.2009,38,73.doi:10.1039/b718842k

    (4)Suh,M.P.;Park,H.J.;Prasad,T.K.;Lim,D.W.Chem.Rev.2012,112,782.doi:10.1021/cr200274s

    (5) Staubitz,A.;Robertson,A.P.M.;Manners,I.Chem.Rev.2010,110,4079.doi:10.1021/cr100088b

    (6) Chen,P.;Zhu,M.Mater.Today 2008,11,36.

    (7) Lu,Z.H.;Xu,Q.Funct.Mater.Lett.2012,5,1230001.doi:10.1142/S1793604712300010

    (8)Yadav,M.;Xu,Q.Energy Environ.Sci.2012,5,9698.doi:10.1039/c2ee22937d

    (9)Lu,Z.H.;Yao,Q.L.;Zhang,Z.J.;Yang,Y.W.;Chen,X.S.J.Nanomater.2014,729029.

    (10) Rakap,M.;Kalu,E.E.;?zkar,S.J.Power Sources 2012,210,184.doi:10.1016/j.jpowsour.2012.03.025

    (11)Yan,J.M.;Wang,Z.L.;Wang,H.L.;Jiang,Q.J.Mater.Chem.2012,22,10990.doi:10.1039/c2jm31042b

    (12)Yang,Y.W.;Zhang,F.;Wang,H.L.;Yao,Q.L.;Chen,X.S.;Lu,Z.H.J.Nanomater.2014,294530.

    (13)Cheng,F.Y.;Ma,H.;Li,Y.M.;Chen,J.Inorg.Chem.2007,46,788.doi:10.1021/ic061712e

    (14) Basu,S.;Brockman,A.;Gagare,P.;Zheng,Y.;Ramachandran,P.V.;Delgass,W.N.;Gore,J.P.J.Power Sources 2009,188,238.doi:10.1016/j.jpowsour.2008.11.085

    (15)Du,Y.S.;Cao,N.;Yang,L.;Luo,W.;Cheng,G.Z.New J.Chem.2013,37,3035.doi:10.1039/c3nj00552f

    (16)Xi,P.X.;Chen,F.J.;Xie,G.Q.;Ma,C.;Liu,H.Y.;Shao,C.W.;Wang,J.;Xu,Z.H.;Xu,X.M.;Zeng,Z.Z.Nanoscale 2012,4,5597.doi:10.1039/c2nr31010d

    (17) Chandra,M.;Xu,Q.J.Power Sources 2007,168,135.doi:10.1016/j.jpowsour.2007.03.015

    (18)Yang,L.;Luo,W.;Cheng,G.E.ACS Appl.Mater.Interfaces 2013,5,8231.doi:10.1021/am402373p

    (19) Rachiero,G.P.;Demirci,U.B.;Miele,P.Int.J.Hydrog.Energy 2011,36,7051.doi:10.1016/j.ijhydene.2011.03.009

    (20)Simagia,V.I.;Komova,O.V.;Ozerova,A.M.;Netskina,O.V.;Odegova,G.V.;Kelleman,D.G.;Bulavcheoko,O.V.;Ishchenko,A.V.Appl.Catal.A:Gen.2011,384,86.

    (21)Yan,L.;Su,J.;Meng,X.Y.;Luo,W.;Cheng,G.Z.J.Mater.Chem.A 2013,1,10016.doi:10.1039/c3ta11835e

    (22) Lu,Z.H.;Li,J.P.;Zhu,A.L.;Yao,Q.L.;Huang,W.;Zhou,R.Y.;Zhou,R.F.;Chen,X.S.Int.J.Hydrog.Energy 2013,38,5330.doi:10.1016/j.ijhydene.2013.02.076

    (23)Lu,Z.H.;Jiang,H.L.;Yadav,M.;Aranishi,K.;Xu,Q.J.Mater.Chem.2012,22,5065.doi:10.1039/c2jm14787d

    (24) Rakap,M.;?zkar,S.Int.J.Hydrog.Energy 2010,35,3341.doi:10.1016/j.ijhydene.2010.01.138

    (25) Metin,?.;?zkar,S.Int.J.Hydrog.Energy 2011,36,1424.

    (26)Yao,Q.L.;Shi,W.M.;Feng,G.;Lu,Z.H.;Zhang,X.L.;Tao,D.J.;Kong,D.J.;Chen,X.S.J.Power Sources 2014,257,293.doi:10.1016/j.jpowsour.2014.01.122

    (27)Yang,Y.W.;Lu,Z.H.;Hu,Y.J.;Zhang,Z.J.;Shi,W.M.;Chen,X.S.;Wang,T.T.RSC Advances 2014,4,13749.doi:10.1039/c3ra47023g

    (28) Chandra,M.;Xu,Q.J.Power Sources 2006,156,190.doi:10.1016/j.jpowsour.2005.05.043

    (29) Rakap,M.;Kalu,E.E.;?zkar,S.Int.J.Hydrog.Energy 2011,36,1448.doi:10.1016/j.ijhydene.2010.10.097

    (30)Eom,K.S.;Cho,K.W.;Kwon,H.S.Int.J.Hydrog.Energy 2010,35,181.

    (31) Garaj,S.;Hubbard,W.;Reina,A.;Kong,J.;Branton,D.;Golovchenko,J.A.Nature 2010,467,190.doi:10.1038/nature09379

    (32) Lee,C.;Wei,X.D.;Kysar,J.W.;Hone,J.Science 2008,321,385.doi:10.1126/science.1157996

    (33)Choi,B.G.;Hong,J.;Park,Y.C.;Jung,D.H.;Hong,W.H.;Hammond,P.T.;Park,H.S.ACS Nano 2011,5,5167.doi:10.1021/nn2013113

    (34) Hu,Y.J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26(8),2073.[胡耀娟,金 娟,張 卉,吳 萍,蔡稱心.物理化學(xué)學(xué)報(bào),2010,26(8),2073.]doi:10.3866/PKU.WHXB20100812

    (35)Li,S.M.;Wang,B.;Liu,J.H.;Yu,M.;An,J.W.Acta Phys.-Chim.Sin.2012,28(11),2754.[李松梅,王 博,劉建華,于 美,安軍偉.物理化學(xué)學(xué)報(bào),2012,28(11),2754.]doi:10.3866/PKU.WHXB201208292

    (36)Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S.G.Acta Phys.-Chim.Sin.2011,27(4),858.[李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報(bào),2011,27(4),858.]doi:10.3866/PKU.WHXB20110411

    (37)Mazumder,V.;Chi,M.F.;More,K.L.;Sun,S.H.Angew Chem.Int.Edit.2010,49,9368.doi:10.1002/anie.201003903

    (38) Vinodgopal,K.;Neppolian,B.;Lightcap,I.V.;Grieser,F.;Ashokkumar,M.;Kamat,P.V.J.Am.Chem.Soc.2010,1,1987.

    (39)Liu,C.B.;Wang,K.;Luo,S.L.;Tang,Y.H.;Chen,L.Y.Small 2011,7,1203.doi:10.1002/smll.v7.9

    (40)Cao,N.;Su,J.;Luo,W.;Cheng,G.Z.Int.J.Hydrog.Energy 2014,39,426.doi:10.1016/j.ijhydene.2013.10.059

    (41) Roucoux,A.;Schulz,J.;Patin,H.Chem.Rev.2002,102,3757.doi:10.1021/cr010350j

    (42)Yang,L.;Cao,N.;Du,C.;Dai,H.M.;Hu,K.;Luo,W.;Cheng,G.Z.Materials Letters 2014,115,113.doi:10.1016/j.matlet.2013.10.039

    (43)Astruc,D.;Lu,F.;Aranzaes,J.R.Angew Chem.Int.Edit.2005,44,7852.

    (44)Hummers,W.S.;Offeman,R.E.J.Am.Chem.Soc.1958,80,1339.doi:10.1021/ja01539a017

    (45) Kovtyukhova,N.I.;Ollivier,P.J.;Martin,B.R.;Mallouk,T.E.;Chizhik,S.A.;Buzaneva,E.V.;Gorchinskiy,A.D.Chem.Mater.1999,11,771.doi:10.1021/cm981085u

    (46) Chen,H.Q.;Müller,M.B.;Gilmore,K.J.;Wallace,G.G.;Li,D.Adv.Mater.2008,20,3557.doi:10.1002/adma.200800757

    猜你喜歡
    江西師范大學(xué)劉建華化工學(xué)院
    勞動贊歌
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    搟面條
    掉鞭炮
    手影
    Identity-based proxy multi-signature applicable to secure E-transaction delegations①
    《化工學(xué)報(bào)》贊助單位
    對旅游專業(yè)外語的理想教學(xué)模式的思考——以江西師范大學(xué)為例
    404 Not Found

    404 Not Found


    nginx
    女人被狂操c到高潮| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 男女之事视频高清在线观看| av免费在线观看网站| 99精品久久久久人妻精品| 在线天堂中文资源库| 亚洲中文字幕一区二区三区有码在线看 | 97碰自拍视频| 极品人妻少妇av视频| 久久中文字幕人妻熟女| 神马国产精品三级电影在线观看 | 欧美成狂野欧美在线观看| av欧美777| netflix在线观看网站| 满18在线观看网站| 国产一卡二卡三卡精品| 亚洲国产欧美网| 中文字幕人妻熟女乱码| 久久久久久久久久久久大奶| 午夜福利一区二区在线看| 精品国产亚洲在线| 丰满人妻熟妇乱又伦精品不卡| 最近最新免费中文字幕在线| 国产亚洲欧美在线一区二区| 自线自在国产av| 又黄又爽又免费观看的视频| 亚洲欧美日韩高清在线视频| 欧美色欧美亚洲另类二区 | 国产一区二区三区在线臀色熟女| 麻豆成人av在线观看| 精品无人区乱码1区二区| 成人免费观看视频高清| 黄色女人牲交| 亚洲一区二区三区色噜噜| 91在线观看av| 亚洲五月婷婷丁香| 日韩欧美一区二区三区在线观看| 亚洲五月色婷婷综合| 国产亚洲av嫩草精品影院| 精品国产一区二区三区四区第35| 亚洲自偷自拍图片 自拍| 成年女人毛片免费观看观看9| av超薄肉色丝袜交足视频| 免费av毛片视频| 777久久人妻少妇嫩草av网站| 亚洲情色 制服丝袜| 女警被强在线播放| 欧美午夜高清在线| 色播在线永久视频| 欧美一级毛片孕妇| 大香蕉久久成人网| 国产精品香港三级国产av潘金莲| 国产伦一二天堂av在线观看| 黄色片一级片一级黄色片| 天堂√8在线中文| 此物有八面人人有两片| 欧美绝顶高潮抽搐喷水| 99久久精品国产亚洲精品| 国产主播在线观看一区二区| 欧美乱色亚洲激情| 日韩欧美在线二视频| 中国美女看黄片| 日韩欧美免费精品| 他把我摸到了高潮在线观看| 变态另类成人亚洲欧美熟女 | 久久香蕉激情| 色综合站精品国产| 亚洲精品中文字幕在线视频| 亚洲 欧美一区二区三区| 久久久久国产一级毛片高清牌| 亚洲国产欧美一区二区综合| 久久香蕉精品热| 久久精品国产99精品国产亚洲性色 | 久久午夜综合久久蜜桃| 久久这里只有精品19| 午夜福利视频1000在线观看 | 国产精品 国内视频| 一a级毛片在线观看| 久久精品91蜜桃| 精品久久久精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 69av精品久久久久久| 亚洲性夜色夜夜综合| 亚洲国产精品999在线| 女同久久另类99精品国产91| 国产亚洲欧美精品永久| 在线观看免费日韩欧美大片| 琪琪午夜伦伦电影理论片6080| 女人被躁到高潮嗷嗷叫费观| 色综合婷婷激情| 精品第一国产精品| 久久午夜亚洲精品久久| 日本精品一区二区三区蜜桃| 久久亚洲精品不卡| 悠悠久久av| 国产精品1区2区在线观看.| 亚洲成a人片在线一区二区| 中文字幕另类日韩欧美亚洲嫩草| av视频免费观看在线观看| 在线观看免费视频日本深夜| 好看av亚洲va欧美ⅴa在| 亚洲av电影不卡..在线观看| 久99久视频精品免费| 免费高清在线观看日韩| 午夜福利欧美成人| 嫩草影视91久久| 国产1区2区3区精品| 色播亚洲综合网| 欧美亚洲日本最大视频资源| 91在线观看av| 久久人妻av系列| 欧美黄色片欧美黄色片| 国产一级毛片七仙女欲春2 | 怎么达到女性高潮| 99久久精品国产亚洲精品| 69av精品久久久久久| 他把我摸到了高潮在线观看| 麻豆成人av在线观看| 欧美成人免费av一区二区三区| 少妇裸体淫交视频免费看高清 | 韩国av一区二区三区四区| 亚洲精品国产一区二区精华液| 精品一区二区三区四区五区乱码| 国产私拍福利视频在线观看| 大型黄色视频在线免费观看| 国产99白浆流出| 免费在线观看日本一区| 国产成人欧美在线观看| 露出奶头的视频| 亚洲精品美女久久av网站| 亚洲欧美激情在线| 国产成人免费无遮挡视频| 精品久久蜜臀av无| 可以在线观看的亚洲视频| 久久人妻福利社区极品人妻图片| 国产成年人精品一区二区| www.自偷自拍.com| 一级黄色大片毛片| 看黄色毛片网站| 桃色一区二区三区在线观看| 91国产中文字幕| 亚洲九九香蕉| 免费少妇av软件| 精品人妻1区二区| 999精品在线视频| 91在线观看av| 久久精品91无色码中文字幕| 人人妻人人爽人人添夜夜欢视频| 欧美日本亚洲视频在线播放| 中文字幕最新亚洲高清| 国产成人一区二区三区免费视频网站| 视频在线观看一区二区三区| 国产一区在线观看成人免费| 亚洲精品一区av在线观看| 日本免费一区二区三区高清不卡 | 激情在线观看视频在线高清| 精品高清国产在线一区| 国产人伦9x9x在线观看| 国内久久婷婷六月综合欲色啪| 中国美女看黄片| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人性av电影在线观看| 19禁男女啪啪无遮挡网站| 男女床上黄色一级片免费看| 一级a爱片免费观看的视频| 久久久国产欧美日韩av| 久久精品亚洲熟妇少妇任你| 91九色精品人成在线观看| 一区二区三区国产精品乱码| 制服人妻中文乱码| 国产精品永久免费网站| 国产欧美日韩综合在线一区二区| 国产高清有码在线观看视频 | 国产精品久久久久久亚洲av鲁大| 日韩免费av在线播放| 老司机深夜福利视频在线观看| 国产人伦9x9x在线观看| www.精华液| 熟女少妇亚洲综合色aaa.| av福利片在线| 久久久国产精品麻豆| 久久人人精品亚洲av| 免费在线观看影片大全网站| 午夜精品国产一区二区电影| 韩国av一区二区三区四区| 久久国产亚洲av麻豆专区| 亚洲色图综合在线观看| 美女扒开内裤让男人捅视频| 亚洲天堂国产精品一区在线| 黄色丝袜av网址大全| 美女扒开内裤让男人捅视频| 欧美黄色淫秽网站| 国产成人一区二区三区免费视频网站| 好男人在线观看高清免费视频 | 亚洲熟女毛片儿| 色播在线永久视频| 韩国av一区二区三区四区| 久久 成人 亚洲| 中文字幕最新亚洲高清| 精品第一国产精品| 老司机福利观看| 男女下面插进去视频免费观看| 亚洲av熟女| 18禁美女被吸乳视频| 国产成人精品久久二区二区91| 久久久久久久精品吃奶| 在线观看免费视频网站a站| 一区二区三区高清视频在线| 999精品在线视频| 日韩精品中文字幕看吧| 一级毛片高清免费大全| 成人精品一区二区免费| 国产1区2区3区精品| 啦啦啦韩国在线观看视频| 久久人人爽av亚洲精品天堂| 18禁裸乳无遮挡免费网站照片 | 婷婷丁香在线五月| 国产97色在线日韩免费| 久久久国产成人精品二区| 人人妻人人澡人人看| 精品无人区乱码1区二区| 久久这里只有精品19| 1024视频免费在线观看| 亚洲五月婷婷丁香| 可以在线观看的亚洲视频| 成人国语在线视频| 制服诱惑二区| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 麻豆一二三区av精品| 久久人人爽av亚洲精品天堂| 精品国产乱子伦一区二区三区| 国产精品久久电影中文字幕| 在线播放国产精品三级| 日本在线视频免费播放| 性欧美人与动物交配| 精品熟女少妇八av免费久了| 免费观看人在逋| 99热只有精品国产| 亚洲熟女毛片儿| 少妇 在线观看| 不卡一级毛片| 国产欧美日韩一区二区三区在线| 黄网站色视频无遮挡免费观看| 日韩中文字幕欧美一区二区| 久久久久久免费高清国产稀缺| 好看av亚洲va欧美ⅴa在| 搡老熟女国产l中国老女人| 国产精品一区二区精品视频观看| 亚洲熟女毛片儿| 亚洲精品一区av在线观看| 男人舔女人下体高潮全视频| 天天躁夜夜躁狠狠躁躁| 美女免费视频网站| 美女午夜性视频免费| 丰满的人妻完整版| 亚洲视频免费观看视频| 亚洲中文av在线| 最近最新中文字幕大全免费视频| 麻豆av在线久日| 久久精品成人免费网站| 久久久国产精品麻豆| 久久精品国产亚洲av高清一级| 18禁裸乳无遮挡免费网站照片 | 看片在线看免费视频| 国产亚洲精品一区二区www| 成人国产综合亚洲| 老司机靠b影院| www.自偷自拍.com| 9热在线视频观看99| 悠悠久久av| 亚洲精品在线观看二区| 日韩欧美一区视频在线观看| 久久久国产欧美日韩av| 国产免费av片在线观看野外av| 国产成年人精品一区二区| 亚洲av电影在线进入| 一夜夜www| 久99久视频精品免费| 欧美另类亚洲清纯唯美| 国产在线精品亚洲第一网站| 中文字幕最新亚洲高清| 成人欧美大片| 在线十欧美十亚洲十日本专区| 麻豆成人av在线观看| 午夜福利高清视频| 亚洲成人久久性| 黄色 视频免费看| 一级a爱片免费观看的视频| 91成人精品电影| 女人高潮潮喷娇喘18禁视频| 久久婷婷成人综合色麻豆| 久久国产乱子伦精品免费另类| 宅男免费午夜| 国产蜜桃级精品一区二区三区| 少妇被粗大的猛进出69影院| 日本精品一区二区三区蜜桃| or卡值多少钱| 嫩草影院精品99| 少妇被粗大的猛进出69影院| 国产主播在线观看一区二区| 中文字幕人妻丝袜一区二区| 国产一区二区在线av高清观看| 精品乱码久久久久久99久播| 91成年电影在线观看| 国产精品精品国产色婷婷| 夜夜爽天天搞| x7x7x7水蜜桃| 女警被强在线播放| 久9热在线精品视频| 午夜成年电影在线免费观看| 国产成人免费无遮挡视频| 可以免费在线观看a视频的电影网站| aaaaa片日本免费| 欧美大码av| 精品卡一卡二卡四卡免费| 美国免费a级毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆成人av在线观看| 真人做人爱边吃奶动态| 黄色成人免费大全| 日韩 欧美 亚洲 中文字幕| www.999成人在线观看| 亚洲欧美一区二区三区黑人| 欧美成狂野欧美在线观看| 国产极品粉嫩免费观看在线| 国产视频一区二区在线看| 精品国产国语对白av| 久久国产精品影院| 涩涩av久久男人的天堂| 深夜精品福利| 国产av精品麻豆| 中国美女看黄片| 黄色片一级片一级黄色片| 91国产中文字幕| 欧美黄色淫秽网站| 国产区一区二久久| 伦理电影免费视频| 99精品在免费线老司机午夜| 波多野结衣巨乳人妻| 9热在线视频观看99| 18禁观看日本| 色哟哟哟哟哟哟| 久久国产乱子伦精品免费另类| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜一区二区| 日日干狠狠操夜夜爽| 亚洲一卡2卡3卡4卡5卡精品中文| 两性夫妻黄色片| 中文字幕色久视频| 50天的宝宝边吃奶边哭怎么回事| 国产免费男女视频| 又黄又粗又硬又大视频| 久久婷婷成人综合色麻豆| 亚洲国产毛片av蜜桃av| 老汉色av国产亚洲站长工具| 叶爱在线成人免费视频播放| 午夜福利视频1000在线观看 | 午夜久久久在线观看| 精品久久久精品久久久| 91九色精品人成在线观看| 色哟哟哟哟哟哟| 久久精品国产清高在天天线| 国产精品久久久久久人妻精品电影| 在线观看日韩欧美| 啦啦啦观看免费观看视频高清 | 久久久久亚洲av毛片大全| 在线观看免费视频网站a站| 日本精品一区二区三区蜜桃| 亚洲精华国产精华精| 黄色片一级片一级黄色片| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 女同久久另类99精品国产91| 色在线成人网| 久久中文看片网| 免费高清视频大片| 一本久久中文字幕| 成人国语在线视频| 波多野结衣巨乳人妻| 老司机靠b影院| 国产精品一区二区三区四区久久 | 成人18禁在线播放| 国产激情欧美一区二区| 国产成+人综合+亚洲专区| 成人av一区二区三区在线看| 99精品欧美一区二区三区四区| 99国产精品一区二区蜜桃av| 国产av又大| 亚洲欧洲精品一区二区精品久久久| 国产成+人综合+亚洲专区| av天堂在线播放| 在线观看免费视频网站a站| 亚洲精品中文字幕一二三四区| 麻豆av在线久日| 日韩欧美在线二视频| 女人爽到高潮嗷嗷叫在线视频| 日韩免费av在线播放| 国产精品香港三级国产av潘金莲| 久久久久久国产a免费观看| 国产熟女午夜一区二区三区| 精品一区二区三区av网在线观看| 国产视频一区二区在线看| 啦啦啦免费观看视频1| 长腿黑丝高跟| 国产精华一区二区三区| 在线播放国产精品三级| 九色亚洲精品在线播放| 亚洲第一av免费看| 一二三四社区在线视频社区8| 俄罗斯特黄特色一大片| tocl精华| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 国产又色又爽无遮挡免费看| 午夜亚洲福利在线播放| 女人被狂操c到高潮| 在线观看舔阴道视频| 男人舔女人的私密视频| 黄色视频不卡| av超薄肉色丝袜交足视频| 国产成人一区二区三区免费视频网站| 午夜久久久久精精品| 亚洲成人免费电影在线观看| 丰满的人妻完整版| 满18在线观看网站| 久久久久国产一级毛片高清牌| 在线国产一区二区在线| 伊人久久大香线蕉亚洲五| 色综合站精品国产| 两性夫妻黄色片| 高潮久久久久久久久久久不卡| 麻豆久久精品国产亚洲av| 男女床上黄色一级片免费看| 电影成人av| 国产欧美日韩综合在线一区二区| 中文字幕久久专区| 国产精品综合久久久久久久免费 | 18禁国产床啪视频网站| 无遮挡黄片免费观看| 满18在线观看网站| 亚洲男人的天堂狠狠| 好看av亚洲va欧美ⅴa在| 亚洲成人精品中文字幕电影| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 一边摸一边做爽爽视频免费| 久久久久久大精品| 制服人妻中文乱码| 亚洲国产精品999在线| 桃红色精品国产亚洲av| 精品久久久精品久久久| 亚洲第一青青草原| 最新在线观看一区二区三区| 久久精品91蜜桃| 狠狠狠狠99中文字幕| 国产1区2区3区精品| 精品一品国产午夜福利视频| 午夜福利在线观看吧| 国产精品永久免费网站| 搞女人的毛片| 老司机靠b影院| 欧美激情极品国产一区二区三区| 99精品久久久久人妻精品| 无限看片的www在线观看| 亚洲国产精品999在线| cao死你这个sao货| 亚洲天堂国产精品一区在线| 亚洲国产欧美日韩在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 久久 成人 亚洲| 大型黄色视频在线免费观看| 18禁美女被吸乳视频| 精品久久久久久成人av| 不卡一级毛片| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 午夜福利影视在线免费观看| 日韩欧美一区二区三区在线观看| 91av网站免费观看| 免费在线观看黄色视频的| 久久久久久久久中文| 丁香欧美五月| 十八禁人妻一区二区| 99精品在免费线老司机午夜| 精品人妻1区二区| 大型av网站在线播放| 亚洲第一电影网av| 国产成人欧美| 黑丝袜美女国产一区| 成人亚洲精品av一区二区| 亚洲熟女毛片儿| 琪琪午夜伦伦电影理论片6080| 99久久精品国产亚洲精品| 国产熟女xx| avwww免费| 两性夫妻黄色片| 久久久久久久久中文| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 成人国语在线视频| 亚洲专区国产一区二区| 国产一卡二卡三卡精品| 国产精品美女特级片免费视频播放器 | 最近最新中文字幕大全免费视频| 性欧美人与动物交配| 国产乱人伦免费视频| av在线播放免费不卡| 一夜夜www| 九色国产91popny在线| 午夜精品国产一区二区电影| 成在线人永久免费视频| √禁漫天堂资源中文www| 亚洲欧美激情在线| 19禁男女啪啪无遮挡网站| 97超级碰碰碰精品色视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产又爽黄色视频| 成人手机av| 精品高清国产在线一区| 少妇粗大呻吟视频| 久久久精品欧美日韩精品| www.精华液| 18禁观看日本| 最近最新中文字幕大全免费视频| 亚洲天堂国产精品一区在线| 国产精品综合久久久久久久免费 | 自线自在国产av| 久久精品国产亚洲av高清一级| 久久久久精品国产欧美久久久| 色婷婷久久久亚洲欧美| 一区二区日韩欧美中文字幕| 青草久久国产| 国产亚洲精品av在线| 久热这里只有精品99| 在线观看日韩欧美| 久久久久国产精品人妻aⅴ院| 变态另类丝袜制服| 日本一区二区免费在线视频| 午夜两性在线视频| АⅤ资源中文在线天堂| 可以免费在线观看a视频的电影网站| 亚洲中文字幕日韩| 嫩草影院精品99| 国产人伦9x9x在线观看| 波多野结衣高清无吗| 性色av乱码一区二区三区2| 黄色a级毛片大全视频| 村上凉子中文字幕在线| 亚洲精华国产精华精| 亚洲午夜理论影院| 欧美老熟妇乱子伦牲交| 操美女的视频在线观看| 亚洲电影在线观看av| 日本免费a在线| 啦啦啦观看免费观看视频高清 | 国产91精品成人一区二区三区| 女警被强在线播放| 色老头精品视频在线观看| 国产精品九九99| 级片在线观看| 久久国产乱子伦精品免费另类| 91国产中文字幕| 久久久久精品国产欧美久久久| 亚洲精品国产区一区二| 免费搜索国产男女视频| 一区二区三区国产精品乱码| 国产精品,欧美在线| 亚洲免费av在线视频| 999久久久精品免费观看国产| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 国产精品久久久久久亚洲av鲁大| 午夜福利在线观看吧| 91在线观看av| 1024香蕉在线观看| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 国产1区2区3区精品| 1024香蕉在线观看| 十分钟在线观看高清视频www| 欧美成人午夜精品| 嫩草影院精品99| 亚洲 欧美一区二区三区| 色综合亚洲欧美另类图片| 国产精品亚洲av一区麻豆| 色哟哟哟哟哟哟| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 欧美日本亚洲视频在线播放| 亚洲色图 男人天堂 中文字幕| 少妇熟女aⅴ在线视频| 视频区欧美日本亚洲| 亚洲成国产人片在线观看| 不卡一级毛片| 亚洲精华国产精华精| 美国免费a级毛片| 琪琪午夜伦伦电影理论片6080| 久久 成人 亚洲| tocl精华| av电影中文网址| 男女之事视频高清在线观看| 天天一区二区日本电影三级 | 成人亚洲精品av一区二区| 巨乳人妻的诱惑在线观看| 色av中文字幕| 国产91精品成人一区二区三区| 最近最新中文字幕大全电影3 | 日韩中文字幕欧美一区二区| 久久久久国内视频| 亚洲精品国产区一区二| 免费在线观看黄色视频的| 女人高潮潮喷娇喘18禁视频|